ALTERAW

Altera Corporation
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com

Introduction to
Quartus’ I

\"

QUARTUS"II

Introduction to Quartus II
Version 4.1 Rev.1
June 2004 P25-09235-02

Altera, the Altera logo, FastTrack, HardCopy, MAX, MAX+PLUS, MAX+PLUS II, MegaCore, MegaWizard, NativeLink, Nios, OpenCore,
Quartus, Quartus II, the Quartus II logo, and SignalTap are registered trademarks of Altera Corporation in the United States and other
countries. Avalon, ByteBlaster, ByteBlasterMV, Excalibur, IP MegaStore, Jam, LogicLock, MasterBlaster, MegaLAB, PowerFit, SignalProbe,
and USB-Blaster are trademarks and/or service marks of Altera Corporation in the United States and other countries. Product design
elements and mnemonics used by Altera Corporation are protected by copyright and/or trademark laws.

Altera Corporation acknowledges the trademarks and/or service marks of other organizations for their respective products or services
mentioned in this document, specifically: ARM is a registered trademark and AMBA is a trademark of ARM, Limited. Mentor Graphics and
ModelSim are registered trademarks, and ModelTechnology is a trademark of Mentor Graphics Corporation.

Altera reserves the right to make changes, without notice, in the devices or the device specifications identified in this document. Altera
advises its customers to obtain the latest version of device specifications to verify, before placing orders, that the information being relied
upon by the customer is current. Altera warrants performance of its semiconductor products to current specifications in accordance with
Altera’s standard warranty. Testing and other quality control techniques are used to the extent Altera deems such testing necessary to
support this warranty. Un{ess mandated by government requirements, specific testing of all parameters of each device is not necessaril
per ormed. In the absence of written agreement to the contrary, Altera assumes no lial ility for Altera applications assistance, customer’s
product design, or infringement of patents or copyrights of third parties by or arising from use of semiconductor devices described herein.
Nor does Altera warrant or represent any patent right, copyright, or other intellectual property right of Altera covering or relating to any
combination, machine, or process in which such semicond}l)lctor devices might be or are used.

Altera products are not authorized for use as critical components in life support devices or systems without the express written approval of
the president of Altera Corporation. As used herein: 1. Life support devices or systems are devices or systems that (a) are intended for
surgical implant into the body or (b) support or sustain life, and whose failure to perform, when properly used in accordance with
instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component
is any component of a life support device or system whose f)a,ilure to perform can be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or effectiveness.

Products mentioned in this document are covered by one or more of the following U.S. patents: 4609986; 4617479; 4677318; 4713792, 4774421;
4785423; 4831573; 4864161; 4871930; 4899067; 4899070; 4903223; 4912342; 4930097; 4930098; 4930107; 4969121; 5045772; 5066873; 5091661;
5097208; 5111423; 5121006; 5128565; 5138576; 5144167; 5162680; 5166604; 5187392; 5200920; 5220214; 5220533; 5237219; 5241224; 5243233;
5247477; 5247478; 5258668; 5260610; 5260611; 5266037; 5268598; 5272368; 5274581; 5280203; 5285153; 5294975; 5301416; 5309046; 5315172;
5317210; 5329487; 5341044; 5341048; 5341308; 5349255; 5350954; 5352940; 5353248; 5359242; 5359243; 5369314; 5371422; 5376844; 5384499;
5399922; 5414312; 5432467; 5434514; 5436574; 5436575; 5438295; 5444394; 5463328; 5473266; 5477474; 5483178; 5485102; 5485103; 5486775;
5487143; 5488586; 5490266; 5493519; 5493526; 5495182; 5498975; 5517186; 5523247; 5523706; 5525827; 5525917, 5537057; 5537295; 5537341;
5541530; 5543730; 5543732; 5548228; 5548552; 5550782; 5550842; 5557217; 5561757; 5563592; 5565793; 5567177, 5570040; 5572067; 5572148;
5572717; 5574893; 5581501; 5583749; 5590305; 5592102; 5592106; 5598108; 5598109; 5604453; 5606266; 5606276, 5608337; 5612642; 5614840;
5621312; 5631576; 5633830; 5642082; 5642262; 5649163; 5650734; 5659717; 5668771; 5670895; 5672985; 5680061; 5689195; 5691653; 5693540;
5694058; 5696455; 5699020; 5699312; 5705939; 5717901; 5729495; 5732020; 5740110; 5744383; 5744991; 5757070; 5757207; 5760624; 5761099;
5764079; 5764080; 5764569; 5764583; 5767734; 5768372; 5768562; 5771264; 5787009; 5790469; 5793246, 5796267; 5801541; 5802540; 5805516;
5809034; 5809281; 5812450; 5812479; 5815003; 5815024; 5815726; 5821771; 5821773; 5821787; 5825197; 5828229; 5834849; 5835998; 5838584;
5838628; 5844854; 5845385; 5847617; 5848005; 5850151; 5850152; 5850365; 5859542; 5859544; 5861760; 5869979; 5869980; 5870410; 5872463;
5872529; 5873113; 5875112; 5878250; 5880596; 5880597; 5880725; 5883526; 5883850; 5892683; 5893088; 5894228; 5898318; 5898628; 5898630;
5900743; 5904524; 5905675; 5909126; 5909375; 5909450; 5914509; 5914904; 5915017; 5915756, 5923567; 5925904; 5926036; 5936425; 5939790;
5940852; 5942914; 5943267; 5945870; 5949239; 5949250; 5949710; 5949991; 5953537; 5959891; 5963049; 5963051; 5963069; 5963565; 5966597;
5968161; 5969626; 5970255; 5977791; 5977793; 5978476; 5982195; 5983277; 5986465; 5986470; 5996039; 5998263; 5998295; 5999015; 5999016;
6002182; 6005379; 6005806; 6011406; 6011730; 6011744; 6014334; 6018476; 6018490; 6020758; 6020759; 6020760; 6023439; 6025737; 6026226;
6028787; 6028808; 6028809; 6029236; 6031391; 6031763; 6032159; 6034536; 6034540; 6034857; 6037829; 6038171; 6040712; 6043676; 6045252;
6049223; 6049225; 6052309; 6052327; 6052755; 6057707; 6058452; 6060903; 6064599; 6066960; 6069487; 6072332; 6072358; 6075380; 6076179;
6078521; 6080204; 6081449; 6084427; 6085317; 6091102; 6091258; 6094064; 6097211; 6102964; 6104208; 6107820; 6107822; 6107824; 6107825;
6107854; 6108239; 6110223; 6112020; 6114915; 6115312; 6118302; 6118720; 6120550; 6121790; 6122209; 6122720; 6127217; 6127844; 6127846;
6127865; 6128215; 6128692; 6130552; 6130555; 6134166; 6134173; 6134705; 6134707; 6137313; 6144573; 6147511; 6150840; 6151258; 6154055;
6154059; 6157208; 6157210; 6157212; 6160419; 6161211; 6163166; 6163195; 6166559; 6167364; 6169417; 6172900; 6173245; 6175952; 6177844;
6180425; 6181159; 6181160; 6181161; 6181162; 6182020; 6182247; 6184703; 6184705; 6184706; 6184707; 6184707; 6184710; 6185725; 6187634;
6191608; 6191611; 6191998; 6192445; 6195772; 6195788; 6198303; 6201404; 6202185; 6204688; 6205579; 6208162; 6212668; 6215326; 6218859;
6218860; 6218876; 6219284; 6219785; 6222382; 6225822; 6225823; 6226201; 6232893; 6236094; 6236231; 6236237; 6236260; 6236597; 6239612;
6239613; 6239615; 6242941; 6242946; 6243296; 6243304; 6246260; 6246270; 6247147; 6247155; 6249143; 6249149; 6252419; 6252422; 6255846;
6255850; 6259271; 6259272; 6259588; 6262595; 6262933; 6263400; 6263482; 6265746; 6265895; 6265926; 6268623; 6269020; 6271679; 6271680;
6271681; 6271729; 6275065; 6278288; 6278291; 6279145; 6281704; 6282122; 6285211; 6286114; 6288970; 6292016; 6292017; 6292116; 6294928;
6295230; 6297565; 6298319; 6300792; 6300794; 6301694; 6311309; 6314550; 6317367; 6317771; 6317860; 6320411; 6321367; 6321369; 6323677;
6323680; 6326807; 6326812; 6335634; 6335635; 6335636; 6337578; 6340897; 6342792; 6342794; 6344755; 6344758; 6344989; 6346827; 6347061;
6351144; 6351152; 6353551; 6353552; 6356108; 6356110; 6359468; 6359469; 6362646; 6363505; 6365929; 6366119; 6366120; 6366121; 6366224;
6366498; 6367056; 6367058; 6369613; 6369624; 6373278; 6373280; 6377069; 6384625; 6384629; 6384630; 6389558; 6392438; 6392954; 6396304;
6400290; 6400598; 6400635; 6401230; 6404225; 6407450; 6407576; 6408432; 6411124; 6414514; 6414518; 6417550; 6417692; 6417694; 6421812;
6423572; 6429681; 6433579; 6433585; 6437650; 6442073; 6448820; 6453382; 6459303; 6460148; 6462414; 6462577; 6462597; 6467017; 6469553;
6472272; 6472903; 6480025; 6480027; 6480028; 6480995; 6481000; 6483886; 6485843; 6486702; 6489817; 6490714; 6490717; 6492833; 6492834;
6507216; 6515507; 6515508; 6525564; 6525678; 6526461; 6531889; 6532170; 6535031; 6538469; 6538470; 6549032; 6549045; 6556044; 6556500;
6556502; 6563343; 6563367; 6566906; 6570404; 6573138; 6577157; 6577160; 6583646; 6586966; 6588004; 6590413; 6590419; 6593772; 6596618;
6599764; 6600337; 6601221; 6604228; 6605960; 6605962; 6614259; 6614261; 6617884; 6621326; 6624467; 6624495; 6624524; 6625771; 6625796;
6627517; 6628140; 6629311; 6630842; 6630844; 6631510; 6633185; 6634009; 6636070; 6636936; 6642064; 6642758; 6646467; 6646919; 6650140;
6651155; 6653862; 6657456; 6658564; 6661253; 6661733; 6664846; 6667641; 6670825; 6680871; 6681378; 6686769; 6690195; 6691267; 6693455;
6697773; 6704889; 6707315; 6707399; 6714042; 6714044; 6714050; 6715023; 6720796; 6724080; 6724222; 6724328; 6727727; RE35977; RE37060;
and certain foreign patents. Additional patents are pending.

Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, nsal

and copyrights.
Copyright © 2004 Altera Corporation. All rights reserved.

LS. EN ISO 9001

Contents

PIOEACE ... ix
Documentation CONVENIONS ... xi
Chapter 1: Design FIOWc.cccoiiiiiiiiiiiiiiiicicc s 1
INETOAUCHON. ... 2
Graphical User Interface Design FIOWcccccccciiiiiiiiiiniiiiiiiicicccccce 3
EDA Tool Design FIOWccccooviiiiiiiiiiiiiiiiiiiiiiiciicscscs s 10
Command-Line Design FIOW..........c.cccoiiiiiiiiii 16
Command-Line Executables...........c.cccoooiiiiiiiiiiiiccccccc 17

Using Standard Command-Line Commands & Scripts........cccccevvveiennne. 21

Using Tcl Commandscccceeviiiiiiniiiiiiiceecce s 23
Creating Makefile SCIipts.........cccooiiieiiiiiiiicc e 26
Chapter 2: Design ENtry ..o 29
INErOAUCHON ... 30
Creating a Project.......ccooiiiiiiiiiiccccc s 31
UsIng ReVISIONScoviviiiiiiiiiiiiiiiiicccccc s 32

Using Version-Compatible Databases............cccccocceiiiiiiiicniiicene 34
Converting MAX+PLUS II Projects........ccccccvviiiiiiniiiiiicciiccns 35
Creating @ DeSigncccoiuiiiiiiiiiiiiccc s 36
Using the Quartus II Block EAitorcccoooiiiiiiiiiccce 37

Using the Quartus II Text Editor........cccccccoiiiiiiiiiiiicccccc 39

Using the Quartus II Symbol EAitor........cooovovieiiiie 39

Using Verilog HDL, VHDL & AHDL.......ccccccovviiiiiiiiiiiicicicene 39

Using Altera Megafunctions...........ccceiiiiiiiiiiiiiiiiciceccecee s 40
Using Intellectual Property (IP) Megafunctions.............ccoooeeiiiiiinnn. 41

Using the MegaWizard Plug-In Manager...........c.cocoooeeiiiircieiiiicccene 43
Instantiating Megafunctions in the Quartus II Software..............c.cccocee. 44
Instantiation in Verilog HDL & VHDL.........ccccoooiiiiiiiii 44

Using the Port & Parameter Definition ..o 45

Inferring Megafunctions.............coooreueieiiiiciiiciccc 45

Instantiating Megafunctions in EDA Toolscccooeiiiiiiieiiiiie 45

Using the Black Box Methodology........cccoeiiiiiiiiiiicii 45

Instantiation by Inference..........c.ccoooeoiiiiiic 46

Using the Clear Box Methodology ..o 46

Specifying Initial Design Constraints.............ccooceueiiiicieiniiicceccc e 48
Using the Assignment EAitOrcoooiiiiiiiie 49

Using the Settings Dialog BoX........ccccooiiiiiiiiice 50
Importing ASSIGNMENtScoouiuiiiiiiiiiicc 51
Verifying Pin ASSignmentscccooviriiiiiiccieiiccecccec e 52

Design Methodologies & Design Planningccccocooreieiiiiiiiiiccccccce 53
Top-Down versus Bottom-Up Design Methodologiescccccceueuneene. 53
Block-Based Design FIOW.........ccccccouiviiiiiiiiiiiiiiiicccccecc 53

Design Partitioning.........ccccooveeiiiiiiiiccceec e 54

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 11l

TABLE OF CONTENTS

Chapter 3: SYNthesisccooiiiiiii e 55
INErOAUCHION ..ttt 56
Using Quartus II Verilog HDL & VHDL Integrated Synthesis...........cccccccocooeoe 57
Using Other EDA Synthesis TOOIS...........cccooiiiiiiiiiiicccc 60
Controlling Analysis & Synthesisccooeiiiiiiiiii 63

Using Compiler Directives and Attributes...........ccccoovoiiiciiiicicciennn, 63
Using Quartus I Logic Options.........ccccccvviiiiiiiiiiiiiiccccccccce 64
Using Quartus II Synthesis Netlist Optimization Optionsc.c.c..... 66
Using the Design Assistant to Check Design Reliabilityccccociiiiiiiinnes 67
Analyzing Synthesis Results with the RTL VieWercccccociviiiniiinicniiicenes 68
Analyzing Synthesis Results with the Technology Map Viewerc..c.ccccocou.e. 70

Chapter 4: SIMULAtiONc.coviiiiiiiiii s 73
INErOAUCHON ..o 74
Simulating Designs with EDA TOOLScccccooioiiiiiiiiiccicc 75

Specifying EDA Simulation Tool Settingscccooevovvireiiiiiiiici, 76
Generating Simulation Output Files ..., 77

EDA Simulation FIOW ... 78
Functional Simulation FIOWccooiiiiiiis 78

NativeLink Simulation FIOWcccccooviiiiiiiicns 79

Manual Timing Simulation FIOW.........ccccooiiiii 79

Simulation Libraries ... 80

Simulating Designs with the Quartus II SImulator ..o 81
Creating Waveform Files...........cccoiiiiiiiiiiiiiiccccccccceaes 83
Performing PowerGauge Power Estimation............cccccoeoeeiiiiiiiinne, 83

Using the SImulator TOOL.........cccooiiiiiiiiiiiiiciccccccccccccciees 84
Simulating Excalibur Designs...........ccvviiiiiiiiiiiiiiiccccccccccccccccceeaenas 84
Simulating Excalibur Designs in the Quartus II Softwarec.c....... 85

Using the Bus Functional Model with EDA Tools.........cccccccccoiiiiiiinnnn, 86

Using the Full-Stripe Model with EDA ToOlS ..o, 86

Using the ESS Model with EDA TOOISccccccoiiiiiiiiiiciiccccccenes 86

Chapter 5: Place & ROULEc.c.couriieuiiririeiicinieiccteetct ettt ettt 89
INErOAUCHON ... 90
Analyzing Fitting ReSULtSccccoiiiiiiiiiiiiiiiiiiccc e 92

Using the Messages Window to View Fitting Resultscccccccceienie, 92

Using the Report Window or Report File to View Fitting Results............ 93

Using the Floorplan Editor to Analyze Results..........ccccccoiiiiiiiinnne, 95

Using the Design Assistant to Check Design Reliability..........cccccccooeece.. 97
Optimizing the Fit ... 98
Using Location ASSIgNMEeNtS.........ccruiuiuimieiiiiiiiiinecicicccieieciseieeiie 98

Setting Options that Control Place & Route.........ccocooooiii, 99

Setting Fitter Options ...t 99

Setting Physical Synthesis Optimization Optionsc.......... 99

Setting Individual Logic Options that Affect Fitting.................. 100

IV m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

TABLE OF CONTENTS

Using the Resource Optimization AdVisorcccoeeveieiiiniiiiciccine 101

Using the Design Space EXplorer...........ccccoiiiiiiiiiiciiiiccccie, 102

Performing Incremental Fitting...........ccccoooiiiiiiiiiiiiiiiiiicccccc 105
Preserving Assignments through Back-Annotation...............cccooooi. 106
Chapter 6: Block-Based DeSign............couiiiiiiiiiiic 109
INErOAUCHON. ... 110
Quartus II Block-Based Design FIOWcoooruiiiiiiicieiiiic, 110

Using LogicLock ReGIONS.........c.ccuiiiiiiiiiiiiiiiicccccece s 112

Saving Intermediate Synthesis ReSULILScccooiiiiiiiiiiiiiccccce 115
Back-Annotating LogicLock Region Assignments.............cccccovvevreininnes 116

Exporting & Importing LogicLock Assignmentsccccccevviiiiiiinaans 117

Using LogicLock with EDA ToOIS.......ccccccouiiiiiiiiiiiiiiiicccciccccees 119
Chapter 7: Timing ANalysiS..........ccooriuiiiiiiiiiice e 121
INErOdUCHON. ... 122
Performing Timing Analysis in the Quartus II Software..........c...cccoooiii, 123
Specifying Timing Requirements...........cccccoovrrieiiiinieiiiniieccc e 123

Specifying Project-Wide Timing Settings.............cccooeviivireininnes 124

Specifying Individual Timing Assignments...........c.ccccceoreuennnes 125

Performing a Timing Analysisc.c.cccooiiiiiiiiiiiii 126

Viewing Timing Analysis Results ..o, 128

Using the Report WINAOwcccccciiiiiiiiiiccecceceeeees 128

Making Assignments & Viewing Delay Paths..........ccccccocoeviiiiinnnne. 129

Using the Technology Map Viewer ... 131

Performing Timing Analysis by Using EDA Tools.........cccccccoceeieiccencicennes 133

Using the PrimeTime Softwareccccccceiiieiiiciiceccceeeeeeeees 133

Using the BLAST and Tau Software.........cccccccocecieciicccccecceceeeeenen 134

Chapter 8: TIMIiNg CLOSUTIEccooviiiiiiiiiicce e 137
INErOAUCHON. ... 138

Using the Timing Closure Floorplan ... 138
Viewing Assignments & ROUtINGccocoeviiiiiiiiiiiiiiiccc 139

Making ASSIGNMENES.........coiuiuiuiiiiiiiiiiiiieiciecee s 141

Using the Timing Optimization AdvisSor ..., 142

Using Netlist Optimizations to Achieve Timing Closure..........c.cccccooovviiiiiiinnnnnn. 143

