Using VHDL Based Modeling, Synthesis, and Simulation in an Introductory Computer Architecture Laboratory

James 0. Hamblen

School of Electrical and Computer Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332-0250

USA

Abstract -. In many existing curricula, laboratories, and textbooks there is a notable lack of recent research advances in CAD tools and rapid prototyping using logic synthesis tools. This paper describes a new two quarter introductory computer architecture course and laboratory sequence in our undergraduate Computer Engineering curriculum. VHDL modeling, synthesis, and gate level timing simulations are used by students to design a prototype 32-bit RISC processor.

1 Introduction

The rapid evolution of the computing industry challenges academic curricula to keep pace in providing students with a modern education. Their experiences in school should provide them with the tools to be productive as well as ability to challenge the existing methodologies in discovering more efficient techniques. Traditionally, undergraduate computer architecture laboratory courses have used special purpose software simulators to aid in the design and modeling of a simple computer. This model of a simple computer is used to explain and reinforce many of the new ideas presented in lectures. In recent years, many such courses have been based on behavioral or RTL level simulations only. A methodology is described using VHDL based modeling that allows for top down hierarchical design, synthesis, and a full gate level timing simulation of a 32-bit RISC processor by using advanced CAD tools.

This paper describes our experiences in developing a two quarter laboratory course to accompany a computer architecture course sequence for computer and electrical engineering majors. Our goal was to enable students to design and develop a realistic computer system simulation using many of the recent advances in CAD tools for logic synthesis and simulation.

 CmpE, Computer Engineering, 2510 and 3510 are required four hour, one quarter, courses taken in sequence by computer engineering students at the Georgia Institute of Technology. All electrical engineering students are required to take the first course in the sequence. Many electrical engineering students take the second course as an elective. Students are already familiar with digital design, FPGAs, and VHDL based modeling and simulation of simple digital logic circuits from prerequisite coursework. Introduction of modern VHDL based CAD tools into the curriculum allows more realistic evaluation through system implementation and simulation than has been previously possible. Example projects, student feedback, and results from the first two offerings of this sequence are included in this paper.

2 CmpE 2510 and 3510 Laboratory

Enrollment in CmpE 2510 and 3510 is approximately 350 students per year. Lectures are held three times a week and the laboratory is open sixty hours a week. Remote access to laboratory machines is available via the campus network. The lecture and laboratory outline for CmpE 2510 and 3510 is shown in Table 1. The MIPS 32-bit RISC assembly language, integer and floating point computer arithmetic, and several hardware models of the MIPS processor are contained in the course textbook [1]. In CmpE 2510, the first course in the sequence, students complete three assembly language programming laboratory assignments using SPIM, a MIPS assembler and instruction level simulator. SPIM is a public domain program available free via anonymous ftp for UNIX, PC and MAC platforms [1,2]. The first two assembly language programs demonstrate integer operations, control structures, stack operations, and subroutine linkage.

In the second assembly language program, students compare their hand written assembly code to a C compiler that has compiled a program to perform the same operation. Lcc, a public domain retargetable C compiler, available for UNIX workstations and PCs, is used for this step [3]. One of the target machines already supported by this compiler is the MIPS. MIPS assembly language source files generated by the compiler are then used by students to demonstrate compiler code generation.

 In the final assembly language program, students implement a floating point function such as square root. The SPIM MIPS simulator supports floating point instructions and operations. IEEE Standard 754 floating point format is used in the MIPS processor [4].

After completing MIPS assembly language laboratory assignments, students have two laboratory assignments in which they modify a VHDL model of a MIPS RISC processor. A synthesizable VHDL model of the MIPS was developed at Georgia Tech for use in this laboratory. It should be noted that existing synthesis tools impose a number of restrictions upon the VHDL source code and require the use of a subset of standard VHDL.

 A simple VHDL synthesis example using the MIPS control unit is shown in Figs. 1 and 2. The VHDL source code is shown in Fig. 1 and the schematic automatically generated by the synthesis tool is shown in Fig. 2. The input to this module is the 6-bit instruction opcode, OP(5-0). The outputs are the various control signals used in the processor. The synthesis tool automatically performs logic minimization and multi-level logic synthesis. As an example, many of the intermediate level gate outputs are shared between the various output circuits shown in the schematic in Fig. 2. The original VHDL code had logic equations with six inputs for the opcode bits. More than two levels of gating are required for implementation since the ASIC technology used for synthesis allows a maximum of four inputs per gate.

 In these two VHDL based laboratory assignments, new instructions and features are added to the VHDL model of the MIPS processor. The entire design is resynthesized to a gate level schematic, and a gate level timing simulation running a short machine language test program is used to verify correct operation of the new instructions. Tutorial and batch files are included to make the process simple enough for first time users of the CAD tools.