Using LogicLock Regions to Achieve Timing Closurecooooeeiiiiiiininnnen, 146

Soft LogicLOCK ReZIONScuovuiuiiiiiiicicceic 146

Path-Based Assignments.............ccccoieuiiiiiniiiiiiiiceceeees 146

Using the Design Space Explorer to Achieve Timing Closure...........c.cccccceueunnne. 148
Chapter 9: Programming & Configuration...........cccoeueuveeininiinininininiiiicccccccccecicenenes 149
INErOAUCHON. ..o s 150
Programming One or More Devices by Using the Programmer................c.cc....... 154

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il ®m V

TABLE OF CONTENTS

Creating Secondary Programming Filescccccooioiiiiiniiiiiiiicccccne, 155
Creating Other Programming File Formatsc.coccooiiiii. 156

Converting Programming Files...........ccccooooiiiiiiiiiiiic, 158

Using the Quartus II Software to Program Via a Remote JTAG Server................ 162
Chapter 10: DebUZZINGc.cooviriiiiicieiiece e 163
INErOdUCHON ... 164

Using the SignalTap II Logic Analyzer.........ccccoooiiiiiiiiiiiiiiicc 165

Setting Up & Running the SignalTap II Logic Analyzerc.c.ccc.c..... 165

Analyzing SignalTap II Data........ccccooiviiiniiiiiiiiiiiccccccccccccnes 169

Using SigNalProbecccciiiiiiiiiiiicic e 172

Using the In-System Memory Content EditOr..........ccooiviiiiiiiiiiiiccicccnes 174

Using the RTL Viewer & Technology Map Viewer.........c.ccocooviiininicniniiincenns 176

Using the Chip EditOrcoouiiiii 177
Chapter 11: Engineering Change Managementcccocooiorreiiiiiciiiiccccce 179
INErOdUCHON ..o 180
Identifying Delays & Critical Paths by Using the Chip Editor.........cccccccceeeiiii 181
Creating & Moving Atoms in the Chip Editorccoooiviiiiiiiiiiiiccicciaes 182
Modifying Resource Properties by Using the Resource Property Editor............. 183
Viewing & Managing Changes with the Change Manager..............cccccccceeiinnnne. 185
Verifying the Effect of ECO Changes...........cccoouoiiiiiiiiiic 187
Chapter 12: System-Level DeSign.........ccccoooiiiiiiiiiiiiicci s 189
INErOAUCHON ..o 190
Creating SOPC Designs with SOPC Builderccooooiiiiiiiiiii 191
Creating the SYStemcccoviiiiiiiiiiceccccccce e 192

Generating the SYStem.........ccccciiiiiiiiiiiiecceccceee e 193

Creating DSP Designs with the DSP Builder..........c.ccccccciiiiiiiiiiiiiicccenes 194
Instantiating FUNCHONS.........ccooiiiiiiiii, 194

Generating Simulation Files ..., 195

Generating Synthesis Files..........cccoiiiiiiiiicicccccccees 195

Chapter 13: Software Developmentccccoeuviiiiiiiininneiccreceereee e 197
INErOAUCHON ... 198

Using the Software Builder in the Quartus II Software ... 198
Specifying Software Build Settingsccccciiiiiiiiiiiiiiccccccccccces 199
Generating Software OQutput Files ..o 199
Generating Flash Programming Files..........c.ccccooiiiiiii, 200

Generating Passive Programming Files.........ccccoooiiiiiiiiciiiccie, 202

Generating Memory Initialization Data Filescccccooiiiiiiiiiiinnn, 204

Chapter 14: Installation, Licensing & Technical SUpport.........cccceeviviiiiiiiiinniine, 207
Installing the Quartus IL SOftware............ccccoviiriiiiici 208
Licensing the Quartus II Software..........ccccooviiviiiiiiiiiiiies 208
Getting Technical SUPPOTL.......coiuiiiiiiiiiiiiicccccccec e 211

Vi m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

TABLE OF CONTENTS

Chapter 15: Documentation & Other ReSOUICES............cccooiuiiiiiiiiiiiiiiciccccccee 213
Getting Online Help ... 214
Using the Quartus II Online Tutorial............cccooooiiiiiii, 215
Other Quartus II Software Documentationcccceevevveecieeieeieeieee e 216
Other Altera LItEratUurecccccvieuieiieeieieceecte ettt ettt eseesseesae e eneas 217
TIUAEX ettt ettt ettt ettt et ettt e b e e a e b e ebe b e b esbenbentesbetaes e et e s e beeseesensenee 219

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = i

Preface

You hold in your hands the Introduction to Quartus Il manual. The Altera®
Quartus® II design software is the most comprehensive environment
available for system-on-a-programmable-chip (SOPC) design. If you have
primarily used the MAX+PLUS® Il software, other design software, or ASIC
design software in the past, and are thinking of making the switch to the
Quartus II software, or if you are somewhat familiar with the Quartus II
software but would like to gain a greater knowledge of its capabilities, this
manual is for you.

This manual is designed for the novice Quartus II software user and
provides an overview of the capabilities of the Quartus II software in
programmable logic design. It is not, however, intended to be an exhaustive
reference manual for the Quartus II software. Instead, it is a guide that
explains the features of the software and how these can assist you in FPGA
and CPLD design. This manual is organized into a series of specific
programmable logic design tasks. Whether you use the Quartus II graphical
user interface, other EDA tools, or the Quartus II command-line interface,
this manual guides you through the features that are best suited to your
design flow.

The first chapter gives an overview of the major graphical user interface,
EDA tool, and command-line interface design flows. Each subsequent
chapter begins with an introduction to the specific purpose of the chapter,
and leads you through an overview of each task flow. It shows how to
integrate the Quartus II software with your existing EDA tool and
command-line design flows. In addition, the manual refers you to other
resources that are available to help you use the Quartus II software, such as
Quartus II online Help and the Quartus II online tutorial, application notes,
white papers, and other documents and resources that are available on the
Altera web site.

Follow this manual through a tour of the Quartus II software to learn how it
can help you increase productivity and shorten design cycles, integrate with
existing programmable logic design flows, and achieve design,
performance, and timing requirements quickly and efficiently.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il ®m IX

Documentation Conventions

The Introduction to Quartus® Il manual uses the following conventions to
make it easy for you to find and interpret information.

Typographic Conventions

Quartus II documentation uses the following typographic conventions:

Visual Cue:

Bold Initial Capitals

bold

Initial Capitals

“Subheading Title”

Italic Initial Capitals

italics

Courier font

ALTERA CORPORATION

Meaning;

Command names; dialog box, page, and tab titles;
and button names are shown in bold, with initial
capital letters. For example: Find Text command,
Save As dialog box, and Start button.

Directory names, project names, disk drive
names, file names, file name extensions, software
utility names, software executable names, and
options in dialog boxes are shown in bold.

Examples: quartus directory, d: drive, license.dat
file.

Keyboard keys, user-editable application window
fields, and menu names are shown with initial
capital letters. For example: Delete key, the
Options menu.

Subheadings within a manual section are
enclosed in quotation marks. In manuals, titles of
Help topics are also shown in quotation marks.
Help categories, manual titles, section titles in
manuals, and application note and brief names
are shown in italics with initial capital letters. For
example: FLEXIm End Users Guide.

Variables are enclosed in angle brackets (< >) and
shown in italics. For example: <file name>,
<CD-ROM drive>.

Anything that must be typed exactly as it appears
is shown in Courier. For example:
\quartus\bin\lmulti Imhostid.

Enter or return key.

Bullets are used in a list of items when the
sequence of the items is not important.

INTRODUCTION TO QUARTUS Il =

Xl

DOCUMENTATION CONVENTIONS

Visual Cue: Meaning;:
= The feet show you where to go for more
.- information on a particular topic.

v The checkmark indicates a procedure that consists

of one step only.
I The hand points to information that requires

special attention.

Terminology

The following terminology is used throughout the Introduction to Quartus II

manual:

Term: Meaning;:

“click” Indicates a quick press and release of the left
mouse button.

“double-click” Indicates two clicks in rapid succession.

“choose” Indicates that you need to use a mouse or key
combination to start an action.

“select” Indicates that you need to highlight text and/or

objects or an option in a dialog box with a key
combination or the mouse. A selection does not
start an action. For example: Select Chain
Description File, and click OK.

“turn on”/“turn off” Indicates that you must click a check box to turn a
function on or off.

X1 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 1:

Introduction

Graphical User Interface Design Flow
EDA Tool Design Flow
Command-Line Design Flow

2
3
10
16

Chapter
One

Design Flow

CHAPTER 1: DESIGN FLOW
INTRODUCTION

Introduction

The Altera® Quartus®II design software provides a complete, multiplatform
design environment that easily adapts to your specific design needs. It is a
comprehensive environment for system-on-a-programmable-chip (SOPC)
design. The Quartus II software includes solutions for all phases of FPGA
and CPLD design. See Figure 1 for an illustration of the Quartus II design
flow.

Figure 1. Quartus Il Design Flow

Includes block-based design,

Design Entry system-level design &
software development

Y

Synthesis

v

Place & Route > Debugging
— Engineering
A-I;::};/ns?s Change
Management
Y
. . Timing
Simulation Closum

Y

Programming &
Configuration

In addition, the Quartus II software allows you to use the Quartus II
graphical user interface, EDA tool interface, or command-line interface for
each phase of the design flow. You can use one of these interfaces for the
entire flow, or you can use different options at different phases of the design
flow. This chapter explains the options that are available for each of the
design flows. The remaining chapters in this manual describe individual
stages of the design flow in more detail.

2 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW

GRAPHICAL USER INTERFACE DESIGN FLOW

Graphical User Interface Design

Flow

You can use the Quartus II software to perform all stages of the design flow;
it is a complete, easy-to-use, stand-alone solution. Figure 2 shows the
features that the Quartus II graphical user interface provides for each stage

of the design flow.

Figure 2. Quartus Il Graphical User Interface Features

Design Entry

e Text Editor

e Block & Symbol Editor

e MegaWizard Plug-In Manager
e Assignment Editor

e Floorplan Editor

Synthesis

e Analysis & Synthesis

e VHDL, Verilog HDL & AHDL
e Design Assistant

e RTL Viewer

e Technology Map Viewer

Place & Route

Fitter

Assignment Editor

Floorplan Editor

Chip Editor

Report Window

Incremental Fitting

Resource Optimization Advisor

Timing Analysis

e Timing Analyzer

e Report Window

e Technology Map Viewer

Simulation
e Simulator
e Waveform Editor

Programming

e Assembler

e Programmer

e Convert Programming Files

System-Level Design
e SOPC Builder
o DSP Builder

Software Development
e Software Builder

Block-Based Design
e LogicLock Window
e Floorplan Editor

e VQM Writer

EDA Interface
o EDA Netlist Writer

Timing Closure

e Floorplan Editor

e LogicLock Window

e Timing Optimization Advisor

Debugging

SignalTap Il

SignalProbe

In-System Memory Content Editor
RTL Viewer

Technology Map Viewer

Chip Editor

Engineering Change
Management

o Chip Editor

e Resource Property Editor
¢ Change Manager

Figure 3 shows the Quartus II graphical user interface as it appears when

you first start the software.

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il = 3

CHAPTER 1: DESIGN FLOW
GRAPHICAL USER INTERFACE DESIGN FLOW

Figure 3. Quartus Il Graphical User Interface

artus Il - D:fgdesigns/tutorial/fir_filter - filtref

File Edit view Project Assignments Processing Tools Window Help

|jDEE|2| 2 Be|o o N e S T r o bk

OUARTUS' IT

Verslon 4.1

uartus Il
Information

http:/fwww. altera. com
For Help, press F1 [Gw@ 7 | e I_’_I_ y

The Quartus II software includes a modular Compiler. The Compiler
includes the following modules (modules marked with an asterisk are
optional during compilation, depending on your settings):

y,
&/

Analysis & Synthesis

Fitter

Assembler

Timing Analyzer

Design Assistant*

EDA Netlist Writer*
Compiler Database Interface*

You can run all Compiler modules as part of a full compilation by choosing
Start Compilation (Processing menu). You can also run each module
individually by choosing Start (Processing menu) and then choosing the
command for the module you want to start from the Start submenu.

In addition, you can start the Compiler modules by choosing Compiler Tool
(Tools menu) and running the module in the Compiler Tool window. The
Compiler Tool window also allows you to open the settings file or report file
for the module, or to open other related windows. See Figure 4.

4 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
GRAPHICAL USER INTERFACE DESIGN FLOW

Figure 4. Compiler Tool Window

Start module
Open module settings page
Open report file

i Compiler Tool

ED& Metlist Wiiter
onE
00:00:16 00:00:03 00:00:03 00:00:00

Hle| 2% | | B 28| | » 558 |

Aszzembler Tirning Analyzer

A ynthesis Fitter

00:00:34

B Start &b Report

The Quartus II software also provides some predefined compilation flows,
which you can use with commands from the Processing menu. Table 1 lists
the commands for some of the most common compilation flows.

Table 1. Commands for Common Compiler Flows (Part 1 of 2)

Quartus Il Command

R from Processing Menu
Full compilation Performs a full compilation of the Start Compilation
flow current design. command
Compilationand If the simulation mode is timing, flow Start Compilation and

simulation flow performs a full compilation and then a Simulation command
simulation of the current design. If the
simulation mode is functional, the flow
performs only the Generate
Functional Simulation Netlist
command and then a simulation of the
current design.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il u 5

CHAPTER 1: DESIGN FLOW
GRAPHICAL USER INTERFACE DESIGN FLOW

Table 1. Commands for Common Compiler Flows (Part 2 of 2)

Quartus Il Command

e from Processing Menu
Incremental Performs a full compilation on a Start > Start
fitting flow previously compiled design where the Incremental Fitting
Fitter compares the netlist and command

placement from the previous and
current compilations. The Fitter
compares compilations in order to use
as many node placements from the
previous compilation as possible in the
current compilation.

SignalProbe™ Routes user-specified signals to output Start > Start

flow pins without affecting the existing SignalProbe
fitting in a design, so that you can debug Compilation command
signals without completing a full

compilation.
“ .- Py For Information About Refer To
Using compilation flows “Overview: Using Compilation Flows” in

Quartus Il Help

You can customize the layout, menus, commands, and icons in the
Quartus II software according to your individual preferences. You can
choose between the standard Quartus II user interface or the MAX+PLUS® II
look and feel when starting the Quartus II software for the first time, or you
can choose the look and feel later by using the Customize dialog box (Tools
menu). If you have previously used the MAX+PLUS II software, the
MAX+PLUS II look and feel allows you to use the familiar MAX+PLUS II
layout, commands, and icons to control functions of the Quartus II software.
Figure 5 shows the Customize dialog box.

6 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
GRAPHICAL USER INTERFACE DESIGN FLOW

Figure 5. Customize Dialog Box

Customize

]

General] Toolbarsl Commandsl Tel l

Look & Feel

Chooze the preferred look and feel for the Quartusz | software. You can fully customize
the Quartus || software regardless of what you choose here.

Click Apply and restart the Quartus 1| software for any change to take effect. v'ou can
alzo click Apply without changing the selection to reset to the factory defaults.

* Quartuz ||

C MAKPLUS I Apply
Quick menus

Quartusz 1| menu; [uli} -

Mak+PLUS 1] menu: CIfe -

] | Cancel |

The Customize dialog box also allows you to choose whether you want the
optional Quartus II or the MAX+PLUS II quick menus to display, and
whether you want them on the right or left side of the menu bar. The
Quartus II quick menu contains menu commands for each Quartus II
application and common processing commands. The MAX+PLUS II quick
menu, which is similar to the MAX+PLUS II menu from the MAX+PLUS II
software, provides commands for applications and common MAX+PLUS I
menu commands. The commands on the MAX+PLUS II menu perform the
same functions as the corresponding Quartus II commands. Figure 6 shows
the Quartus II and MAX+PLUS II quick menus.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il u 7

CHAPTER 1: DESIGN FLOW
GRAPHICAL USER INTERFACE DESIGN FLOW

8 [

Figure 6. Quartus Il and MAX+PLUS Il Quick Menus

% Mew Block. Diagram)Schematic File

@' e Block, Symbol File
Mew Memory Initialization File

1-3]-‘ Mew Yechor Waveform File

}:{ Project Mavigator alt+0
& Node Finder Alt+1
Tﬂ Tel Consale Alk+2
E Messages Alk+3
B Status Alt-+4
e Change Manager Alk+5

& pssignment Editor CtrhHShiFt+A
@ Tirnirg Closure Floorplan
Q LogicLock Reqgions Window — Alt+L

@' Cornpilation Report Chrl+R.
& simulation Repart Chrk+Shift+R

Compiler Tool
J=b Simulater Tool
P Timing analyzer Tool

@, Resource Optimization Advisor
':é)@ Tirnirg Opkimization Advisor
¥ Chip Editor

& RTL viewer

@ Technology Map Viewer
SignalTap II Logic Analyzer

= [n-Swstem Memory Content Editor

@ Prograrmmer

—— Quartus Il Quick Menu

Hierarchy Display

ﬁg Graphic Editar
ﬁ Symbol Editor

% Texk Editor
fég Waveform Editor
ﬁ Floorplan Editor
Cormpiler
J=h Simulatar
E_’J Timing Analvzer
dﬁ Prograrmmer

& | Message Processor
it Quick Start Guids

File
Assign
Qpkions
Help

INTRODUCTION TO QUARTUS Il

MAX+PLUS 11 Quick Menu

ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
GRAPHICAL USER INTERFACE DESIGN FLOW

“ ._ Py For Information About Refer To

Using the Quartus Il design flow for Chapter 2, “Quartus Il Design Flow for
MAX+PLUS Il users MAX+PLUS Il Users” in the Quartus Il
Handbook, vol. 1 on the Altera web site

MAX+PLUS Il Conversion module of the
Quartus Il Tutorial

Customizing the user interface “Overview: Working With the User Interface”
and “Customizing the User Interface” in
Quartus Il Help

Using the MAX+PLUS Il look and feel “MAX+PLUS Il Quick Start Guide for the
Quartus Il Software” and “List of
MAX+PLUS Il Commands” in Quartus Il Help

The following steps describe the basic design flow for using the Quartus II
graphical user interface:

1. Create a new project and specify a target device or device family by
using the New Project Wizard (File menu).

2. Create a Verilog HDL, VHDL, or Altera Hardware Description
Language (AHDL) design by using the Text Editor. If you want, you
can use the Block Editor to create a block diagram with symbols that
represent other design files, or to create a schematic. You can also use
the MegaWizard® Plug-In Manager (Tools menu) to generate custom
variations of megafunctions and IP functions to instantiate in your
design.

3. (Optional) Specify initial design constraints using the Assignment
Editor, the Settings dialog box (Assignments menuy), the Floorplan
Editor, and/or the LogicLock™ feature.

4. (Optional) Create a system-level design by using the SOPC Builder or
DSP Builder.

5. (Optional) Create software and programming files for Excalibur™
device processors or Nios® embedded processors by using the Software
Builder.

6. Synthesize the design by using Analysis & Synthesis.

7. (Optional) Perform functional simulation on the design by using the
Simulator and the Generate Functional Simulation Netlist command.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 9

CHAPTER 1: DESIGN FLOW
EDA TooL DESIGN FLow

10.

12.

13.

14.

15.

Perform place and route on the design by using the Fitter. If you have
made a small change to the source code, you can also use incremental
fitting.

Perform timing analysis on the design by using the Timing Analyzer.
Perform timing simulation on the design by using the Simulator.
(Optional) Make timing improvements to achieve timing closure by
using physical synthesis, the Timing Closure floorplan, the LogicLock
feature, the Settings dialog box, and the Assignment Editor.

Create programming files for your design by using the Assembler.
Program the device by using programming files, the Programmer, and
Altera hardware; or convert programming files to other file formats for

use by other systems, such as embedded processors.

(Optional) Debug the design by using the SignalTap®II Logic Analyzer,
the SignalProbe™ feature, or the Chip Editor.

(Optional) Manage engineering changes by using the Chip Editor, the
Resource Property Editor, and the Change Manager.

EDA Tool Design Flow

The Quartus II software allows you to use the EDA tools you are familiar
with for various stages of the design flow. You can use these tools together
with the Quartus II graphical user interface or with Quartus II command-
line executables. Figure 7 shows the EDA tool design flow.

10 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
EDA TooL DESIGN FLow

Figure 7. EDA Tool Design Flow

Source design files,
including VHDL Design
Files (.vhd) & Verilog
Design Files (.v)

\ 4 Y

ﬁi?r?::g < EDA Synthesis EDA Physical
— Syn'zlhesis Tool Synthesis Tool

* A
y

Quartus Il Fitter

<

EDIF netlist
files (.edf) or Verilog
Quartus Mapping Files (.vam)
Quartus Il EDA Timing » | EDA Board-Level
Timing Analyzer Analysis Tool " | Verification Tool
v A
Quartus Il N . EDA Formal
EDA Netlist Writer — '| - Verification Tool
v L \ Output files for EDA tools,
including Verilog Output
. . Files (.vo), VHDL Output
%uartlus I EDA Sll.n;gllatlon Files (.vho), VQM Files, Standard
imulator Delay Format Output Files (.sdo),
testbench files, symbol files, Tcl
script files (.tcl), IBIS Output Files
Y (.ibs) & STAMP model files (.data,
.mod, or .lib)
- Quartus Il L 5 Quartus Il
Assembler Programmer

Table 2 shows the EDA tools that are supported by the Quartus II software,
and indicates which EDA tools have NativeLink® support. NativeLink
technology facilitates the seamless transfer of information between the
Quartus I software and other EDA tools and allows you to run the EDA tool
automatically from within the Quartus II software.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 11

CHAPTER 1: DESIGN FLOW
EDA TooL DESIGN FLow

Table 2. EDA Tools Supported by the Quartus Il Software (Part 1 of 2)

Function Supported EDA Tools Ng:i;;l(;irtlk
Design Entry & Mentor Graphics Design Architect
Synthesis Mentor Graphics LeonardoSpectrum v
Mentor Graphics Precision RTL Synthesis v
Mentor Graphics ViewDraw
Synopsys Design Compiler
Synopsys Design Compiler FPCA
Synopsys FPGA Compiler Il v
Synplicity Synplify v
Synplicity Synplify Pro
Simulation Cadence NC-Verilog v
Cadence NC-VHDL v
Cadence Verilog-XL
Model Technology™ ModelSim® v
Model Technology ModelSim-Altera v
Synopsys Scirocco v
Synopsys VSS
Synopsys VCS
Timing Analysis Mentor Graphics Blast (through Stamp)
Mentor Graphics Tau (through Stamp)
Synopsys PrimeTime v
Board-Level Hyperlynx (through Signal Integrity IBIS)
Verification XTK (through Signal Integrity IBIS)
ICX (through Signal Integrity IBIS)
SpectraQuest (through Signal Integrity IBIS)
Mentor Graphics Symbol Generation
(Viewdraw)

12 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER

1: DESIGN FLOW

EDA TooL DESIGN FLow

Table 2. EDA Tools Supported by the Quartus Il Software (Part 2 of 2)

Function Supported EDA Tools Ng:i;::;ir't'k
Formal Verification Cadence Incisive Conformal
Synopsys Formality
Resynthesis Magma Design Automation PALACE v
Synplicity Amplify

The EDA Tool Settings page of the Settings dialog box (Assignments menu)
allows you to specify which EDA tools you want to use with the Quartus II
software. The individual pages under EDA Tool Settings provide

additional options for each type of EDA tool. See Figure 8.

Figure 8. EDA Tool Settings Page of Settings Dialog Box

Settings - filtref

Category:

General
Files
Uszer Libraries
Device
Timing Fequirements & Options
EDA Tool Settings
Design Entry & Synthesis
Simulation
Timing Analyzis
Board-Level
Formal Yerification
Resynthesis
Compilation Process
Analyzis & Synthesiz Settings
Fitter Settings
Timing &nalyzer
Dresign Assistant
SignalTap Il Logic Analyzer
SignalProbe Settings
Simulator
Software Build Settings
HardCopy Settings

¥

¥

¥

EDA Tool Settings

Specify the other EDA tools - in addition to the Quartus || software - used on this project.
Double-click on a Tool Type below or select a page under EDA Tool Settings in the Categary list to
change the EDA Taool or to specify optionz.

EDA tools:

T ool name Fiun tool automatically
Suynplify Pro

todelSim Merlog HDL output ... '
Timing analysis PrimeTime [Verilog HDL output...
Board-level Signal Inteqrity [IB1S]
Formnal verification Confarmal LEC
Resynthesis Armplify

|~
v

&

ok | Cancel

ALTERA CORPORATION

INTRODUCTION TO QUART

usil m 13

CHAPTER 1: DESIGN FLOW
EDA TooL DESIGN FLow

The following steps describe the basic design flow for using other EDA tools
with the Quartus II software. Refer to Table 2 on page 12 for a list of the
supported EDA tools.

2.

Create a new project and specify a target device or device family.

Create a Verilog HDL or VHDL design file by using a standard text
editor. If you want, instantiate functions from libraries, or use the
MegaWizard Plug-In Manager (Tools menu) to create custom
variations of megafunctions.

Synthesize your design by using one of the Quartus II-supported EDA
synthesis tools, and generate an EDIF netlist file (.edf) or a Verilog
Quartus Mapping File (.vqm).

(Optional) Perform functional simulation on your design by using one
of the Quartus II-supported simulation tools.

In the Quartus II Settings dialog box (Assignments menuy), specify
which EDA design entry, synthesis, simulation, timing analysis, board-
level verification, formal verification, and resynthesis tools you are
using with the Quartus II software, and specify additional options for
those tools.

Compile your design and perform place and route by using the
Quartus Il software. You can perform a full compilation, or you can run

the Compiler modules individually:

- Run Analysis & Synthesis to process your design and map the
functions in your design to the correct library module.

— Run the Fitter to place and route your design.

— Run the Timing Analyzer to perform timing analysis on your
design.

- Run the EDA Netlist Writer to generate output files for use with
other EDA tools.

— Run the Assembler to create programming files for your design.

(Optional) Perform timing analysis on your design by using one of the
Quartus II-supported EDA timing analysis tools.

14 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
EDA TooL DESIGN FLow

8.

(Optional) Perform timing simulation on your design by using one of

the Quartus II-supported EDA simulation tools.

9.

(Optional) Perform board-level verification by using one of the

Quartus II-supported EDA board-level verification tools.

10. (Optional) Perform formal verification by using one of the Quartus II-
supported EDA formal verification tools to make sure that Quartus
post-fit netlist is equivalent to that of the synthesized netlist.

11. (Optional) Perform resynthesis by using one of the Quartus II-
supported EDA resynthesis tools.

Program the device by using programming files, the Programmer, and
Altera hardware; or convert programming files to other file formats for use
by other systems, such as embedded processors.

For Information About Refer To

Using the Quartus Il software with
Synplicity Synplify and Synplify Pro
software

Chapter 9, “Synplicity Synplify and Synplify
Pro Support” in the Quartus Il Handbook,
vol. 1 on the Altera web site

Using the Quartus Il software with
Mentor Graphics LeonardoSpectrum
software

Chapter 10, “Mentor Graphics
LeonardoSpectrum Support” in the
Quartus Il Handbook, vol. 1 on the Altera
web site

Using the Quartus Il software with
Mentor Graphics Precision RTL
Synthesis software

Chapter 11, “Mentor Graphics Precision RTL
Synthesis Support” in the Quartus Il
Handbook, vol. 1, on the Altera web site

Using the Quartus Il software with
Synopsys FPGA Compiler Il software

Chapter 12, “Synopsys FPGA Compiler Il
BLIS and the Quartus Il LogicLock Design
Flow” in the Quartus Il Handbook, vol. 1, on
the Altera web site

Using the Quartus Il software with
Synopsis DC FPGA software

Chapter 13, “Synopsys Design Compiler
FPGA Support” in the Quartus Il Handbook,
vol. 1, on the Altera web site

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il = 15

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Command-Line Design Flow

The Quartus II software offers a complete command-line interface solution.
It allows you to perform every stage of the design flow by using command-
line executables and options. Using the command-line flow allows you to
reduce memory requirements; control the Quartus Il software with scripts or
standard command-line options and commands, including Tcl commands;
and create makefiles. See Figure 9 for an illustration of the command-line
design flow.

Figure 9. Command-Line Design Flow

Quartus Il Shell

quartus_sh
The Quartus Il Shell can be
7N used as a Tcl interpreter for
N the Quartus Il executables
/ \

- — - = N e e e e e e e 1

Source design files, including
Verilog Design Files (.v), VHDL
Design Files (.vhd), Verilog
Quartus Mapping Files (.vgm),
Text Design Files (.tdf), Block
Design Files (.bdf) & EDIF

4

netlist files (.edf) Analysis &
Synthesis
quartus_map [|
Simulator > Design Assistant
quartus_sim | quartus_drc
\/
A
Fitter —
<—|— quartus_fit —
Timing Analyzer ~ Compiler Database
Y
. . Assembler _ | Software Builder
EDA Netlist Writer quartus_asm > quartus_swh
quartus_eda
| L

! Y 4

N SignalTap Il Logic
I "N E::Etﬁ:qme:“ Analyzer
é q -Pg quartus_stp

\

Output files for EDA tools,

including Verilog Output Files (.vo), Convert

VHDL Output Files (.vho), VQM Programming Files
Files & Standard Delay Format

Output Files (.sdo) SIEL I S5

! |
! |
! |
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
| !

I
: quartus_tan quartus_cdb |

I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
! |
! |
! |
! |
! I
! I
! I
! I
! I

16 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Command-Line Executables

The Quartus II software includes separate executables for each stage of the
design flow. Each executable occupies memory only while it is being run.
You can use these executables with standard command-line commands and
scripts, with Tcl scripts, and in makefile scripts. See Table 3 for a list of all of
the available command-line executables.

[Stand-Alone Graphical User Interface Executables

The Quartus Il software also provides some stand-alone graphical user interface
(GUI) executables. The gmegawiz executable provides a stand-alone GUI version of
the MegaWizard Plug-In Manager, the quartus_pgmw executable provides a
stand-alone GUI for the Programmer, and the quartus_stpw executable provides a
stand-alone GUI for the SignalTap Il Logic Analyzer.

Table 3. Command-Line Executables (Part 1 of 2)

R Title Function
Name
quartus_map Analysis & Creates a project if one does not already exist,
Synthesis and then creates the project database,

synthesizes your design, and performs
technology mapping on the project’s design
files.

quartus_fit Fitter Places and routes a design. Analysis & Synthesis

must be run successfully before running the
Fitter.

quartus_drc

Design Assistant

Checks the reliability of a design based on a set
of design rules. Design Assistant is especially
useful for checking the reliability of a design
before converting the design for HardCopy
devices. Either Analysis & Synthesis or the Fitter
must be run successfully before running the
Design Assistant.

quartus_tan

Timing Analyzer

Analyzes the speed performance of the
implemented circuit. The Fitter must be run
successfully before running the Timing
Analyzer.

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il m 17

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Table 3. Command-Line Executables (Part 2 of 2)

ECEERE Title Function
Name
quartus_asm Assembler Creates one or more programming files for

programming or configuring the target device.
The Fitter must be run successfully before
running the Assembler.

quartus_eda

EDA Netlist Writer

Generates netlist files and other output files for
use with other EDA tools. Analysis & Synthesis,
the Fitter, or the Timing Analyzer must be run
successfully before running the EDA Netlist
Writer, depending on the options used.

quartus_cdb

Compiler
Database Interface
(including VQM
Writer)

Generates internal netlist files, including VQM
Files for the Quartus Il Compiler Database, so
they can be used for back-annotation and for the
LogicLock feature, and back-annotates device
and resource assignments to preserve the fit for
future compilations. Also imports and exports
version-compatible databases. Either the Fitter
or Analysis & Synthesis must be run successfully
before running the Compiler Database Interface.

quartus_sim

Simulator

Performs functional or timing simulation on your
design. Analysis & Synthesis must be run before
performing a functional simulation. The Timing
Analyzer must be run before performing a
timing simulation.

quartus_pgm

Programmer

Programs Altera devices.

quartus_cpf

Convert
Programming Files

Converts programming files to secondary
programming file formats.

quartus_stp

SignalTap Il Logic
Analyzer

Sets up your SignalTap Il File (.stp). When it is
run after the Assembler, the SignalTap Il Logic
Analyzer captures signals from internal device
nodes while the device is running at speed.

quartus_swb

Software Builder

Processes a design for an Excalibur embedded
processor.

quartus_sh

Tcl Shell

Provides a Tcl scripting shell for the Quartus Il
software.

18 =m

INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

[[5 Getting Help On the Quartus Il Executables

If you want to get help on the command-line options that are available for each of
the Quartus Il executables, type one of the following commands at the command
prompt:

<executable name> -h '
<executable name> --help ¢
<executable name> --help=<topic or option name> ¢

You can also get help on command-line executables by using the Quartus I
Command-Line Executable and Tcl API Help Browser, which is a Tcl- and Tk-based
GUI that lets you browse the command-line and Tcl API help. To use this help, type
the following command at the command prompt:

quartus_sh --ghelp ¢

You can run each executable individually, but you can also run all the
Compiler executables at once by using the following command:

quartus_sh --flow compile <project name> [-c <revision name>]

This command will run the quartus_map, quartus_fit, quartus_asm, and
quartus_tan executables as part of a full compilation. Depending on your
settings, it may also run the optional quartus_drc, quartus_eda, and
quartus_cdb executables.

[The quartus_cmd Executable

If you have used the quartus_cmd executable to perform project compilation in
previous versions of the Quartus |l software, this executable is still supported for
backward compatibility; however, Altera recommends that for all new designs, you
do not use the quartus_cmd executable, but use the executables that are listed in
Table 3 on page 17. If you are used to using the quartus_cmd executable to
compile a design, you can get the same functionality by using the quartus_sh
executable with the following options:

quartus_sh --flow compile <project name> [-c < Revision Name> 1+

Some of the executables create a separate text-based report file that you can
view with any text editor. The name of each report file uses the following
format:

<revision name>.<abbreviated executable name>.rpt

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 19

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

For example, if you want to run the quartus_map executable for the chiptrip
project, you could type the following command at the command prompt:

quartus_map chiptrip

The quartus_map executable will perform analysis and synthesis and will
produce a report file with the name chiptrip.map.rpt.

[[& Using Quartus Il Settings Files with Quartus Il Executables

When you are using the Quartus Il executables, the Quartus Il software uses the
revision that has the same name as the project name, by default. If you want to use
a revision with a name that is different from the project name, you can use the -c
option to specify the name of the revision and its associated Quartus Il Settings
File (.qsf). For example, if you want to run the quartus_map executable for the
chiptrip project with a revision named speed_ch and its associated speed_ch.qsf
file, you could type the following command at the command prompt:

quartus_map chiptrip -c speed_ch ¢

The quartus_map executable performs analysis and synthesis using that revision
and settings, and produces a report file with the name speed_ch.map.rpt.

The Quartus II software also offers several predefined compilation flows
that use the Quartus II executables. You can use these commands with the
quartus_sh --flow command, or with the Tcl execute_flow
command. Table 4 shows some of the most common Compiler flows.

Table 4. Command-Line Compiler Flows (Part 1 of 2)

Command-Line Option

Description for quartus_sh --flow or
execute_flow

Full compilation flow Performs a full compilation of the compile
current design.

Compilation and If the simulation mode is timing, compile_and_simulate
simulation flow performs a full compilation and

then a simulation of the current

design. If the simulation mode is

functional, generates a functional

simulation netlist and then

performs a simulation of the

current design.

20 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Table 4. Command-Line Compiler Flows (Part 2 of 2)

Command-Line Option

Description for quartus_sh --flow or
execute_flow

Incremental fitting Performs a full compilation on a incremental_fitting

flow previously compiled design
where the Fitter compares the
netlist and placement from the
previous and current
compilations. The Fitter compares
the compilations in order to use
as many node placements from
the previous compilation as
possible in the current
compilation.

SignalProbe flow Routes user-specified signals to signalprobe
output pins without affecting the
existing fitting in a design, so that
you can debug signals without
completing a full compilation.

« ._ Py For Information About Refer To

Using compilation flows “Overview: Using Compilation Flows” in
Quartus Il Help

Using Standard Command-Line
Commands & Scripts

You can use the Quartus II executables with any command-line scripting
method, such as Perl scripts, batch files, and Tcl scripts. These scripts can be
designed to create new projects or to compile existing projects. You can also
run the executables from the command prompt or console.

Figure 10 shows an example of a standard command-line script. The
example demonstrates how to create a project, perform analysis and
synthesis, perform place and route, perform timing analysis, and generate
programming files for the filtref tutorial design that is included with the
Quartus II software. If you have installed the tutorial design, it is in the
/altera/qdesigns<version number>/tutorial directory. Altera recommends

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 21

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

that you create a new directory and copy all the design files (*.v, *.bsf, *.bdf)
from the /altera/qdesigns<version number>/tutorial directory to the new
directory, in order to compile the design flow example. You can run the four
commands in Figure 10 from a command prompt in the new project
directory, or you can store them in a batch file or shell script. These examples
assume that the /<Quartus II system directory>/bin directory (or the
[<Quartus II system directory>/<platform> directory on UNIX or Linux
workstations, where <platform> can be solaris, linux, or hp_II) is included
in your PATH environment variable.

Figure 10. Example of a Command-Line Script

quartus_map

quartus_fit

quartus_tan

quartus_asm

filtref --family=Stratix Creates a new
Quartus Il project
targeting the Stratix
device family

filtref --part=EP1S10F780C5 --fmax=80MHz --tsu=8ns Performs fitting for

the EP1S10F780C5
device and specifies
global timing
requirements

filtref Performs timing
analysis

filtref Generates
programming files

Figure 11 shows an excerpt from a sample command-line script for use on a
UNIX workstation. The script assumes that the Quartus II tutorial project
called fir_filter exists in the current directory. The script analyzes every
design file in the fir_filter project and reports any files that contain syntax
errors.

22 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Figure 11. Example of a UNIX Command-Line Shell Script
#!/bin/sh
FILES_WITH_ERRORS=""

for filename in “1ls *.bdf *.v®

do
quartus_map fir filter --analyze_file=$filename
if [$? -ne 0]
then
FILES_WITH_ERRORS="SFILES_WITH_ERRORS $filename"
fi
done
if [-z "SFILES_WITH_ERRORS"]
then
echo "All files passed the syntax check"
exit 0
else
echo "There were syntax errors in the following file(s)"
echo $SFILES_WITH_ERRORS
exit 1
fi
Command-Line Scripting Chapter 2, “Command-Line Scripting” in the
Quartus Il Handbook, vol. 2 on the Altera
web site

Using Tcl Commands

In the Quartus II software, you can run Tcl commands or create and run Tcl
scripts with the Quartus II executables to do the following tasks in a
Quartus II project. The Tcl API functions include the following categories:

Project & assignment functions
Device functions

Advanced device functions
Flow functions

Timing functions

Advanced timing functions
Simulator functions

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 23

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Report functions
Timing report functions
Back-annotate functions
LogicLock functions
Chip Editor Functions
Miscellaneous functions

There are several ways to use Tcl scripts in the Quartus II software. You can
create a Tcl script by using commands from the Quartus II API for Tcl. You
should save a Tcl script as a Tcl Script File (.tcl).

The Templates command (Edit menu) in the Quartus II Text Editor allows
you to insert Tcl templates and Quartus II Tcl templates (for Quartus II
commands) into a text file to create Tcl scripts. Commands used in the
Quartus II Tcl templates use the same syntax as the Tcl API commands. If
you want to use an existing project as a baseline for another project, the
Generate Tcl File for Project command (Project menu) can generate a Tcl
Script File for the project.