 Student’s VHDL models are automatically synthesized into gate level logic and simulated using a popular commercial CAD tool, Viewlogic. Several other VHDL based CAD synthesis tools could also be used; however, most are available only for UNIX platforms. Viewlogic’s VHDL synthesis and simulation tools are currently available for UNIX or PC platforms at a substantial educational discount. For PC based Viewlogic, a 486 or better PC with at least 16M memory and 100M of available disk space is recommended. We currently have forty such machines available for student use in this laboratory. In addition to class handouts, several VHDL references are provided and a full set of CD ROM on-line documentation for the VHDL CAD tool is available via a shared network drive [5,6]. The Xlilinx 4000 ASIC technology library is used for gate level synthesis and timing information [7]. With minor changes it is possible to resynthesize using other ASIC technologies. Gate count and timing information is automatically reported by the synthesis tool.

The VHDL synthesis tool has predefined VHDL based implementations of adders, subtractors, and flip-flops making the design process easier. Hardware for addition, subtraction, and register storage operations can be automatically generated by function calls in the VHDL code. It is possible for students to examine the synthesized schematics and to experiment with different hardware design tradeoffs such as time and area. When running simulations, a timing diagram can be produced and it is also possible to back annotate the schematics with simulation values to aid in debugging.

A full 32-bit version of the MIPS requires several hours to synthesize on the PC platform. A smaller version with an 8-bit data path with full 32-bit instructions and control was developed to permit the design to synthesize and simulate quickly for student laboratory assignments. This version has minimal VHDL source level modifications from the 32-bit version. Changes are limited to the bit vector array size declarations for variables and signals in the data path. The smaller model requires machine language test programs that use 8-bit integer values. Since the hardware test programs in the textbook are just a few instructions long and relatively simple, this has not affected the pedagogical value of the MIPS VHDL model.

Machine language test programs can be hand assembled or assembled using the SPIM assembler. This machine language file is then read into the VHDL model’s memory with a read command or hardcoded into a ROM used to simulate instruction memory. On current generation PCs, the entire synthesis process for the smaller model requires several minutes of computer time. Approximately 3,500 gates are used to implement the MIPS VHDL model.

In CmpE 3510, the second computer architecture course, students study pipelining techniques, caches, virtual memory, and I/O hardware. In laboratory assignments, students modify the synthesizable VHDL model to create an improved MIPS RISC processor with pipelining. In the first laboratory assignments, students pipeline the existing MIPS VHDL model. The VHDL model contains separate modules for each of the five pipeline stages making the student pipelining process much easier. In this assignment, students add the pipeline registers and modify the control unit. A top-level VHDL structural model is used to connect the five stages together. This structure generates two levels of hierarchy in the design. Breaking up the model into different pipeline stages makes the model much easier to understand and to synthesize. Short machine language test programs identical to those presented in the course textbook are run in the simulator to verify correct operation. On the PC platform, the VHDL gate level timing simulator can execute the MIPS test programs in a few seconds.

In the second laboratory assignment, automatic pipeline stalling using a hazard detection unit is added to the pipelined MIPS VHDL model. In the third laboratory assignment, forwarding is added between the pipeline stages to reduce the number of stalls. In the fourth assignment, branch flushing is added to the pipelined MIPS VHDL model. In the final assignment, additional features such as a cache or exception hardware are added to the pipelined MIPS VHDL model. In each case, complete synthesis of the design to gate level, followed by a full gate level timing simulation is used to execute short machine language test programs.

Over the two quarter sequence, most students have encountered timing problems present in their VHDL models that cause errors in the VHDL gate level timing simulation. In every case, it was a real timing problem traced back to VHDL coding errors. They were able to detect and diagnose the problem using the simulation, modify the VHDL model, resynthesize, and eliminate the timing problems. Problems included unintialized values in flip-flops, combinatorial loops, gating signals with the clock, and logic hazards on critical write control lines. These real world problems familiar to most experienced digital designers are not detected by most RTL or VHDL behavioral simulations.

Actual VLSI chip designs with higher clock rates could be automatically produced using the VHDL synthesis generated netlist as the input to a silicon compiler [8]. The Lager silicon compiler automatically generates a standard cell layout. Interfaces to this tool have been developed for synthesized designs using Viewlogic VHDL. This tool is available upon request for UNIX platforms free of charge to educational users from the University of California at Berkeley. In theory, MIPS chips could then be fabricated using the MOSIS fabrication service available to universities in the United States. The actual fabrication process would add a substantial delay due to VLSI fabrication times and would make design turnarounds difficult, if not impossible, in a one quarter course. It would also be possible to fit the entire MIPS VHDL synthesized design into a large Xilinx FPGA chip. This option is being investigated for use in a more advanced computer architecture laboratory course, CmpE 4500. In future offerings of this course, for the final laboratory project, MIPS processor designs will be compiled into a VLSI chip and then simulated to examine the resulting timing and area information.