You can run Tcl scripts in command-line mode with the quartus_sh
executable, in the Quartus II Tcl Console window, or from the Tcl Scripts
dialog box (Tools menu).

[Getting Help On Tcl Commands

The Quartus Il software includes a Quartus Il Command-Line and Tcl API Help
browser, which is a Tcl- and Tk-based GUI that lets you browse the command-line
and Tcl API help. To use this help, type the following command at the command
prompt:

quartus_sh --ghelp ¢

24 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Figure 12 shows an example of a Tcl Script.

Figure 12. Example of a Tcl Script (Part 1 of 2)

Since ::quartus::report is not pre-loaded
by quartus_sh, load this package now

before using the report Tcl API
load_package report

Since ::quartus::flow is not pre-loaded

by quartus_sh, load this package now

before using the flow Tcl API

Type "help -pkg flow" to view information

about the package

load_package flow

#-— Get Actual Fmax data from the Report File ------ #
proc get_fmax_from_ report {} {

Fmm - #

global project_name

Load the project report database
load_report Sproject_name

Get the actual Fmax
set actual_fmax [get_timing_analysis_summary_ results -clock_setup

clock -actual]

Now unload the project report database
unload_report

return Sactual_fmax
#-—---—- Set the project name to chiptrip ------ #
set project_name chiptrip

- Create or open project ------ #
if {project_exists S$Sproject_name} {

e Project already exists -- open project ------- #
project_open $project_name

} else {

$omo——— Project does not exist -- create new project ------ #

project_new $project_name

#-— Fmax requirement: 155.55MHz ------ #
set required_fmax 155.55MHz

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il

25

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Figure 12. Example of a Tcl Script (Part 2 of 2)

#-——— Make a clock assignment with the Fmax requirement ------ #
create_base_clock clock -fmax S$required_fmax

#-——— Make global assignments ------ #
set_global_assignment -name family STRATIX
set_global_assignment -name device EP1S10F484C5
set_global_assignment -name tsu_requirement 7.55ns

#-—— Make instance assignments ------ #

The following is the same as doing:

"set_instance_assignment -name location -to clock Pin_M20"
set_location_assignment -to clock Pin_M20

#-————= Compile using ::quartus::flow ------ #
execute_flow -compile

#-—m—— Report Fmax from report ------ #

set actual_fmax [get_fmax_from_report]

puts "'

puts "------------ - "

puts "Required Fmax: Srequired_fmax Actual Fmax: Sactual_fmax"
puts

« ._ Py For Information About Refer To

Tcl Scripting Chapter 3: “Tcl Scripting” in the Quartus Il
Handbook, vol. 2 on the Altera web site

Creating Makefile Scripts

The Quartus II software supports makefile scripts that use the Quartus II
executables, which allow you to integrate your scripts with a wide variety of
scripting languages. Figure 13 shows an excerpt from a standard makefile
script.

26 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Figure 13. Excerpt from Makefile Script (Part 1 of 2)

HHHHHH AR H AR HEH S H S H SRR R R
Project Configuration:

#

Specify the name of the design (project) and Quartus II Settings
File (.gsf) and the list of source files used.
HEHHHHAHAHAHAHAHAH A H S H S H AR A S AR A BABABAHAHAHAH AR AR SRR H AR AR AR AR

PROJECT = chiptrip

SOURCE_FILES = auto_max.v chiptrip.v speed_ch.v tick_cnt.v time_cnt.

ASSIGNMENT_ FILES = chiptrip.qgpf chiptrip.gsf

HEHHHHAHAHAHAHAHAH A H S H S H AR A S AR A BABABAHAHAHAH AR AR SRR H AR AR AR AR
Main Targets

#

all: build everything

clean: remove output files and database

B i

all: smart.log $(PROJECT) .asm.rpt $(PROJECT) .tan.rpt

clean:
rm -rf *.rpt *.chg smart.log *.htm *.egn *.pin *.sof *.pof db

map: smart.log $(PROJECT) .map.rpt
fit: smart.log $(PROJECT).fit.rpt
asm: smart.log $(PROJECT) .asm.rpt
tan: smart.log $(PROJECT).tan.rpt
smart: smart.log

FHE R R R R R R R
Executable Configuration
FHEFFH R R R R R

MAP_ARGS = --family=Stratix
FIT_ARGS = --part=EP1S20F484C6
ASM_ARGS =

TAN_ARGS =

FHE R R R R R R R
Target implementations
FHEFH R R R R R

STAMP = echo done >
$ (PROJECT) .map.rpt: map.chg $(SOURCE_FILES)

quartus_map $(MAP_ARGS) $(PROJECT)
$(STAMP) fit.chg

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il

27

CHAPTER 1: DESIGN FLOW
COMMAND-LINE DESIGN FLOW

Figure 13. Excerpt from Makefile Script (Part 2 of 2)

$ (PROJECT) . fit.rpt: fit.chg $(PROJECT) .map.rpt
quartus_fit $(FIT_ARGS) $(PROJECT)
S (STAMP) asm.chg
$ (STAMP) tan.chg

S (PROJECT) .asm.rpt: asm.chg $(PROJECT).fit.rpt
quartus_asm $ (ASM_ARGS) $(PROJECT)

$ (PROJECT) .tan.rpt: tan.chg $(PROJECT).fit.rpt
quartus_tan $(TAN_ARGS) $(PROJECT)

smart.log: $(ASSIGNMENT_FILES)
quartus_sh --determine_smart_action $(PROJECT) > smart.log

HAHFHAEH S H S H AR R A R A H A H A HHHHH H
Project initialization
HAHAHAHSHSH A A A S A B A B A BABAHAH AR AR AR H AR AR AR FSF AR AR AR A SRR RS H

$ (ASSIGNMENT_FILES) :
quartus_sh --prepare $(PROJECT)

map.chg:

$ (STAMP) map.chg
fit.chg:

$(STAMP) fit.chg
tan.chg:

$ (STAMP) tan.chg
asm.chg:

$ (STAMP) asm.chg

“ .. Py For Information About Refer To

Using Command-Line Executables “Overview: Using Command-Line
Executables” in Quartus Il Help

Chapter 2, “Command-Line Scripting,” in
the Quartus Il Handbook, vol. 2, on the
Altera web site

Tcl Commands and Tcl Scripting “Overview: Using Tcl from the User
Interface,” “Overview: Using Tcl Scripting,”
and “API Functions for Tcl” in Quartus Il
Help

Chapter 3, “Tcl Scripting,” in the Quartus Il
Handbook, vol. 2, on the Altera web site

28 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s In Chapter 2:

Introduction

Creating a Project

Creating a Design

Using Altera Megafunctions
Specifying Initial Design Constraints

Design Methodologies & Design
Planning

30
31
36
40
48

53

Chapter
Two

Design Entry

CHAPTER 2: DESIGN ENTRY
INTRODUCTION

Introduction

Py
S

A Quartus® II project includes all of the design files, software source files,
and other related files necessary for the successful operation of a design.
Using revisions allows you to compare multiple versions of settings and

assignments for your project, giving you the ability to meet design
requirements more quickly and efficiently. You can use the Quartus II Block
Editor, Text Editor, MegaWizard® Plug-In Manager (Tools menu), and EDA
design entry tools to create designs that include Altera® megafunctions,
library of parameterized modules (LPM) functions, and intellectual
property (IP) functions. You can use the Settings dialog box (Assignments
menu) and the Assignment Editor to make design constraints. Figure 1
shows the design entry flow.

Figure 1. Design Entry Flow

30

EDA Synthesis
Tool

\

MegaWizard Plug-In Verilog HDL

Manager & VHDL
design files

Files generated by

EDIF netlist files (.edf)
or Verilog Quartus
Mapping Files (.vqgm)

Text Design Files (.tdf)
& Verilog HDL & VHDL
design files (.v, .vhd)

Block Design
Files (.bdf)

MegaWizard Plug-In — > Quartus Il
Manager — Text Editor
Quartus Il

Symbol Editor

- o Quartus Il
— Eé Block Editor

-

Block Symbol Files (.bsf) &
MAX+PLUS Il Symbol
Files (.sym)

Quartus Il
Settings Dialog Box

Quartus Il
Settings File (.gsf)

Quartus Il
Project File (.qpf)

=——

Quartus Il
Assignment Editor

Yy

VQM Files &
QSFs

Design

m INTRODUCTION TO QUARTUS Il

from Block-Based

to Quartus Il
Analysis & Synthesis

ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
CREATING A PROJECT

Creating a Project

You can create a new project by using the New Project Wizard (File menu)
or the quartus_map executable. When creating a new project, you specify
the working directory for the project, assign the project name, and designate
the name of the top-level design entity. You can also specify which design
files, other source files, user libraries, and EDA tools you want to use in the
project, as well as the target device (or allow the Quartus II software to
automatically select a device). Table 1 lists the project and settings files for a
Quartus II project.

Table 1. Quartus Il Project Files

File Type Description

Quartus Il Project File (.qpf) Specifies the version of the Quartus Il software used to
create the project and the revisions associated with
the project.

Quartus Il Settings Contains all revision-wide or individual assignments

File (.gqsf) you made with the Assignment Editor, Floorplan
Editor, Settings dialog box (Assignments menu), Tcl
scripts, or Quartus Il executables. There is one QSF for
each revision in the project.

Quartus Il Workspace Contains user preferences and other information such
File (.qws) as the position of the windows, the open files and their
positions in the windows.

Quartus Il Default Settings Located in the \<Quartus Il system directory>\bin

File (.qdf) directory and contains all the global default project
settings. These settings are overridden by the settings
in the QSF.

Once you have created a project, you can add and remove design files and
other files from the project using the Settings dialog box (Assignments
menu). During Quartus II Analysis & Synthesis, the Quartus II software
processes the files in the order they appear in the Files page.

You can also copy an entire project to a new directory by using the Copy
Project command (Project menu). This command allows you to copy the
project design database files, design files, settings files, and report files to a
new directory and then open the project in the new directory. If the new
directory does not exist, the Quartus II software will create it.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 31

CHAPTER 2: DESIGN ENTRY
CREATING A PROJECT

The Project Navigator displays information related to the current revision
and provides a graphical representation of the project hierarchy, files, and
design units, and shortcuts to various menu commands. You can also
customize the information shown in the Project Navigator with the
Customize Columns command (right button pop-up menu).

Figure 2. Project Navigator Window

"5

<

E ity | Logic Cellz | Registers | Memory Bits |Pinz [itual Pins [LUT-Only LCs |Register-Only LCs | ~
Compilation Higrarchy
E-559 chiptip “m |19 0 2 0 250) o[|
E----jbc auto_max:auto 27 [27) 3 0 0 |0 24 [24) 0o
- gb speed_ch:speed 44) 4 0 0|0 (1] 0
Bl b9 tick_cribtick 51 4 0 o o 101 aim L

_Hierarchy] Files] o Desian Units]

32

Using Revisions

You can use revisions to specify, save, and use different groups of settings
and assignments for the design files in a design. Revisions allow you to
compare results using different settings and assignments for the same
design files in a design.

When you create a revision, the Quartus II software creates a separate QSF,
which contains all the settings and assignments related to that revision, and
places it in the top-level directory for the design. You can create a revision
for any entity in a design. You can view the top-level entity for the any
revision in the Revisions dialog box or the current top-level design entity in
the General page of the Settings dialog box (Assignments menu).

The Revisions dialog box (Project menu) allows you to view all the revisions
for the current project, create a revision for a specific design entity, delete a
revision, or set a particular revision as the current revision for compilation,
simulation, or timing analysis. The information in the Revisions dialog box
shows the top-level design entity for a particular revision and the family and
device selected for the revision. A check mark icon indicates the current
revision. Using the Create Revision dialog box, you can create a new

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
CREATING A PROJECT

revision (based on an existing revision), enter a description for the revision,
copy the database used to create the revision, and set a revision as the
current revision. See Figure 3.

Figure 3. Revisions Dialog Box

Rewvisions

Specify the current revizion for the project, create a new revizion, delete an existing revision, or edit the
description of a revision.

Bevigions:

Fievigion Name | Top-level Entity Farnily Device |
auta_max auto_masx APER20K. AUTO

~F auto_max_1 auto_max APER20K AUTO Create...
chiptrip chiptrip APEX20KE EF20K30ELICZ...
Ipr_add_sub_1 llprm_add_sub_1 APER20E, AUTO Create Revision
speed_ch lspeed_ch APEX20E AUTO
tick_ent lick_cnt APEXZ0K AUTO Specify a name and dezcription for the new revision.
time_cnt ltime_cnt APE=20E AUTO Cloze “You can base the revision on an exist_in_g revision, and

specily the revision az the cunent revision.

Revigion name: auto_max_1

Description far revizion auta_max_1

Revision name: auto_max_1 Basec! o.n fevisan: aulo_max :lv
Created on: Monday, ALpril 12, 2004 Description:
Based on : AuULo_max Created or: Manday, April 12, 2004

Based on: auta_max

¥ Copy database
[¥ Set as cunent revision

oK Cancel

Creating a revision does not affect the source design files for the project. You
can create a revision, set it as the current revision for the design, and then
make assignments and settings for the entity. This feature allows you to
create different settings and assignments for the same design entity and save
those settings as different revisions for comparison. Each revision has a
corresponding report file that you can open to view and compare the results
of the effects of settings and assignments changes against other revisions.
You can also use the Compare Revisions dialog box, which is available from
the Revisions dialog box, to compare the results of compilations with
different revisions. See Figure 4.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 33

CHAPTER 2: DESIGN ENTRY

CREATING A PROJECT

Figure 4. Compare Revisions Dialog Box

Compare Revisions

D /qdesigns.chiptrip...

Revizan chiptrpl

D:/qdesigns/chiptrip...

Revizon chiptrip

D:/qdesigns/chiptrip...
Revizon auto_maw_1

= = Fitter
e Flow Status

Successiul - Wed M.

Successful - 'Wed M. .

Successful - Mon Ap..

Quartug Il Yersion 4.1 4.1 4.1
R evigion Mame chiptripl chiptrip auko_mak_1
Top-evel Entity Mame chiptrip chiptrip auko_mak
Farnily APEXZ0KE APERZOKE APEX20K
Total logic elements 44 /1.20003%) 44/1200(3%) 2h/41600<1 %)
Total pins 22/92(23%) 22812517 %) B/1B9(4 %)
Total memary bits 0/24576(0%) 0/24576(0%) 0/53.248(0%)
Total PLLs 0/2(0%) 0/2(0%) 0s1(0%)
D evice EP20K30ETCT44-1 EP20K30ECIC208-1 EP20K100QC240-154

e Timing Modelz Froduction Froduction Froduction

=l & Timing Analyzer
EHZ Worshcase tsu
; Slack 3444 ng 2981 ng 143144 ns

Required Time 10.000 ng 10.000 ng 150.000 ng w

>|E

Compare to other project. . | 0k |

34

Using Version-Compatible Databases

The Quartus II software allows you to export version-compatible database
files for use in a later version of the Quartus Il software, eliminating the need
for a full compilation of the design in the later version of the Quartus II
software. You can export a database at any stage in the design flow, after
running Analysis & Synthesis or the quartus_map executable.

You can use this feature to create and optimize a design and then preserve
the database for Timing Analysis in a future version of the Quartus II

software to ensure that the design still meets the timing requirements with
updated timing models.

To export a database for use in a future version of the Quartus II software,
you can use the Export Database command (Project menu) to select the
directory to export the database. The Quartus II software will then export
the design database. You can then use the Import Database command
(Project menu) in a future version of the Quartus II software to select the
project folder, import the design database, and perform timing analysis to
verify the timing requirements of the design.

m INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
CREATING A PROJECT

You can also use the quartus_cdb command-line executable to export or
import design databases. Version-compatible databases are available in
version 4.1 or later versions of the Quartus II software.

[[& Using the quartus_cdb executable

You can import or export version-compatible databases by using the quartus_cdb
executable.

To use the quartus_cdb executable to import or export a database, type one of the
following commands at a command prompt:

quartus_cdb <project> -c <revision> --import_database=<project directory> ¢
quartus_cdb <project> -c <revision> --export_database=<project directory> '

If you want to get help on the quartus_cdb executable, type one of the following
commands at the command prompt:

quartus_cdb -h
quartus_cdb --help ¢
quartus_cdb --help=<topic name> <

Converting MAX+PLUS Il Projects

The Convert MAX+PLUS II Project command (File menu) allows you to
select an existing MAX+PLUS II project’s Assignment & Configuration
File (.acf) or design file and convert it into a new Quartus II project that
contains all supported assignments and constraints from the original
MAX+PLUS 1I project. The Convert MAX+PLUS II Project command
automatically imports the MAX+PLUS II assignments and constraints,
creates new project files, and opens the new Quartus II project. Figure 5
shows the Convert MAX+PLUS II Project dialog box.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 35

CHAPTER 2: DESIGN ENTRY
CREATING A DESIGN

Figure 5. Convert MAX+PLUS Il Project Dialog Box

Convert MAX+PLUS Il Project X

Alloves you bo convert existing MAX+PLUS | projects and assignments into a
new Quartuz || project.

e+ PLUS 11 file name:
|d:\qdesigns\chiptrip\chiptrip. acf

Quartusz || project name:

Ok | Cancel |

“ ._ Py For Information About Refer To

Converting MAX+PLUS Il projects MAX+PLUS Il Conversion module in the
Quartus Il Tutorial

Creating and using revisions “Overview: Using Revisions” in Quartus Il
Help

Creating a Design

You can use the Quartus Il software to create a design in the Quartus II Block
Editor or use the Quartus II Text Editor to create an HDL design using the
AHDL, Verilog HDL, or VHDL design languages.

The Quartus II software also supports designs created from EDIF Input
Files (.edf) or Verilog Quartus Mapping Files (.vqm) generated by EDA
design entry and synthesis tools. You can also create Verilog HDL or VHDL
designs in EDA design entry tools, and either generate EDIF Input Files and
VQM Files, or use the Verilog HDL or VHDL design files directly in
Quartus II projects. For more information on using EDA synthesis tools to
generate EDIF Input Files or VQM Files, see “Using Other EDA Synthesis
Tools” on page 60 in Chapter 3, “Synthesis.”

You can use the design file types listed in Table 2 to create a design in the
Quartus II software or in EDA design entry tools.

36 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
CREATING A DESIGN

Table 2. Supported Design File Types

Type Description Extension

Block Design File A schematic design file created with the bdf
Quartus Il Block Editor.

EDIF Input File An EDIF version 2 0 0 netlist file, .edf
generated by any standard EDIF netlist .edif
writer.

Graphic Design File A schematic design file created with the .gdf
MAX+PLUS Il Graphic Editor.

Text Design File A design file written in the Altera tdf
Hardware Description Language (AHDL).

Verilog Design File A design file that contains design logic v
defined with Verilog HDL. .vig

.verilog

VHDL Design File A design file that contains design logic .vh

defined with VHDL. .vhd

.Vhdl

Verilog Quartus A Verilog HDL-format netlist file vgqm
Mapping File generated by the Synplicity Synplify

software or the Quartus Il software.

Using the Quartus Il Block Editor

The Block Editor allows you to enter and edit graphic design information in
the form of schematics and block diagrams. The Quartus II Block Editor
reads and edits Block Design Files and MAX+PLUS II Graphic Design Files.
You can open Graphic Design Files in the Quartus II software and save them
as a Block Design Files. The Block Editor is similar to the Graphic Editor
from the MAX+PLUS II software.

Z

Each Block Design File contains blocks and symbols that represent logic in
the design. The Block Editor incorporates the design logic represented by
each block diagram, schematic, or symbol into the project.

You can create new design files from blocks in a Block Design File, update
the design files when you modify the blocks and the symbols, and generate
Block Symbol Files (.bsf), AHDL Include Files (.inc), and HDL files from
Block Design Files. You can also analyze the Block Design Files for errors

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 37

CHAPTER 2: DESIGN ENTRY

CREATING A DESIGN

before compilation. The Block Editor also provides a set of tools that help
you connect blocks and primitives in a Block Design File, including bus and
node connections and signal name mapping.

You can change the Block Editor display options, such as guidelines and
grid spacing, rubberbanding, colors and screen elements, zoom, and
different block and primitive properties to suit your preferences.

You can use the following features of the Block Editor to assist in creating a
Block Design File in the Quartus II software:

Instantiate Altera-provided megafunctions: The MegaWizard Plug-
In Manager (Tools menu) allows you to create or modify design files
that contain custom variations of megafunctions. These custom
megafunction variations are based on Altera-provided megafunctions,
including LPM functions. Megafunctions are represented by blocks in
Block Design Files. See “Using the MegaWizard Plug-In Manager” on
page 43.

Insert block and primitive symbols: Block diagrams use rectangular-
shaped symbols, called blocks, to represent design entities and the
corresponding assigned signals, and are useful in top-down design.
Blocks are connected by conduits that represent the flow of the
corresponding signals. You can use block diagrams exclusively to
represent your design, or you can combine them with schematic
elements.

The Quartus II software provides symbols for a variety of logic
functions—including primitives, library of parameterized modules
(LPM) functions, and other megafunctions—that you can use in the
Block Editor.

Create files from blocks or Block Design Files: To facilitate
hierarchical projects, you can use the Create/Update command (File
menu) in the Block Editor to create other Block Design Files, AHDL
Include Files, Verilog HDL and VHDL design files, and Quartus II
Block Symbol Files from blocks within a Block Design File. You can also
create Verilog Design Files, VHDL Design Files, and Block Symbol Files
from a Block Design File itself.

38 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
CREATING A DESIGN

Using the Quartus Il Text Editor

The Quartus II Text Editor is a flexible tool for entering text-based designs in
the AHDL, VHDL, and Verilog HDL languages, and the Tcl scripting
language. You can also use the Text Editor to enter, edit, and view other
ASCII text files, including those created for or by the Quartus II software.

The Text Editor also allows you to insert a template for any AHDL statement
or section, Tcl command, or supported VHDL or Verilog HDL construct into
the current file. AHDL, VHDL, and Verilog HDL templates provide an easy
way for you to enter HDL syntax, increasing the speed and accuracy of
design entry. You can also get context-sensitive help on all AHDL elements,
keywords, and statements, as well as on megafunctions and primitives.

Using the Quartus Il Symbol Editor

The Symbol Editor allows you to view and edit predefined symbols that
represent macrofunctions, megafunctions, primitives, or design files. Each
Symbol Editor file represents one symbol. For each symbol file, you can
choose from libraries containing Altera megafunctions and LPM functions.
You can customize these Block Symbol Files and then add the symbols to
schematics created with the Block Editor. The Symbol Editor reads and edits
Block Symbol Files and MAX+PLUS II Symbol Files (.sym) and saves both
types of files as Block Symbol Files.

Using Verilog HDL, VHDL & AHDL

You can use the Quartus II Text Editor or another text editor to create Text
Design Files, Verilog Design Files, and VHDL Design Files, and combine
them with other types of design files in a hierarchical design.

Verilog Design Files and VHDL Design Files can contain any combination of
Quartus II-supported constructs. They can also contain Altera-provided
logic functions, including primitives and megafunctions, and user-defined
logic functions.

In the Text Editor, you use the Create/Update command (File menu) to
create a Block Symbol File from the current Verilog HDL or VHDL design
file and then incorporate it into a Block Design File. Similarly, you can create

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 39

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

an AHDL Include File that represents a Verilog HDL or VHDL design file
and incorporate it into an Text Design File or another Verilog HDL or VHDL
design file.

For more information on using the Verilog HDL and VHDL languages in the
Quartus Il software, see “Using Quartus II Verilog HDL & VHDL Integrated
Synthesis” on page 57 in Chapter 3, “Synthesis.”

AHDL is a high-level, modular language that is completely integrated into
the Quartus II system. AHDL supports Boolean equation, state machine,
conditional, and decode logic. AHDL also allows you to create and use
parameterized functions, and includes full support for LPM functions.
AHDL is especially well suited for designing complex combinational logic,
group operations, state machines, truth tables, and parameterized logic.

For Information About Refer To

Using the Quartus Il Block Editor and “Block Editor & Symbol Editor Introduction”

Symbol Editor in Quartus Il Help

Using the Quartus Il Text Editor “Text Editor Introduction” in Quartus Il Help
Creating designs in the Quartus Il Design Entry module in the Quartus Il
software Tutorial

Using Altera Megafunctions

Altera megafunctions are complex or high-level building blocks that can be
used together with gate and flipflop primitives in Quartus II design files.
The parameterizable megafunctions and LPM functions provided by Altera
are optimized for Altera device architectures. You must use megafunctions
to access some Altera device-specific features, such as memory, DSP blocks,
LVDS drivers, PLLs, and SERDES and DDIO circuitry.

You can use the MegaWizard Plug-In Manager (Tools menu) to create
Altera megafunctions, LPM functions, and IP functions for use in designs in
the Quartus II software and EDA design entry and synthesis tools. Table 3
shows the types of Altera-provided megafunctions and LPM functions that
you can create using the MegaWizard Plug-In Manager.

40 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

Table 3. Altera-Provided Megafunctions & LPM Functions

Type Description

Arithmetic Includes accumulators, adders, multipliers, and LPM arithmetic
Components functions.

Gates Includes multiplexers and LPM gate functions.

I/0 Components Includes Clock Data Recovery (CDR), phase-locked loop (PLL),

double data rate (DDR), gigabit transceiver block (GXB), LVDS
receiver and transmitter, PLL reconfiguration, and remote
update megafunctions.

Memory Compiler Includes the FIFO Partitioner, RAM, and ROM megafunctions.
Storage Components Memory and shift register megafunctions, and LPM memory
functions.

To save valuable design time, Altera recommends using megafunctions
instead of coding your own logic. Additionally, these functions can offer
more efficient logic synthesis and device implementation. It is easy to scale
megafunctions to different sizes by simply setting parameters. Altera also
provides AHDL Include Files and VHDL Component Declarations for both
Altera-provided megafunctions and LPM functions.

Using Intellectual Property (IP)
Megafunctions

Altera provides several methods for obtaining both Altera Megafunction
Partners Program (AMPP™) and MegaCore® megafunctions, functions that
are rigorously tested and optimized for the highest performance in Altera
device-specific architectures. You can use these parameterized blocks of
intellectual property to reduce design and test time. MegaCore and AMPP
megafunctions include megafunctions for embedded processors, interfaces
and peripherals, digital signal processing (DSP), and communications
applications.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 41

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

Altera provides the following programs, features, and functions to assist
you in using IP functions in the Quartus II software and EDA design entry
tools:

m AMPP Program: The AMPP program offers support to third-party
vendors to create and distribute megafunctions for use with the
Quartus II software. AMPP partners offer a large selection of off-the-
shelf megafunctions that are optimized for Altera devices.

Evaluation periods for AMPP functions are determined by the
individual vendors. You can download and evaluate AMPP functions
through the IP MegaStore™ on the Altera web site at
www.altera.com/ipmegastore.

B MegaCore Functions: MegaCore functions are pre-designed,
optimized, and verified design files for complex system-level functions,
and are fully parameterizable using the MegaWizard Plug-In Manager
and IP Toolbench. IP Toolbench is a toolbar that you can use to quickly
and easily view documentation, specify parameters, set up other EDA
tools, and generate all the files necessary for integrating a
parameterized MegaCore function into your design.

You can install MegaCore functions from the MegaCore IP Library
CD-ROM either during or after installation of the Quartus II software.
You can also download individual IP MegaCore functions from the
Altera web site, via the IP MegaStore, and install them separately. You
can also access MegaCore functions though the MegaWizard Portal
Extension to the MegaWizard Plug-In Manager.

B OpenCore Evaluation Feature: The OpenCore evaluation feature
allows you to evaluate AMPP functions before purchase. You can use
the OpenCore feature to compile, simulate, and verify the performance
of a design, but it does not support programming file generation.

m OpenCore Plus Hardware Evaluation Feature: The free OpenCore
Plus hardware evaluation feature allows you to simulate the behavior
of a MegaCore function within your system, verify the functionality of
the design, and evaluate its size and speed quickly and easily. In
addition, the Quartus II software generates time-limited programming
files for designs containing MegaCore functions, allowing you to
program devices and verify your design in hardware before purchasing
a license for the IP megafunction.

42 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

When the OpenCore Plus hardware feature is turned on in the
Compilation Process page of the Settings dialog box (Assignments
menu), the Quartus II software inserts a small amount of control logic.
This logic can have an adverse effect on fitting, especially with small
devices. You can turn off the OpenCore Plus hardware evaluation
feature to direct the Quartus II software to omit the additional logic.

Using the MegaWizard Plug-In
Manager

The MegaWizard Plug-In Manager helps you create or modify design files
that contain custom megafunction variations, which you can then instantiate
in a design file. These custom megafunction variations are based on Altera-
provided megafunctions, including LPM, MegaCore, and AMPP functions.
The MegaWizard Plug-In Manager runs a wizard that helps you easily
specify options for the custom megafunction variations. The wizard allows
you to set values for parameters and optional ports. You can open the
MegaWizard Plug-In Manager from the Tools menu or from within a Block
Design File, or you can run it as a stand-alone utility. Table 4 lists the files
generated by the MegaWizard Plug-In Manager for each custom
megafunction variation you generate.

Table 4. Files Generated by the MegaWizard Plug-In Manager (Part 1 of 2)

File Name Description

<output file>.bsf Symbol for the megafunction used in the Block Editor.

<output file>.cmp Component Declaration File.

<output file>.inc AHDL Include File for the module in the megafunction wrapper
file.

<output file>.tdf Megafunction wrapper file for instantiation in an AHDL design.

<output file>.vhd Megafunction wrapper file for instantiation in a VHDL design.

<output file>.v Megafunction wrapper file for instantiation in a Verilog HDL
design.

<output file>_bb.v Hollow-body or black box declaration of the module in the

megafunction wrapper file used in Verilog HDL designs to
specify port directions when using EDA synthesis tools.

<output file>_inst.tdf Sample AHDL instantiation of the subdesign in the
megafunction wrapper file.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 43

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

Table 4. Files Generated by the MegaWizard Plug-In Manager (Part 2 of 2)

File Name Description

<output file>_inst.vhd Sample VHDL instantiation of the entity in the megafunction
wrapper file.
<output file>_inst.v Sample Verilog HDL instantiation of the module in the

megafunction wrapper file.

[[5> Using the Stand-Alone MegaWizard Plug-In Manager

You can use the MegaWizard Plug-In Manager from outside the Quartus Il
software by typing the following command at a command prompt:

gqmegawiz ¢

Instantiating Megafunctions in the
Quartus 1l Software

You can instantiate Altera megafunctions and LPM functions in the
Quartus Il software through direct instantiation in the Block Editor, through
instantiation in HDL code (either by instantiating through the port and
parameter definition or by using the MegaWizard Plug-In Manager to
parameterize the megafunction and create a wrapper file), or through
inference.

Altera recommends that you use the MegaWizard Plug-In Manager to
instantiate megafunctions and create custom megafunction variations. The
wizard provides a graphical interface for customizing and parameterizing
megafunctions, and ensures that you set all megafunction parameters
correctly.

Instantiation in Verilog HDL & VHDL

You can use the MegaWizard Plug-In Manager to create a megafunction or
a custom megafunction variation. The MegaWizard Plug-In Manager then
creates a Verilog HDL or VHDL wrapper file that contains an instance of the
megafunction, which you can then use in your design. For VHDL
megafunctions, the MegaWizard Plug-In Manager also creates a
Component Declaration File.

44 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

Using the Port & Parameter Definition

You can instantiate the megafunction directly in your Verilog HDL or VHDL
design by calling the function like any other module or component. In
VHDL, you also need to use a Component Declaration.

Inferring Megafunctions

Quartus II Analysis & Synthesis automatically recognizes certain types of
HDL code and infers the appropriate megafunction. The Quartus Il software
uses inference because Altera megafunctions are optimized for Altera
devices, and performance may be better than standard HDL code. For some
architecture-specific features, such as RAM and DSP blocks, you must use
Altera megafunctions.

The Quartus II software maps the following logic to megafunctions during
synthesis:

Counters

Adders/Subtractors

Multipliers

Multiply-accumulators and multiply-adders
RAM

Shift registers

Instantiating Megafunctions in EDA
Tools

You can use Altera-provided megafunctions, LPM functions, and IP
functions in EDA design entry and synthesis tools. You can instantiate
megafunctions in EDA tools by creating a black box for the function, by
inference, or by using the clear box methodology.

Using the Black Box Methodology

You can use the MegaWizard Plug-In Manager to generate Verilog HDL or
VHDL wrapper files for megafunctions. For Verilog HDL designs, the
MegaWizard Plug-In Manager also generates a Verilog Design File that
contains a hollow-body declaration of the module, used to specify port
directions.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il u 45

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

The Verilog HDL or VHDL wrapper file contains the ports and parameters
for the megafunction, which you can use to instantiate the megafunction in
the top-level design file as well as a sample instantiation file and then direct
the EDA tool to treat the megafunction as a black box during synthesis.

The following steps describe the basic flow for using the MegaWizard Plug-
In Manager to create a black box for an Altera megafunction or LPM
function in EDA design entry and synthesis tools:

1. Use the MegaWizard Plug-In Manager to create and parameterize the
megafunction or LPM function.

2. Use the black box file or component declaration (along with the sample
instantiation file) generated by the MegaWizard Plug-In Manager to
instantiate the function in the EDA synthesis tool.

3. Perform synthesis and optimization of the design in the EDA synthesis
tool. The EDA synthesis tool treats the megafunction as a black box
during synthesis.

Instantiation by Inference

EDA synthesis tools automatically recognize certain types of HDL code and
infer the appropriate megafunction.You can directly instantiate memory
blocks (RAM and ROM), DSP blocks, shift registers, and some arithmetic
components in Verilog HDL or VHDL code. The EDA tool then maps the
logic to the appropriate Altera megafunction during synthesis.

Using the Clear Box Methodology

In the black box flow, an EDA synthesis tool treats Altera megafunctions and
LPM functions as black boxes. As a result, the EDA synthesis tool cannot
fully synthesize and optimize designs with Altera megafunctions, because
the tool does not have a full model or timing information for the function.
Using the clear box flow, you can use the MegaWizard Plug-In Manager to
create a fully synthesizeable Altera megafunction or LPM function for use
with EDA synthesis tools.

46 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
USING ALTERA MEGAFUNCTIONS

The following steps describe the basic flow for using clear box
megafunctions with EDA synthesis tools:

1. Use the MegaWizard Plug-In Manager to create and parameterize the
megafunction or LPM function. Make sure you turn on Generate a
Clearbox body in the MegaWizard Plug-In Manager.

2. Use the Verilog or VHDL design file generated by the MegaWizard
Plug-In Manager to instantiate the function in the EDA synthesis tool.

3. Perform synthesis and optimization of the design in the EDA synthesis
tool.

Using of the clear box methodology generally results in slower simulation
times in EDA simulation tools (but not the Quartus II Simulator), due to the
level of detail (timing information and device resources used) that is
included with a clear box megafunction or LPM function. In addition,
specific device details are included in the clear box megafunction or LPM
function, so that to use a different device for the design, the clear box
function needs to be regenerated for the new device.

“ .. Py For Information About Refer To

List of ports and parameters for a If you are using an IP function, refer to the
megafunction IP documentation. For Altera
megafunctions, refer to Quartus Il Help.

Using Altera-provided megafunctions “Overview: Creating & Instantiating Altera-
and LPM functions in EDA tools Provided Functions in Other EDA Tools” in
Quartus Il Help

Chapter 9, “Synplicity Synplify and Synplify
Pro Support,” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Chapter 10, “Mentor Graphics
LeonardoSpectrum Support,” in the
Quartus Il Handbook, vol. 1, on the Altera
web site

Chapter 11, “Mentor Graphics Precision RTL
Synthesis Support,” in the Quartus Il
Handbook, vol. 1, on the Altera web site

Using Altera-provided megafunctions Design Entry module in the Quartus Il
and LPM functions in the Quartus Il Tutorial
software

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 47

CHAPTER 2: DESIGN ENTRY
SPECIFYING INITIAL DESIGN CONSTRAINTS

“ .. - For Information About Refer To

Using the MegaWizard Plug-In “Overview: Using the MegaWizard Plug-In

Manager and Altera-provided Manager” in Quartus Il Help

megafunctions and LPM functions

MegaCore functions and OpenCore Application Note 343 (OpenCore Evaluation

Plus hardware evaluation feature of AMPP Megafunctions) on the Altera web
site

Application Note 320 (OpenCore Evaluation
of Megafunctions) on the Altera web site

Using IP Functional Simulation Models to
Verify Your System Design white paper on
the Altera web site

Specifying Initial Design
Constraints

Once you have created a project and your design, you can use the Settings
dialog box (Assignments menu), the Assignment Editor, and the Floorplan
Editor in the Quartus II software to specify your initial design constraints,
such as pin assignments, device options, logic options, and timing
constraints. You can import assignments using the Import Assignments
command (Assignments menu) or export assignments using the Export
command (File menu). You can also import assignments from other EDA
synthesis tools using Tcl commands or scripts. The Quartus II software also
provides the Compiler Settings wizard (Assignments menu) and Timing
wizard (Assignments menu) to assist in specifying initial design constraints.
Many of the settings available from the Assign command in the
MAX+PLUS II quick menu can be made in the Assignment Editor and
Settings dialog box.

48 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
SPECIFYING INITIAL DESIGN CONSTRAINTS

Using the Assignment Editor

The Assignment Editor is the interface for creating and editing node and
entity-level assignments in the Quartus II software. Assignments allow you
to specify various options and settings for the logic in your design, including
location, I/O standard, timing, logic option, parameter, simulation, and pin
assignments.

Using the Assignment Editor, you can select an assignment category; use the
Quartus II Node Finder to select specific nodes and entities to assign;
display information about specific assighments; and add, edit, or delete
assignments for selected nodes. You can also add comments to an
assignment, and you can view the settings and configuration file in which
the assignment appears.

The following steps illustrate the basic flow for using the Assignment Editor
to make assignments:

1. Open the Assignment Editor.
2. Select the appropriate category assignment in the Category bar.

3. Specify the appropriate node or entity in the Node Filter bar, or use the
Node Finder dialog box to find a specific node or entity.

4. Inthespreadsheet that displays the assignments for the current design,
add the appropriate assignment information.

The spreadsheet in the Assignment Editor provides applicable drop-down
lists or allows you to type assignment information. As you add, edit, and
remove assignments, the corresponding Tcl command appears in the
Messages window.

You can use the Export command (File menu) to export the data from the
Assignment Editor to a Tcl Script File (.tcl) or a Comma-Separated Value
File (.csv). You can also import assignments data from a CSV or text file
using the Import Assignments command (Project menuy).

When creating and editing assignments, the Quartus II software
dynamically validates the assignment information where possible. If an
assignment or assignment value is illegal, the Quartus II software does not
add or update the value, and instead reverts to the current value or does not
accept the value. When you view all assignments, the Assignment Editor

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il ®m 49

CHAPTER 2: DESIGN ENTRY
SPECIFYING INITIAL DESIGN CONSTRAINTS

shows all assignments created for the current project, but when you view
individual assignment categories, the Assignment Editor displays only the
assignments that are related to the specific category selected.