3 Conclusions

VHDL synthesis and simulation provides a new paradigm for computer architecture classes. With current generation CAD tools it is possible for undergraduate students to design and develop working simulations of complex computer systems as part of their laboratory coursework. The equipment and CAD tools required are available to schools at prices comparable to existing instructional laboratories. A copy of the MIPS VHDL model is available from the author upon request. Student feedback has encouraged the continued use of the new VHDL based CAD tools. Students gain a sense of accomplishment and work harder on the computer design projects when given the opportunity to use advanced general purpose CAD tools with realistic timing and gate level simulations rather than a special purpose computer simulation program. Rapid prototyping of the design using synthesis and simulation in the laboratory demonstrates and unifies many of the ideas taught in numerous undergraduate classes and serves as an ideal laboratory course for introductory computer architecture students.

4 Acknowledgments

The authors would like to thank the many students and teaching assistants who aided in the development of this new laboratory. Donations of Personal Computers from Intel, and CAD tools from Viewlogic and Xilinx made the development of this new laboratory possible. A grant from the Georgia Tech Foundation enabled us to obtain additional software and equipment needed for the laboratory.

References

[1]	Patterson, D. and Hennessy, J., Computer Organization & Design The Hardware/Software Interface, San Mateo, CA: Morgan Kaufmann, 1994.

[2] Larus, J., Assemblers, Linkers, and the SPIM Simulator, University of Wisconsin, 1991. reprinted in [1], manual and SPIM software available via ftp from ftp.cs.wisc.edu.

[3] 	Heinrich, J., MIPS R4000 User's Manual, Englewood Cliffs,N.J.: Prentice Hall,. 1993.

[4] 	Fraser, C.and Hanson, D., A Retargetable C Compiler: Design and Implementation, Redwood City, CA: Benjamin/Cummings Publishing, 1995. Information and compiler available from http://www.cs.princeton.edu/software/lcc

[5] Ashenden, P., The VHDL Cookbook, University of Adelaide, 1990. available via ftp from bears.ece.ucsb.edu.

[6] 	VHDL Reference Manual for Synthesis, Marlboro Massachusetts: Viewlogic Systems, 1992.

[7]	XACT Viewlogic Interface User Guide, San Jose, CA: Xilinx Corporation, 1994.

[8] 	Brodersen, R.W., editor., Anatomy of a Silicon Compiler, Boston, Mass: Kulwer Academic Publishers , 1992.

�

�
 ����������������� EMBED Word.Picture.6 ���

��
TABLE 1 Outline of Lecture and Laboratory Topics

Week�
CmpE 2510 Laboratory�
CmpE 2510 Lecture�
�
1�
SPIM tutorial�
MIPS RISC architecture�
�
2�
First assembly lang. program �
MIPS instruction Set�
�
3�
“�
SPIM assembly language�
�
4�
Second assembly lang. program�
Stacks and subroutines�
�
5�
MIPS C compiler�
Integer computer arithmetic�
�
6�
MIPS floating point program�
Floating point arithmetic�
�
7�
VHDL CAD tool tutorial�
Overview of VHDL�
�
8�
VHDL synthesis and simulation running a new test program�
MIPS processor hardware implementation and VHDL model�
�
9�
VHDL synthesis and simulation

adding a new instruction�
Modifying hardware and VHDL to add new instructions and features�
�
10�
“�
Alternative microcoded MIPS �
�
Week�
CmpE 3510 Laboratory�
CmpE 3510 Lecture�
�
1�
VHDL CAD tool tutorial�
Overview of pipelining�
�
2�
Pipelining the MIPS design�
Pipelining the MIPS hardware�
�
3�
“ �
Pipeline control problems�
�
4�
Adding a hazard unit to the MIPS�
MIPS hazard detection hardware�
�
5�
“�
MIPS forwarding unit �
�
6�
Adding forwarding to the MIPS�
“�
�
7�
“�
MIPS branch flushing�
�
8�
Add branch flushing to the MIPS�
I/O devices and busses �
�
9�
“�
Caches and virtual memory�
�
10�
Compile MIPS chip design�
Introduction to parallel computers�
�

�
TABLE 2

Summary of Student Processor Designs.