Figure 6. The Quartus Il Assignment Editor

4% Assignment Editor®

ks
= + Category: |.°.II
A + Mode Filter: Click the Node Filker buttan to view more options

j| ﬁ al = Pin | (b Tirning | * Logic Options |

assignments.,

5
=
=1
o
=l
o
o
o
=

=] This cell specifies the source name For point-to-paint assignments. Alkera recommends using the Node Finder to assign a source
name. This field is available only For point-to-point assignments. Use the Destination Mame {To) column For single-poink

Edit: b vl

To Assignment Name Yalue

- accel Global Signal Global Clock

<& auto_max:autals, .. |GElobal Signal Global Clock

D dir Decrease Input Delay to Input Regisker — [On
Decrease Input Delay o Input Regisker on

& auto_max:auka

Auko Packed Registers

<SNeW:=>

CENew=>

Using the Settings Dialog Box

You can use the Settings dialog box (Assignments menu) to specify
assignments and options for your project. You can set general project-wide
options and synthesis, fitting, simulation, and timing analysis options.

Using the Settings dialog box, you can perform the following types of tasks:

B Modify project settings: specify and view the current top-level entity
for project and revision information; add and remove files from the
project; specify custom user libraries; specify device options for
package, pin count, speed grade), and specify migration devices.

B Specify EDA tool settings: specify EDA tools for design entry/
synthesis, simulation, timing analysis, board-level verification, formal
verification, resynthesis, and related tool options.

50 m INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
SPECIFYING INITIAL DESIGN CONSTRAINTS

B Specify Analysis & Synthesis settings: project-wide settings for
Analysis & Synthesis, Verilog HDL and VHDL input settings, default
design parameters, and synthesis netlist optimizations options.

B Specify compilation process options: options for smart compilation,
preserving node names during compilation, and saving node-level
netlists.

B Specify fitting settings: timing-driven compilation options, Fitter
effort, project-wide Fitter logic options assignments, and physical
synthesis netlist optimizations.

B Specify timing analysis settings: default frequencies for the project or
define individual clock settings, delay requirements and path-cutting
options, and timing analysis reporting options.

B Specify Simulator settings: mode (functional or timing), source vector
file, simulation period, and simulation detection options.

B Specify software build settings: toolset directories, processor
architecture and software toolset, compiler, assembler, and linker
settings.

B Specify Design Assistant, SignalTap II, SignalProbe, and HardCopy
settings: turn on the Design Assistant and select rules; enable the
SignalTap® Il Logic Analyzer and specify SignalTap II File (.stp) name;
options for automatically routing SignalProbe™ signals and modifying
fitting results for the SignalProbe feature; and specify HardCopy
timing options and generate HardCopy files.

Importing Assignments

The Import Assignments command (Assignments menu) allows you to
import assignments from projects created in the Quartus II software or the
MAX+PLUS 1I software into a new or existing project in the Quartus II
software.

The Import Assignments dialog box allows you to specify the file that
contains the assignments to import and the specific types of assignments
(Assignment Categories) to import into the QSF for the current project. Click
Advanced in the Import Assignments dialog box to specify the nature of the
assignments to import, specify global or instance-level assignments to
import, and specify how the assignments affect the current design. You can

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 51

CHAPTER 2: DESIGN ENTRY
SPECIFYING INITIAL DESIGN CONSTRAINTS

52

use this dialog box to import CSV Files created with the Export command
(File menu) and can create a backup of the current QSF for the design before
importing assignments. See Figure 7.

Figure 7. Import Assignments Dialog Box

Import Assignments El

Specify the source and categories of assignments ta impart. Click LogicLock Impart File Assignments
to zelect LogicLock Impart File(z).

Azzsighment saurce .
Cateqgories...
|D:.-’qdesignsfchiptlipx’chiptrip.qsf lzl

{* File name:

~ | Advanced...

IV Copy existing assignments inta chiptipl. gsf bak before importing

Ok | Cancel |

You can use this command to import the MAX+PLUS II Assignment &
Configuration File, which contains MAX+PLUS II project assignments and
settings, into your Quartus II project. You can also use this command to
import settings and assignments from other projects created in the
Quartus II software into your current project. For example, you can use this
command to import pin assignments from a previous Quartus II project into
the current Quartus II project.

For more information on using the Import Assignments command to
import LogicLock™ region assignments, refer to “Saving Intermediate
Synthesis Results” on page 115 in Chapter 6, “Block-Based Design.”

Verifying Pin Assignments

The Quartus II software allows you to verify pin assignments—location,
I/0 bank and I/O standard assignments—with the Start > Start I/O
Assignment Analysis command (Processing menu). You can use this
command at any stage of the design process to verify the accuracy of the
assignments, allowing you to create your final pin-out faster. You do not
need design files to use this command, and can verify pin-outs before design
compilation.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 2: DESIGN ENTRY
DESIGN METHODOLOGIES & DESIGN PLANNING

Design Methodologies & Design
Planning

When you are creating a new design, it is important to consider the design
methodologies the Quartus II software offers. For example, the LogicLock
feature offers the ability to use top-down or bottom-up design
methodologies, and block-based design flows. You can use these design
flows with or without EDA design entry and synthesis tools.

Top-Down versus Bottom-Up Design
Methodologies

In the top-down design flow, there is only one output netlist for the entire
design, which allows you to perform optimization across design boundaries
and hierarchies for the entire design, and is often simpler to manage.

In the bottom-up design methodology, there are separate netlists for each
design module. This functionality allows you to compile each module
separately and apply different optimization techniques to each module.
Modifications to individual modules do not affect the optimizations to other
modules. The bottom-up design methodology also facilitates the reuse of
design modules in other designs.

Block-Based Design Flow

In the bottom-up block-based LogicLock design flow, you can design and
optimize each module independently, integrate all optimized modules in a
top-level design, and then verify the overall design. Each module has a
separate netlist, which can then be incorporated after synthesis and
optimization into the top-level design. Each module in the top-level design
does not affect the performance of the other modules. The general block-
based design flow concepts can be used in modular, hierarchical,
incremental, and team-based design flows.

You can use EDA design entry and synthesis tools in the block-based design
flow to design and synthesize individual modules, and then incorporate the
modules into a top-level design in the Quartus II software, or completely
design and synthesize a block-based design in EDA design entry and
synthesis tools.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 53

CHAPTER 2: DESIGN ENTRY
DESIGN METHODOLOGIES & DESIGN PLANNING

Design Partitioning

When creating a hierarchical design in the Quartus II software or in other
EDA tools, the design is partitioned into separate modules. Considerations
for the partitioning of a design during design planning include the
following:

Where to partition the design

The number of clock and I/O connections between partitions
Placement of state machines

Separation of timing-critical functions from noncritical functions
Limiting the critical path in hierarchical modules

Registering the inputs and outputs of individual modules using tri-
state drivers at the top level of the design hierarchy only

For more information on using LogicLock features and block-based design,
refer to “Chapter 6: Block-Based Design” on page 109.

“ ._ Py For Information About Refer To

Design planning and partitioning Chapter 6, “Design Recommendations for
Altera Devices” in the Quartus Il Handbook,
vol.1, on the Altera web site

54 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 3:

Introduction

Using Quartus Il Verilog HDL & VHDL
Integrated Synthesis

Using Other EDA Synthesis Tools
Controlling Analysis & Synthesis

Using the Design Assistant to Check
Design Reliability

Analyzing Synthesis Results with the
RTL Viewer

Analyzing Synthesis Results with the
Technology Map Viewer

56

57
60
63

67

68

70

Chapter
Three

Synthesis

v

CHAPTER 3: SYNTHESIS
INTRODUCTION

Introduction

- You can use the Quartus® I Analysis & Synthesis module of the Compiler to
analyze your design files and create the project database. Analysis &
Synthesis uses Quartus II Integrated Synthesis to synthesize your Verilog
Design Files (.v) or VHDL Design Files (.vhd). If you prefer, you can use
other EDA synthesis tools to synthesize your Verilog HDL or VHDL design
files, and then generate an EDIF netlist file (.edf) or a Verilog Quartus
Mapping File (.vqm) that can be used with the Quartus II software. Figure 1
shows the synthesis design flow.

Figure 1. Synthesis Design Flow

Library Mapping
Files (.Imf) & User
Libraries

VHDL Design Files (.vhd), D
Verilog HDL Design Files (.v), D
Text Design Files (.tdf) & Block é

Design Files (.bdf)

Quartus Il Analysis & I =
Synthesis —> E to Quartus Il

quartus_map Fitter

Compiler Database
Files (.rdb) & Report

EDA Synthesis Files (.rpt, .htm)
_ Tools Y
. o Quartus I I
Verilog HDL & EDIF netlist files (.edf) & Design Assistant Quartus
VHDL source design Verilog Quartus Mapping t d RTL Viewer
files (.v, .vhd) Files (.vqm) quartus_drc
Quartus Il
—> Technology
Map Viewer

You can start a full compilation in the Quartus II software, which includes
the Analysis & Synthesis module, or you can start Analysis & Synthesis
separately. The Quartus II software also allows you to perform an
Analysis & Elaboration without running Integrated Synthesis.

56 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
USING QUARTUS Il VERILOG HDL & VHDL INTEGRATED SYNTHESIS

[[Using the quartus_map executable

You can also run Analysis & Synthesis separately at the command prompt or in a
script by using the quartus_map executable. The quartus_map executable will
create a new project if it does not already exist.

The quartus_map executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_map executable, type one of the following
commands at the command prompt:

quartus_map -h ¢
quartus_map --help ¢
quartus_map --help=<topic name> '

Using Quartus Il Verilog HDL &
VHDL Integrated Synthesis

You can use Analysis & Synthesis to analyze and synthesize Verilog HDL
and VHDL designs. Analysis & Synthesis includes Quartus II Integrated
Synthesis, which fully supports the Verilog HDL and VHDL languages and
provides options to control the synthesis process.

Analysis & Synthesis supports the Verilog-1995 (IEEE Std. 1364-1995) and
Verilog-2001 (IEEE Std. 1364-2001) standards, and also supports the VHDL
1987 (IEEE Std. 1076-1987) and 1993 (IEEE Std. 1076-1993) standards. You
can select which standard to use; Analysis & Synthesis uses Verilog-2001
and VHDL 1993 by default. If you are using another EDA synthesis tool, you
can also specify a Library Mapping File (.Imf) that the Quartus II software
should use to map non—-Quartus II functions to Quartus II functions. You
can specify these and other options in the Verilog HDL Input and VHDL
Input pages, which are under Analysis & Synthesis Settings in the Settings
dialog box (Assignments menu). These pages are shown in Figure 2.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il u 57

CHAPTER 3: SYNTHESIS

USING QUARTUS

Il VERILOG HDL & VHDL INTEGRATED SYNTHESIS

Figure 2. Verilog HDL & VHDL Input Pages of Settings Dialog Box

Settings - filtref

3

WHOL Input
“erilog HOL Inpd
Drefault Paramety
Synthesis MNetlist
Fitter Settings
Timing Analyzer
Design Assistant
SignalT ap Il Logic A|
SighalProbe Settings
Sirnulator

Software Build Settir
HardCopy Settings

¥

5

Analpsiz & Synthesiz Settings

Category:

General VYerilog HDL Input
Files . :
Uzer Libraries Options for directly compiling or simulating Verilog HOL input flles. [Click on the EDA Tool Settings VBFI/Dg HDL
Dievice category to enter options for Yerilog HOL files generated by other ED tools.] Input Page
Timing Requirements & Options

+- EDA Tool Settings Werilog version VHDL /nput
Compilation Pracess Veilag1995 Page

* Veiilog-2001

Settings - filtref

Cateqgory:
General VHDL Input
Files
User Libraries Options for directly compiling or simulating%HOL input files. [Click on the EDA Tool Settings
Device category to enter options for WHOL files generated by other EDA taols.)

Timing Requirements & Options
ED& Tool Settings

Compilation Process

Analyzis & Sunthesis Settings

7

WHOL version
" WHDL 1987
& VHDL 1333

“erilog HOL Input
Drefault Parameters
Synthesis Metlist O ptimizations
Fitter Settings
Timing Analyzer
Design Assistant
SignalT ap Il Logic Analyzer
SighalProbe Settings
Sirnulator
Software Build Settings
HardCopy Settings

Library M apping File

File name:

]

¥

™ Show information messages describing LMF mapping during compilation

T

=]

Cancel

58 =

INTRODUCTION TO QUARTUS Il

Most Verilog HDL and VHDL designs will compile successfully in both
Quartus II Integrated Synthesis and in other EDA synthesis tools. If your
design instantiates Altera megafunctions, library of parameterized modules
(LPM) functions, or intellectual property (IP) megafunctions in a third-party
EDA tool, you need to use a hollow-body or black box file. When you are
instantiating megafunctions for Quartus II Integrated Synthesis, however,
you can instantiate the megafunction directly without using a black box file.
For more information about instantiating megafunctions, refer to

ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
USING QUARTUS Il VERILOG HDL & VHDL INTEGRATED SYNTHESIS

“Instantiating Megafunctions in the Quartus II Software” on page 44 and
“Instantiating Megafunctions in EDA Tools” on page 45 in Chapter 2,
“Design Entry.”

When you create your Verilog HDL and VHDL designs, you should add
them to the project. You can add the design files when creating a project by
using the New Project Wizard (File menu), or by using the Files page of the
Settings dialog box, or, if you edit the files in the Quartus II Text Editor, you
are prompted to add the file to the current project when you save it. When
you add files to the project, you should make sure you add them in the order
you want Integrated Synthesis to process them. For more information about
adding files to a project, refer to “Creating a Design” on page 36 in
Chapter 2, “Design Entry.”

Analysis & Synthesis builds a single project database that integrates all the
design files in a design entity or project hierarchy. The Quartus II software
uses this database for the remainder of project processing. Other Compiler
modules update the database until it contains the fully optimized project. In
the beginning, the database contains only the original netlists; at the end, it
contains a fully optimized, fitted project, which is used to create one or more
files for timing simulation, timing analysis, device programming, and so on.

As it creates the database, the Analysis stage of Analysis & Synthesis
examines the logical completeness and consistency of the project, and checks
for boundary connectivity and syntax errors.

Analysis & Synthesis also synthesizes and performs technology mapping on
the logic in the design entity or project’s files. It infers flipflops, latches, and
state machines from Verilog HDL and VHDL. It creates state assignments
for state machines and makes choices that will minimize the number of
resources used. In addition, it replaces operators, such as + or - with
modules from the Altera library of parameterized modules (LPM) functions,
which are optimized for Altera devices.

Analysis & Synthesis uses several algorithms to minimize gate count,
remove redundant logic, and utilize the device architecture as efficiently as
possible. You can customize synthesis by using logic option assignments.
Analysis & Synthesis also applies logic synthesis techniques to help
implement timing requirements for a project and optimize the design to
meet these requirements.

The Messages window and the Messages section of the Report window
display any messages Analysis & Synthesis generates. The Status window
records the time spent processing in Analysis & Synthesis during project
compilation.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il ®m 59

CHAPTER 3: SYNTHESIS
USING OTHER EDA SYNTHESIS TOOLS

For Information About Refer To

Verilog HDL constructs supported in “Quartus Il Verilog HDL Support” in

the Quartus Il software Quartus Il Help
VHDL constructs supported in the “Quartus Il VHDL Support” in Quartus Il
Quartus Il software Help

Using Quartus Il Integrated Synthesis Chapter 8, “Quartus Il Integrated
Synthesis,” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Using Other EDA Synthesis Tools

You can use other EDA synthesis tools to synthesize your Verilog HDL or
VHDL designs, and then generate EDIF netlist files or VQM Files that can be
used with the Quartus II software.

Altera provides libraries for use with many EDA synthesis tools. Altera also
provides NativeLink® support for many tools. NativeLink technology
facilitates the seamless transfer of information between the Quartus II
software and other EDA tools and allows you to run EDA tools
automatically from within the Quartus II graphical user interface.

If you have created assignments or constraints using other EDA tools, you
can use Tcl commands or scripts to import those constraints into the
Quartus II software with your design files. Many EDA tools generate an
assignment Tcl script automatically. Table 1 lists the Quartus II-supported
EDA synthesis software.

Table 1. Quartus lI-Supported EDA Synthesis Tools (Part 1 of 2)

Synthesis Tool Name

EDIF Netlist | VerilogQuartus | .. olink

File (.edf) F'i"l':':_'f,':l?') Support

Mentor Graphics v v
LeonardoSpectrum

Mentor Graphics Precision RTL v v
Synthesis

Synopsys De

sign Compiler v

60 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
USING OTHER EDA SYNTHESIS TOOLS

Table 1. Quartus lI-Supported EDA Synthesis Tools (Part 2 of 2)

; Verilog Quartus . .
Synthesis Tool Name El?illz ?:::g’t Mapping N;:'ve:;::k

. File (.vqm) PP
Synopsys Design Compiler v
FPGA
Synopsys FPGA Compiler Il v v
Synplicity Synplify v v v
Synplicity Synplify Pro v v

In the Design Entry & Synthesis page under EDA Tool Settings in the
Settings dialog box (Assignments menu), you can specify the EDA synthesis
tool you will use, and also specify whether an EDA tool that has NativeLink
support should be run automatically within the Quartus II software as part
of full compilation. The Design Entry & Synthesis page also allows you to
specify other options for EDA synthesis tools. See Figure 3.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 61

CHAPTER 3: SYNTHESIS

USING OTHER EDA SYNTHESIS TOOLS

Figure 3. Design Entry & Synthesis Page of Settings Dialog Box

Settings - filtref

Categon:

General
Files
Uszer Libraries
Device
Tirming R equirements & Optiohs
—|- EDa& T ool Settings
Degign Entry & Synthesiz
Simulation
Timing Analysiz
Board-Level
Fomal Werification
Fiespnthesiz
Compilation Process
Analysiz & Synthesis Settings
Fitter Settings
Tirning Analyzer
Design Assistant
SignalT ap Il Logic Analyzer
SighalProbe Settings
Simulator
Software Build Settings
HardCopy Settings

+

+

+

Design Entry & Synthesis

X

Specify options for processing input files created by ather EDA tools.

Tool name: |Synplif_l,l Pro

[
Format: |Verilog HOL ﬂ

[V Run this tool automatically to syrthesize the curent design

Signal names

o |

GND: |

Library Mapping File

File rarme: |S.'r'n|3|Ct.'r'-|mf

I™ Show information messages descrbing LMF mapping during compilation

-

Reset

oK | Cancel |

If you have specified an EDA synthesis tool in the Design Entry & Synthesis
page, you can run that tool from within the Quartus II software by choosing
Start > Start EDA Synthesis (Processing menu). Many EDA tools also allow
you to run the Quartus II software from within that EDA tool’s graphical

user interface. Refer to your EDA tool documentation for more information.

62 m INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
CONTROLLING ANALYSIS & SYNTHESIS

“ ._ Py For Information About Refer To

Using Mentor Graphics Chapter 10, “Mentor Graphics

LeonardoSpectrum software LeonardoSpectrum Support” in the
Quartus Il Handbook, vol. 1, on the Altera
web site

Using Mentor Graphics Precision RTL Chapter 11, “Mentor Graphics Precision RTL
Synthesis software Synthesis Support” in the Quartus Il
Handbook, vol. 1, on the Altera web site

Using Synplicity Synplify software Chapter 9, “Synplicity Synplify and Synplify
Pro Support” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Using Synopsys FPGA Compiler Il Chapter 12, “Synopsys FPGA Compiler Il

software BLIS and the Quartus Il LogicLock Design
Flow” in the Quartus Il Handbook, vol. 1, on
the Altera web site

Using the Synopsys DC FPGA software Chapter 13, “Synopsys Design Compiler
FPGA Support” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Controlling Analysis & Synthesis

You can use the following options and features to control Quartus II
Analysis & Synthesis:

m Compiler directives and attributes
B Quartus II logic options
B Quartus II synthesis netlist optimization options

Using Compiler Directives and
Attributes

The Quartus II software supports compiler directives, also called pragmas.
You can include compiler directives, such as translate_on and
translate_off, in Verilog HDL or VHDL code as comments. These
directives are not Verilog HDL or VHDL commands; however, synthesis
tools use them to drive the synthesis process in a particular manner. Other
tools, such as simulators, ignore these directives and treat them as
comments.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 63

CHAPTER 3: SYNTHESIS
CONTROLLING ANALYSIS & SYNTHESIS

You can also specify attributes, which are sometimes known as pragmas or
directives, that drive the synthesis process for a a specific design element.
Some attributes are also available as Quartus II logic options.