Machine Name�
Inst.Set Arch.�
Data Path Architecture�
VHDL Simulation�
Hardware Emulation�
Compiler

Retargeted �
Benchmark Results�
Gate Count�
�
Dueling Pipes�
RISC

16-bit

Data

Path�
2-way Superscalar

5 Stage Pipes

64 Registers�
Yes�
Ran Benchmark Program�
Passed all test programs�
357 clocks

12.34 MHz�
36272(32)

8632(8)�
�
Speed

�
RISC

MIPS�
5 Stage Pipe

32 Registers

1 Delay Slot�
Yes�
Ran Benchmark Program�
Passed all test programs�
490 clocks

6.2 MHz�
21200(32)

9557(8)�
�
Scotty

�
RISC VLIW�
2-way Superscalar

5 Stage Pipes�
Yes�
Ran with

minor problem�
Passed main Benchmark�
n/a

5 MHz�
29000(32)

10853(8)�
�
Dino�
RISC

MIPS�
5 Stage Pipe

32 Registers�
Yes�
Ran Benchmark�
Passed all test programs�
920 clocks

5.68 MHz�
25800(32) 9803(8)�
�
Lightning

�
RISC MIPS�
5 Stage Pipe

32 Registers�
Yes�
Ran Benchmark�
Passed Benchmark�
390 clocks

10 MHz�
30100(32)

10379(8)�
�
Melvin

�
RISC

MIPS�
5 Stage Pipe

32 Registers�
Yes�
ALU stage test only�
Partial�
827 clocks

4 MHz�
28000(32)

8945(8)�
�
Dinosaur

�
RISC MIPS�
5 Stage Pipe no Data Forwarding

32 Registers�
Yes �
Ran Benchmark Program�
Partial�
672 clocks

4 MHz�
24000(32)

9200(8)�
�
TBM

�
RISC

MIPS�
5 Stage Pipe

32 Registers�
Yes�
ALU stage test only�
Partial�
n/a

5 MHz�
19200(32)

n/a(8)�
�
Midget

MIPS�
RISC MIPS�
5 Stage Pipe

32 Registers�
Inst. Level test only�
ALU stage test only�
Partial�
n/a

�
16050(32) 6067(8)�
�

�
-- control module (model of MIPS control module)

library synth;

use synth.stdsynth.ALL;

entity control is

port(signal Op : in vlbit_1D(5 downto 0);

		signal RegDst : out vlbit;

		signal ALUSrc : out vlbit;

		signal MemtoReg : out vlbit;

		signal RegWrite : out vlbit;

		signal MemRead : out vlbit;

		signal MemWrite : out vlbit;

		signal Branch : out vlbit;

		signal ALUop0 : out vlbit;

		signal ALUop1 : out vlbit);

end control;

architecture behaviour of control is

 signal Rformat, Lw, Sw, Beq : vlbit;

begin -- behaviour of MIPS control

		Rformat <= ((NOT Op(5)) AND (NOT Op(4)) AND (NOT Op(3)) AND

				 (NOT Op(2)) AND (NOT Op(1)) AND (NOT Op(0)));

		Lw <= (Op(5)) AND (NOT Op(4)) AND (NOT Op(3)) AND

				 (NOT Op(2)) AND (Op(1)) AND (Op(0));

		Sw <= (Op(5)) AND (NOT Op(4)) AND (Op(3)) AND

				 (NOT Op(2)) AND (Op(1)) AND (Op(0));

		Beq <= (NOT Op(5)) AND (NOT Op(4)) AND (NOT Op(3)) AND

				 (Op(2)) AND (NOT Op(1)) AND (NOT Op(0));

 		RegDst <= Rformat;

		ALUSrc <= Lw or Sw;

		MemtoReg <= Lw ;

		RegWrite <= Rformat or Lw;

		MemRead <= Lw ;

		MemWrite <= Sw ;

		Branch <= Beq ;

		ALUOp1 <= Rformat ;

		ALUOp0 <= Beq ;

end behaviour;

FIG. 1 VHDL Source Code for MIPS Control Unit.

�

FIG. 2 Control Unit Schematic Produced by VHDL Synthesis

�PAGE �

�PAGE �2�

FPGA

files

Machine

Language

Captured

Data

Assembly

Language

Gate Level

Schematic

VHDL Logic Synthesis and

Simulation CAD Tool

Automatic FPGA

Partitioning and

Compilation CAD Tool

Retargetable C Compiler

configured for

prototype architecture

Meta Assembler

configured for

instruction set

Computer System

Prototype using

hardware emulation

on multiple FPGAs

System Level Testing

using

Logic Analyzer

FIG. 1 VHDL Source Code for MIPS Control Unit.

FIG. 2 Control Unit Schematic Produced by VHDL Synthesis.