For Information About Refer To

Using compiler directives and “Verilog HDL Language Directives &
attributes Attributes” and “VHDL Language

Directives & Attributes” in Quartus Il Help
Using compiler directives and Chapter 8, “Quartus Il Integrated
attributes with Quartus Il Integrated Synthesis,” in the Quartus Il Handbook,
Synthesis vol. 1, on the Altera web site

Using Quartus Il Logic Options

Quartus II logic options allow you to set attributes without editing the
source code. You can assign individual Quartus II logic options in the
Assignment Editor, and can specify global Analysis & Synthesis logic
options for the project in the Analysis & Synthesis Settings page of the
Settings dialog box (Assignments menu). See Figure 4.

64 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 3: SYNTHESIS

CONTROLLING ANALYSIS & SYNTHESIS

Figure 4. Analysis & Synthesis Settings Page of Settings Dialog Box

Settings - filtref

Category:

General
Files
User Libraries
Device
Timing R equirements & Optiots
+- EDA Toal Settings
Compilation Process
+- Analyziz & Synthesiz Settings
+- Fitter Settings
Timing Analyzer
Design Agsistant
SignalTap Il Logic Analyzer
SignalProbe Settings
Simulator
+- Software Build Settings
HardCopy Settings

Analyziz & Synthesis Settings

Specify optiohs for ahalysiz & synthesiz. Mote: The availability of some optioh: depends on the

current device family.

Optimization Technigue
+ Speed

" Balanced

" Area

[Create debugging nodes for IP cores
v

¥ Auto ROM Replacemant

¥ Auto BAM Replacemsnt

7

Auto Global Optiong (Mae Devices Only)

v Auto Oper-Drain Fing

v Auto Shitt Register Replacement
v Power-Up Don't Care

X

[

State Machine Processing: |Aut0

[

Riestructure Multiplexers: |Aut0

Mare Settings...

Diescription:

[~

Specifies the overall optimization goal for Analysis & Synthesis: attempt to maximize
performance, minimize logic uzage, or balance high performance with minimal logic usage.

ak | Cancel |

The Quartus II logic options that are available on the Analysis & Synthesis
Settings page allow you to specify that the Compiler should optimize for
speed or area, or perform a “balanced” optimization, which attempts to
achieve the best combination of speed and area. It also provides many other
options, such as options that control the logic level for power-up, the
removal of duplicate or redundant logic, the replacement of appropriate
logic with DSP Blocks, RAM, ROM, open-drain pins, the encoding style for
state machines, and many other options that affect Analysis & Synthesis.

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il m 65

CHAPTER 3: SYNTHESIS
CONTROLLING ANALYSIS & SYNTHESIS

For Information About Refer To

Using Quartus Il logic options to “Logic Options,” “Creating, Editing, and

control synthesis Deleting Assignments,” and “Specifying
Settings for Default Logic Options” in
Quartus Il Help

Creating a logic option assignment Compilation module in the Quartus Il
Tutorial

Using Quartus Il synthesis options and Chapter 8, “Quartus Il Integrated
logic options that affect synthesis Synthesis,” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Using Quartus Il Synthesis Netlist
Optimization Options

Quartus II synthesis optimization options allow you to set options for
optimizing the netlist during synthesis for many of the Altera device
families. These optimization options are in addition to the optimization that
occurs during a standard compilation, and occur during the Analysis &
Synthesis stage of a full compilation. These optimizations make changes to
your synthesis netlist that are generally beneficial for area and speed. The
Synthesis Netlist Optimizations page under Analysis & Synthesis
Settings in the Settings dialog box (Assignments menu) allows you to
specify netlist optimization options, which include the following synthesis
optimization options:

B Perform WYSIWYG primitive resynthesis
B Perform gate-level register retiming
m Allow register retiming to trade off Tsu/Tco with Fmax

For more information about synthesis netlist optimization options, refer to
“Using Netlist Optimizations to Achieve Timing Closure” on page 143 in
Chapter 8, “Timing Closure.”

For Information About Refer To

Using Quartus Il synthesis and netlist Chapter 8, “Netlist Optimizations &

optimization options Physical Synthesis” and Chapter 6, “Design
Optimization for Altera Devices” in the
Quartus Il Handbook, vol. 2 on the Altera
web site.

66 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
USING THE DESIGN ASSISTANT TO CHECK DESIGN RELIABILITY

Using the Design Assistant to Check
Design Reliability

The Quartus II Design Assistant allows you to check the reliability of your
design, based on a set of design rules. The Design Assistant is especially
useful for checking the reliability of a design before migrating it for
HardCopy™ devices. The Design Assistant page of the Settings dialog box
4 (Assignments menu), allows you to specify which design reliability
guidelines you want to use when checking your design. See Figure 5.

Figure 5. Design Assistant Page of Settings Dialog Box

Settings - filtref rz|

Categary:
General Design Assistant
Filez
Uszer Libraries Specify optiohs for the Design Assistant, which checks a design for potential design problems. Mate:
Device The availability of these options depends on the current device family.
Tirming Requirernetts & Optiong

+1- EDA Tool Settings [Fun Design Assistant during compilation

Compilation Process
+- Analyziz & Synthesis Settings
+)- Fitter Settings = ; ant configuration rule names ~
Timing dnalyzer - Clack 7
Diezign Azsigtant
SignalT ap |l Logic Analyzer
SignalProbe Settings

Select the rules you want the Design Assistant to apply to the project.

Combinational logic uzed as clock signal should be implemented according ta
Irvveter should nat be implemented in logic cel
Input clock pin hould fan out to only one et of combinational logic used as ¢

¥ g:;::::; Build Settings Clock zignal zource should diive only input clock ports
HardCopy Settings Clock zignal should be a global zignal
Clock signal source should nat drive registers that are iggered by different cle
+ Fleset

+ Tiring closure
+ Mon-synchronous design structure

+ Signal race
+ Asynchronous clock domains =

+ HardCopy rles v

<

T

|

Ok | Cancel

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il ®m 67

CHAPTER 3: SYNTHESIS
ANALYZING SYNTHESIS RESULTS WITH THE RTL VIEWER

[[& Using the quartus_drc executable

You can also run the Design Assistant separately at the command prompt or in a
script by using the quartus_drc executable. You must run the Quartus Il Fitter
executable quartus_fit before running the Design Assistant.

The quartus_drc executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_drc executable, type one of the following
commands at the command prompt:

quartus_drc -h ¢
quartus_drc -help ¢
quartus_drc --help=<topic name> '

You can also improve design optimization by following good synchronous
design practices and by following Quartus II coding style guidelines.

« ._ Py For Information About Refer To

Using the Quartus Il Design Assistant ~ “Analyzing Designs with the Design
Assistant” and “Overview: Using the Design
Assistant” in Quartus Il Help

Using Quartus Il synthesis options, Chapter 6, “Design Recommendations for

following synchronous design Altera Devices,” Chapter 7, “Recommended

practices, and following coding style HDL Coding Styles” and Chapter 8,

guidelines “Quartus Il Integrated Synthesis,” in the
Quartus Il Handbook, vol. 1, on the Altera
web site

“AHDL, VHDL, and Verilog HDL Style Guide”
in Quartus Il Help

Analyzing Synthesis Results with
the RTL Viewer

The Quartus II RTL Viewer provides a gate-level schematic view of your
design. To run the RTL Viewer for a Quartus II project, you must first
analyze the design by choosing Start > Start Analysis & Elaboration
(Processing menu). You may also perform Analysis & Synthesis or perform
a full compilation, because those processes include the Analysis &

68 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
ANALYZING SYNTHESIS RESULTS WITH THE RTL VIEWER

Elaboration stage of the compilation flow. After a successful Analysis &
Elaboration has been performed, you can display the RTL Viewer window
by choosing RTL Viewer (Tools menu). In addition to the schematic view,
the RTL Viewer has a hierarchy list, which lists the instances, primitives,
pins, and nets for the entire design netlist. See Figure 6.

Figure 6. RTL Viewer Window

& RTL Viewen: filtref | fittref | Page 1 of 1 M=1E9
filtref ~
—I- Instances
+- acciinsts
+- hvalues:insk2 filtref | Page 1 of 1
+]- multsinsté
+|- skake_m:inst1
+. Fa.nps:lnst taps:
=I- Primitives
insk4 state_m:inst1 ok
+-insts[7..0] wewt
—| Pins o[2K E] G
clk newt = newt Tk ar.
clkxz resat e reset selfl.g ety
+-d[7..0] :
Fallows
resak
reset aF.o > _ fwaluy
+-wn_out[7..0]
y tWalicl sei01.0
+- Wets
instd
FRE
|0 of w
< *

The RTL viewer displays the Analysis & Elaboration results for Verilog HDL
or VHDL designs, and AHDL Text Design Files (.tdf), Block Design

Files (.bdf), Graphic Design Files (.gdf), or files that are synthesized within
the Quartus II software. For VQM Files or EDIF netlist files that were
generated from other EDA synthesis tools, the RTL Viewer displays the
hierarchy for the atom representations of WYSIWYG primitives.

You can select one or more items in the hierarchy list to highlight in the
schematic view, and vice versa. The RTL Viewer allows you to adjust the
view or focus by zooming in and out to see different levels of detail,
displaying tooltip information, searching through the RTL Viewer for a
specific name, moving up or down in the hierarchy, or going to the source
that feeds the selected net. If you want to adjust the fan-in or fan-out display,
you can expand it or collapse it. You can also select nodes in the RTL Viewer

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il ®m 69

CHAPTER 3: SYNTHESIS
ANALYZING SYNTHESIS RESULTS WITH THE TECHNOLOGY MAP VIEWER

and locate them in the design file, the Timing Closure floorplan, Last
Compilation floorplan, Assignment Editor, Chip Editor, or Resource
Property Editor, depending on which locations are available for that node.

If a design is large, the RTL viewer partitions it into multiple pages for
display. The RTL Viewer page of the Options dialog box (Tools menu)
allows you to specify options that control how much of the design the RTL
Viewer displays on each page. You can navigate through pages in the RTL
Viewer by using the Next Page and Previous Page buttons or by using the
Go To command (Edit menu).

The Filter command (right button pop-up menu) allows you to filter the
view to show the sources, destinations, of both sources and destinations of
the selected node(s) or net(s) or the paths and nodes between two selected
nodes. Each filter you choose creates a new filtered page in the RTL Viewer;
you can then navigate through the filtered pages and the original page of the
design with the Forward and Back buttons.

If you want to export a copy of an RTL view, you can export a copy in JPEG
or bitmap file format. You can also save a copy to the Clipboard for use in
other graphics or drawing programs.

If you decide to make changes to your design after you have analyzed it with
the RTL Viewer, you should perform Analysis & Elaboration again so you
can analyze the updated design in the RTL Viewer.

For Information About Refer To

Using the Quartus Il RTL Viewer Chapter 14, “Analyzing Designs with the
Quartus Il RTL Viewer and Technology Map
Viewer” in the Quartus Il Handbook, vol. 1,
on the Altera web site

Analyzing Synthesis Results with
the Technology Map Viewer

The Quartus Il Technology Map Viewer provides a low-level, or atom-level,
technology-specific schematic representation of a design. To run the
Technology Map Viewer for a Quartus II project, you must first perform
Analysis & Synthesis or perform a full compilation. After a successful

70 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 3: SYNTHESIS
ANALYZING SYNTHESIS RESULTS WITH THE TECHNOLOGY MAP VIEWER

Analysis & Synthesis has been performed, you can display the Technology
Map Viewer window by choosing Technology Map Viewer (Tools menu).
The Technology Map Viewer includes a schematic view, and also includes a
hierarchy list, which lists the instances, primitives, pins, and nets for the
entire design netlist. See Figure 7.

Figure 7. Technology Map Viewer Window

- Technology Map Viewer: filtref, | filtref | Page 1 of 1

filtref

—I- Instances
+-acciinst3

mulk:inska

skake_miir

taps:insk

+1- Prirniki

+-Pins

+-Mets

+1- Primitives

+- Pins

+- Mets

1] [[+

filtref | Page 1 of 1 |

sEE_mt e
o) f——
auT
ot f——
oauTZ| f——y M1
k[w1 ol || . oty p———o
regel[[LH -_— na oUTH f——o
(L] —- W3 - e YT [Se—
0uTH| NS il
] oumf ——
L i
2 T |-
] e OUTH| fom
L e 0Ty f—
R > i Ut f—
d['] Ij "z OUTIH
Ll — " outiy f——o
R ouTis f——
an ———
. b’

In the Technology Map Viewer, you can select one or more items in the
hierarchy list to highlight in the schematic view, and vice versa. The
Technology Map Viewer allows you to navigate the view in much the same
way as the RTL Viewer; see “Analyzing Synthesis Results with the RTL
Viewer” on page 68.

After performing Timing Analysis or performing a full compilation that
includes Timing Analysis, you can also use the Technology Map Viewer to
view the nodes that make up the timing path, including information about
total delay and individual node delay. See “Using the Technology Map
Viewer” on page 131 in Chapter 7, “Timing Analysis.”

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il ®m 71

CHAPTER 3: SYNTHESIS
ANALYZING SYNTHESIS RESULTS WITH THE TECHNOLOGY MAP VIEWER

“ ._ Py For Information About Refer To

Using the Quartus Il Technology Map Chapter 14, “Analyzing Designs with the

Viewer Quartus Il RTL Viewer and Technology Map
Viewer” in the Quartus Il Handbook, vol. 1,
on the Altera web site

72 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 4:

Introduction
Simulating Designs with EDA Tools

Simulating Designs with the Quartus Il
Simulator

Simulating Excalibur Designs

74
75

81
84

Chapter
Four

Simulation

s

[N

CHAPTER 4: SIMULATION
INTRODUCTION

Introduction

You can perform functional and timing simulation of your design by using
EDA simulation tools or the Quartus® II Simulator.

The Quartus II software provides the following features for performing
simulation of designs in EDA simulation tools:

NativeLink® integration with EDA simulation tools
Generation of output netlist files
Functional and timing simulation libraries
PowerGauge™ power estimation
Generation of test bench template and memory initialization files

Figure 1 shows the simulation flow with EDA simulation tools and the

Quartus II Simulator.

Figure 1. Simulation Flow

Quartus Il Simulator
quartus_sim

Waveform files

Test bench
files

from Quartus Il
Fitter

Quartus Il
EDA Netlist Writer
quartus_eda

:

Verilog Output Files (.vo),
VHDL Output Files (.vho),
Standard Delay Format
Output Files (.sdf) &

test bench files (.vt, .vht)

Quartus Il
Waveform Editor

EDA
Simulation Tool
(Functional)

A

Verilog Output
Files, VHDL

Output Files &
test bench files

A

D
D
g

Functional
simulation
libraries

74 m INTRODUCTION TO QUARTUS Il

EDA
Simulation Tool
(Timing)

A

=

Timing simulation
libraries

ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH EDA TOOLS

Simulating Designs with EDA Tools

The EDA Netlist Writer module of the Quartus II software generates VHDL
Output Files (.vho) and Verilog Output Files (.vo) for performing functional
or timing simulation and Standard Delay Format Output Files (.sdo) that are
required for performing timing simulation with EDA simulation tools. The
Quartus II software generates SDF Output Files in Standard Delay Format
version 2.1. The EDA Netlist Writer places simulation output files in a tool-
specific directory under the current project directory.

In addition, the Quartus II software offers seamless integration for timing
simulation with EDA simulation tools through the NativeLink feature. The
NativeLink feature allows the Quartus II software to pass information to
EDA simulation tools, and includes the ability to launch EDA simulation
tools from within the Quartus II software.

Table 1 lists which EDA simulation tools are supported by the NativeLink
feature.

Table 1. Quartus lI-Supported EDA Simulation Tools

Simulation NativeLink
Tool Name Support
Cadence Verilog-XL
Cadence NC-Verilog v
Cadence NC-VHDL v
Model Technology™ ModelSim® v
Model Technology ModelSim-Altera v
Synopsys Scirocco v
Synopsys VCS
Synopsys VSS

[The ModelSim-Altera Software

The Model Technology ModelSim-Altera software is included in Altera® design
software subscriptions for behavioral simulation and HDL test bench support.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il u 75

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WiITH EDA TooLs

Specifying EDA Simulation Tool

Settings

You can select an EDA simulation tool in the New Project Wizard (File
menu) when you create a new project, or in the Simulation page of the
Settings dialog box (Assignments menu). The Simulation page allows you
to select a simulation tool and specify options for the generation of Verilog
and VHDL output files and the corresponding SDF Output File. Figure 2

shows the Simulation page of the Settings dialog box.

Figure 2. Simulation Page

Settings - chiptrip1

Categary:
Files
User Libraries Specify options far generating output files far use with other EDA, tools.
Device

Timing Fequirements & Options
= ED& Tool Settings
Design Entry & Synthesis

Tool name: |M0del5im [WHDL output from Guartus 1]

™ Run this tool automatically after compilation

Timing Analysiz

Compilation Process
Analpziz & Synthesis Settings
Fitter Settings

Timing Analyzer

Diesign Assistant

SignalTap Il Logic Analyzer

SignalProbe Settings
Simulatar [Maintain hierarchy

™ Truncate long higrarchy paths

5

[Flatten buses into individual nodes

¥

™ Output Excalibur stripe as a single module
™ Generate Power Input File

[Bring out device-wide setfieset signals as ports

5

™ Generate netlist for functional simulation only

Moare Settings...

Software Buld Settings
HardCopy Settings

- |

Board-Lewvel :l
Formal Yerification ¥ Map ilegal YHDL characters [this option creates WHOL 1987-compliant names)
Resynthesiz -

Beset

X

=]

Cancel |

76 m INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH EDA TOOLS

Generating Simulation Output Files

You can run the EDA Netlist Writer module to generate Verilog Output Files
and VHDL Output Files by specifying EDA tool settings and compiling the
design. If you have already compiled a design in the Quartus II software,
you can specify different simulation output settings in the Quartus II
software (for example, a different simulation tool) and then regenerate the
Verilog Output Files or VHDL Output Files by using the Start > Start EDA
Netlist Writer command (Processing menu). If you are using the NativeLink
feature, you can also run a simulation after an initial compilation by using
the Run EDA Simulation Tool command (Tools menu).

[[5> Using the quartus_eda executable

You can also run the EDA Netlist Writer separately at the command prompt or in a
script by using the quartus_eda executable.

The quartus_eda executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_eda executable, type one of the following
commands at the command prompt:

quartus_eda -h ¢
quartus_eda --help ¢
quartus_eda --help=<topic name> '

The Quartus II software also allows you to generate the following types of
output files for use in performing functional and timing simulation in EDA
simulation tools:

B Power Estimation Data: You can use EDA simulation tools to perform
a simulation that includes power estimation data. You can direct the
Quartus II software to include power estimation data for the design in
the Verilog HDL or VHDL output file. The EDA simulation tool
generates a Power Input File (.pwf) that you can use in the Quartus II
software to estimate the power consumption of a design.

B Test Bench Files: You can create Verilog Test Bench Files (.vt) and
VHDL Test Bench Files (.vht) from a Vector Waveform File (.vwf) in the
Quartus II Waveform Editor, using the Export command (File menu).
Verilog HDL and VHDL Test Bench Files are test bench template files
that contain an instantiation of the top-level design file and test vectors

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il u 77

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH EDA ToOLS

from the Vector Waveform File. You can also generate self-checking test
bench files if you specify the expected values in the Vector Waveform
File.

B Memory Initialization Files: You can use the Quartus II Memory
Editor to enter the initial contents of a memory block, for example,
content-addressable memory (CAM), RAM, or ROM, in a Memory
Initialization File (.mif) or a Hexadecimal (Intel-Format) File (.hex).
You can then export the memory contents as a RAM Initialization
File (.rif) for use in functional simulation with EDA simulation tools.

EDA Simulation Flow

Using the NativeLink feature, you can direct the Quartus II software to
compile a design, generate the appropriate output files, and then
automatically perform the simulation using EDA simulation tools.
Alternatively, you can run EDA simulation tools manually before
compilation (functional simulation) or after compilation (timing simulation)
in the Quartus II software.

Functional Simulation Flow

You can perform a functional or behavioral simulation at any point in your
design flow. The following steps describe the basic flow needed to perform
a functional simulation of a design using an EDA simulation tool. Refer to
Quartus II Help for more information on specific EDA simulation tools. To
perform a functional simulation using EDA simulation tools:

1. Set up the project in the EDA simulation tool.

2. Create a working library.

3. Compile the appropriate functional simulation libraries with the EDA
simulation tool.

4. Compile the design files and test bench files with the EDA simulation
tool.

5. Perform the simulation with the EDA simulation tool.

78 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH EDA TOOLS

NativelLink Simulation Flow

You can use the NativeLink feature to perform the steps to setup and run an
EDA simulation tool automatically from within the Quartus Il software. The
following steps describe the basic flow for using EDA simulation tools with
the NativeLink feature:

1. Specify EDA tool settings in the Quartus I software, either through the
Settings dialog box (Assignments menu), or during project setup,
using the New Project Wizard (File menu).

2. Turn on Run this tool automatically after compilation when
specifying EDA tool settings.

3. Compile the design in the Quartus I software. The Quartus II software
performs the compilation, generates the Verilog HDL or VHDL output
files and corresponding SDF Output Files (if you are performing a
timing simulation), and launches the simulation tool. The Quartus II
software directs the simulation tool to create a working library; compile
or map to the appropriate libraries, design files, and test bench files; set
up the simulation environment; and run the simulation.

Manual Timing Simulation Flow

If you want more control over the simulation, you can generate the
Verilog HDL or VHDL output files and corresponding SDF Output File in
the Quartus II software, and then manually launch the simulation tool to
perform the simulation. The following steps describe the basic flow needed
to perform a timing simulation of a Quartus II design using an EDA
simulation tool. Refer to Quartus II Help for more information on specific
EDA simulation tools.

1. Specify EDA tool settings in the Quartus II software, either through the
Settings dialog box (Assignments menu), or during project setup,

using the New Project Wizard (File menu).

2. Compile the design in the Quartus II software to generate the output
netlist files. The Quartus II software places the files in a tool-specific
directory.

3. Launch the EDA simulation tool.

4. Set up the project and a working directory with the EDA simulation
tool.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il ®m 79

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH EDA TooLS

5. Compile or map to the timing simulation libraries, and compile the
design and test bench files with the EDA simulation tool.

6. Perform the simulation with the EDA simulation tool.

Simulation Libraries

Altera provides functional simulation libraries for designs that contain
Altera-specific components, and atom-based timing simulation libraries for
designs compiled in the Quartus II software. You can use these libraries to
perform functional or timing simulation of any design with Altera-specific
components in EDA simulation tools that are supported by the Quartus II
software. Additionally, Altera provides pre-compiled functional and timing
simulation libraries for simulation in the ModelSim-Altera software.

Altera provides functional simulation libraries for designs that use Altera
megafunctions and standard library of parameterized modules (LPM)
functions. Altera also provides pre-compiled versions of the altera_mf and
220model libraries for simulation in the ModelSim software. Table 2 shows
the functional simulation libraries for use with EDA simulation tools.

Table 2. Functional Simulation Libraries

Library Name Description

220model.v Simulation models for LPM functions (version 2 2 0)
220model.vhd

220model_87.vhd

220pack.vhd VHDL Component Declarations for 220model.vhd
altera_mf.v Simulation models and VHDL Component Declarations
altera_mf.vhd for Altera-specific megafunctions

altera_mf_87.vhd
altera_mf_components.vhd

In the Quartus II software, the information for specific device architecture
entities and Altera-specific megafunctions is located in postrouting atom-
based timing simulation libraries. The timing simulation library files differ
based on device family and whether you are using Verilog Output Files or
VHDL Output Files. For VHDL designs, Altera provides VHDL Component
Declaration files for designs with Altera-specific megafunctions.

80 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH THE QUARTUS Il SIMULATOR

“ ._ Py For Information About Refer To

Timing Simulation libraries “Altera Postrouting Libraries” in Quartus I
Help
Functional Simulation libraries “Altera Functional Simulation Libraries” in

Quartus Il Help

Performing simulation using the Chapter 1, “Mentor Graphics ModelSim
ModelSim or ModelSim-Altera software Support” in the Quartus Il Handbook,
vol. 3, on the Altera web site

Performing simulation with the VCS Chapter 2, “Synopsys VCS Support” in the
software Quartus Il Handbook, vol. 3, on the Altera
web site

Performing simulation with the NC-Sim Chapter 3, “Cadence NC-Sim Support” in the
software Quartus Il Handbook, vol. 3, on the Altera
web site

Simulating Designs with the
Quartus Il Simulator

You can use the Quartus II Simulator to simulate any design in a project.
Depending on the type of information you need, you can perform a
') functional simulation to test the logical operation of your design, or you can
= perform a timing simulation to test both the logical operation and the worst-
-I_m_ case timing for the design in the target device.

The Quartus II software allows you to simulate an entire design, or to
simulate any part of a design. You can designate any design entity in a
project as the top-level design entity and simulate the top-level entity and all
of its subordinate design entities.

You can specify the type of simulation that should be performed, the time
period covered by the simulation, the source of vector stimuli, and other
simulation options in the Simulator page of the Settings dialog box
(Assignments menu), using the Simulator Settings Wizard (Assignments
menu), or using the Simulator Tool window (Tools menu).

Before starting a simulation, you must generate the appropriate simulation
netlist by either compiling the design for timing simulation or choosing the
Generate Functional Simulation Netlist command (Processing menu) for
functional simulation. In addition, you must create and specify a vector

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 81

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH THE QUARTUS Il SIMULATOR

source file as the source of simulation input vectors. The Simulator uses the
input vectors contained in the vector source file to simulate the output
signals that a programmed device would produce under the same
conditions.

The following steps describe the basic flow for performing either a
functional or timing simulation in the Quartus II software:

1. Specify Simulator settings.

2. If you are performing a functional simulation, choose the Generate
Functional Simulation Netlist command. If you are performing a
timing simulation, compile the design.

3. Create and specify a vector source file.

4. Run the simulation using the Start > Start Simulation command
(Processing menu), the Simulator Tool window, or the quartus_sim
executable.

The Status window shows the progress of a simulation and the processing
time. The Summary Section section of the Report window shows the
simulation results.

[[& Using the quartus_sim executable

You can also run the Simulator separately at the command prompt or in a script by
using the quartus_sim executable.

The quartus_sim executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_sim executable, type one of the following
commands at the command prompt:

quartus_sim -h ¢

quartus_sim --help ¢
quartus_sim --help=<topic name> ¢

82 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING DESIGNS WITH THE QUARTUS Il SIMULATOR

Creating Waveform Files

The Quartus II Waveform Editor allows you to create and edit input vectors
for simulation in waveform or text format. Using the Waveform Editor, you
can add input vectors to the waveform file that describe the behavior of the
logic in your design. See Figure 3.

The Quartus II software supports waveform files in the Vector Waveform
File (.vwf), Vector Table Output File (.tbl), Vector File (.vec), and Simulator
Channel File (.scf) formats. You cannot edit a Simulator Channel File or
Vector File in the Waveform Editor, but can save it as a Vector Waveform
File.

Figure 3. The Quartus Il Waveform Editor

B! fir. vwf (=129
Master Time Bar: Ops 4| +| Pointer: 865 ns Interval: 8.65 ns Start: End:
vt | P 1000 200 s |
Ops =
i
- clk BO | |
| ke R N S o I T
[d B[76
E newt B0
> reset EO
EIr X
| | fallow B
| B own_ow | BREK P
< >

Performing PowerGauge Power
Estimation

The Quartus Il software allows you to estimate the power consumed by the
current design during timing simulation. You can direct the Simulator to
calculate and report in milliwatts (mW) the internal power, I/O pin power,
and total power consumed by the design during the simulation period. You
can view the results of the PowerGauge power estimation in the Report
window. The Quartus II software also supports web-based power
estimation for some devices.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 83

CHAPTER 4: SIMULATION
SIMULATING EXCALIBUR DESIGNS

Using the Simulator Tool

You can also use the Simulator Tool command (Tools menu) to set
Simulator settings, as well as start or stop the Simulator and open the
simulation waveform for the current project. The Simulator Tool window is
similar in purpose to the MAX+PLUS II Simulator. To perform a simulation,
you must first generate a simulation netlist by using the

Generate Functional Simulation Netlist button in the Simulator Tool for
functional simulation or by compiling the design if you are performing a
timing simulation. Figure 4 shows the Simulator Tool window.

Figure 4. Simulator Tool Window

=, Simulator, Tool

Simulation mode: | Functional | Generate Functional Simulation Metlist |

Simulation input: |D:Jqdesignsa’fir_filten"fir.vwf

Simulation period

& Run simulation until all vectar stimuli are used

" End simulation at:

Simulation options

v Automatically add ping to simulation output waveforms
[Check outputs

—

r EI [

[~ Dwvenwite simulation input file with simulation results

00:00:03

1?1 Start ?I-E} Open @ Feport

Simulating Excalibur Designs

™

You can perform a functional simulation of an Excalibur™ device with the
Quartus II Simulator using the bus functional model, or you can use EDA
simulation tools to perform a functional or timing simulation of an Excalibur
device using either the bus functional model or the full-stripe model. You

84 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING EXCALIBUR DESIGNS

can also use EDA simulation tools and software debuggers to perform
functional, timing, and hardware co-simulation with the Excalibur Stripe
Simulator (ESS) model.

Simulating Excalibur Designs in the
Quartus Il Software

The bus functional model emulates the behavior of the AMBA™ high-
performance bus (AHB) in the Excalibur embedded processor stripe of an
Excalibur device. It simulates the interactions between the Excalibur
embedded processor stripe and the PLD over the Stripe-to-PLD Bridge via
the Stripe Master-Port and over the PLD-to-Stripe Bridge via the Stripe
Slave-Port.

You can perform a functional simulation of an Excalibur design before
compilation and synthesis in the Quartus II software. The bus functional
model verifies the functionality of the AHB slaves or masters connected to
the Excalibur stripe bridges. You must first generate an uPCore Transaction
Model Input File (.(mbus_in). You can then use the Quartus II Simulator and
the bus functional model to perform a functional simulation of the design
and generate an uPCore Transaction Model Output File (.mbus_out) that
contains the bus transactions.

The following steps describe the basic flow to perform a bus functional
model functional simulation in the Quartus II software:

1. Create a Master Port High-Level Command File.

2. Use the exc_bus_translate utility to create an uPCore Transaction
Model Input File.

3. Specify Simulator settings. You must specify the name of the uPCore
Transaction Model Input File in the Simulator page of the Settings
dialog box (Assignments menu).

4. Run the simulation. The Quartus II Simulator simulates the design and

generates the uPCore Transaction Model Output File, which shows the
results of the bus functional model simulation.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 85

CHAPTER 4: SIMULATION
SIMULATING EXCALIBUR DESIGNS

Using the Bus Functional Model with
EDA Tools

You can use the bus functional model to perform functional or timing
simulation with EDA simulation tools. To use the bus functional model for
simulation using other EDA tools, you need to create bus functional model
simulation files, which include the stripe-to-PLD and PLD-to-stripe bus
transactions.

Once you have generated these files, you can then set up the simulation tool;
compile the appropriate libraries, design files, and test bench files; and run
the simulation. During simulation, the master commands, addresses, and
data values for each transaction are written an output file.

Using the Full-Stripe Model with EDA
Tools

The Excalibur full-stripe model is a complete Register Transfer Level (RTL)
model of the Excalibur embedded processor stripe. It includes the Excalibur
embedded processor core and peripherals (for example, SDRAM Interface,
DPRAM, Timer, Expansion Bus Interface, and UART). All stripe
components are included in the full stripe model with the exception of the
Configuration Logic Master.

You can use the full-stripe model to perform a functional or timing
simulation to verify the functionality and timing of all elements in the stripe
except the configuration logic. Software code can also be co-simulated with
the full-stripe model. You can use the Software Builder to convert the
software source files to memory initialization files for use with EDA
simulation tools.

Using the ESS Model with EDA Tools

The ESS model is a fast stripe simulation model that emulates the function
of the Excalibur embedded processor core, stripe registers, and Stripe-to-
PLD and PLD-to-Stripe bus transactions for simulation of Excalibur designs.

The ESS model contains a functionally accurate model of the ARM 922T
processor; watchdog timer, timer and interrupt controller; an embedded

UART; and an interface to the PLD. It supports booting from flash memory

86 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 4: SIMULATION
SIMULATING EXCALIBUR DESIGNS

and configuration from serial files loaded into on-chip memory and has an
interface to the ARM Development Suite (ADS) AXD and AWD software
debuggers and the GDB GNU debugger.

You can use the ESS model with the ModelSim PE or SE software to perform
both a functional hardware simulation to model the Stripe-to-PLD and PLD-
to-Stripe bridges and PLD interface, and for software and hardware co-
simulation, by connecting the AXD software debugger (provided as a part
of the ARM Development Suite) or GNU debugger to the Excalibur
embedded processor core to control the execution of the software code while
simulating the hardware design in the ModelSim software.

The ESS model also allows you to simulate Verilog HDL designs with the
ModelSim PE/SE and ModelSim-Altera software, and simulate VHDL
designs with the ModelSim SE software. The ESS model can be targeted
from the AXD, ADW, Mentor Graphics XRAY, and GNUPro arm-elf-gdb
software debuggers on PCs, and the GNUPro arm-elf-gdb software
debugger on Solaris workstations.

“ .- Py For Information About Refer To

Bus functional model Excalibur Bus Functional Model User Guide
on the Altera web site

Using the bus functional model and “Overview: Using the ModelSim Software
full-stripe model in EDA simulation with the Quartus Il Software” in Quartus Il
tools Help

Excalibur Hardware Design Tutorial on the
Altera web site

Using SOPC Builder with Excalibur Devices
Tutorial on the Altera web site

Application Note 240 (Simulating Excalibur
Systems) on the Altera web site

Performing simulation or co-simulation “Overview: Using the ModelSim Software
with the ESS Model with the ESS Model” in Quartus Il Help

Excalibur Stripe Simulator User Guide on
the Altera web site

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 87

What’s in Chapter 5:

Introduction

Analyzing Fitting Results
Optimizing the Fit

Performing Incremental Fitting

Preserving Assignments through
Back-Annotation

90
92
98
105

106

Chapter
Five

Place & Route

o

&
3
5

CHAPTER 5: PLACE & ROUTE

INTRODUCTION

Introduction

The Quartus® II Fitter, which is also known as the PowerFit™ Fitter,
performs place and route, which is also referred to as “fitting” in the
Quartus Il software. Using the database that has been created by Analysis &
Synthesis, the Fitter matches the logic and timing requirements of the project
with the available resources of a device. It assigns each logic function to the
best logic cell location for routing and timing, and selects appropriate
interconnection paths and pin assignments. Figure 1 shows the place and
route design flow.

Figure 1. Place and Route Design Flow

from Quartus Il

Synthesis

to Quartus Il
—_ i Timing Analyzer,
i e = | Quartus Il Fitter |——» " ’
Analysis & = . quartus_fit Simulator, EDA
] g - Netlist Writer, or
Compiler Assembler

Database

Files (.cdb) v

Quartus Il
Design Assistant

?; quartus_drc ?

Quartus Il Report Files
Settings (.rpt, .htm)
Files (.gsf)

If you have made resource assignments in your design, the Fitter attempts to
match those resource assignments with the resources on the device, tries to
meet any other constraints you may have set, and then attempts to optimize
the remaining logic in the design. If you have not set any constraints on the
design, the Fitter automatically optimizes it. If it cannot find a fit, the Fitter
terminates compilation and issues an error message.

In the Compilation Process page of the Settings dialog box (Assignments
menu), you can specify whether you want to use a normal compilation or
smart compilation. With a “smart” compilation, the Compiler creates a
detailed database that can help future compilations run faster, but may
consume extra disk space. During a recompilation after a smart compilation,
the Compiler evaluates the changes made to the current design since the last
compilation and then runs only the Compiler modules that are required to
process those changes. If you make any changes to the logic of a design, the
Compiler uses all modules during processing. This option is similar to the
MAX+PLUS® II Smart Recompile command (Processing menu).

20 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
INTRODUCTION

You can start a full compilation in the Quartus II software, which includes
the Fitter module, or you can start the Fitter separately. You must run
Analysis & Synthesis successfully before starting the Fitter separately.

[[Using the quartus_fit executable

You can also run the Fitter separately at the command prompt or in a script by using
the quartus_fit executable. You must run the Analysis & Synthesis executable
quartus_map before running the Fitter.

The quartus_fit executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_fit executable, type one of the following
commands at the command prompt:

quartus_fit -h ¢

quartus_fit -help ¢
quartus_fit --help=<topic name> '

The Status window records the time spent processing in the Fitter during
project compilation, as well as the processing time for any other modules
you may have been running. See Figure 2.

Figure 2. Status Window

Module | Progress % | Time & |
Full Cormpilation 93 % l 00:00:26
Analysis & Synthesis 5 00:00:05
Fitter 00:00:08
Aszzembler 00:00: 04
Timing Analyzer 00:00.03
ED Netist Wwiriter 00:00:05
ED Simulation Tool| [IROEEN | 00:00:00

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 91

CHAPTER 5: PLACE & ROUTE
ANALYZING FITTING RESULTS

Analyzing Fitting Results

The Quartus II software offers several tools to help you analyze the results
of compilation and fitting. The Messages window and Report window
provide fitting results information. The Floorplan Editor and Chip Editor
allow you to view fitting results and make adjustments, if necessary. In
addition, the Design Assistant helps you check the reliability of a design
based on a set of design rules.

Using the Messages Window to View
Fitting Results

The Processing tab of the Messages window and the Messages section of the
Report window or Report File display the messages generated from the most
recent compilation or simulation. Figure 3 shows the Messages window.

Figure 3. Messages Window

Messages 3]

A2 Info: Command: quartus_asm -import_settings_files=off -export_settings_files=off fir_fiter - filef ~
:,) Info: Quartusz |1 Azzembler was successful. U errars, 0 warnings
) Info:
’5.) Info: Runring Quartuz [Timing Analyzer
'Hi,) Info: Command: quartus_tan --import_settings_files=aff ~export_settings_files=off fir_Ffilter -c filtref --timing_analysis_on
g “waming: Ignored INCLUDE_E=TERMAL_PIN_DELAYS_IM_Fhak_ Cal CULATIOMNS assignment
',l,) Info: Found timing azzignments - calculating delays
i;') Info: Slack time iz 1.954 nz for clock ol between source register state_m:inst] filker™23 and destination register acc:
Info: Slack time iz 3635 ne for clock clke? between source register instd and destination register inztS[1]
= ’é,) [Info: tzu for register taps:instlan_1[3]req0 [data pin = newt, clock pin = clk] iz 4.403 nd
Info: + Longest pin to register delay iz 6.797 nz
A} Info + Micro setup delap of destination is 0023 ns
; ,) Itifa: - Shortest clock path from clock clk bo destination register iz 2,423 ns

-

= i) _I_nfo: tco from clock clk to destination pin follows through reqister state_m:inst1[filter~27 iz 6.519 ns
EL:,) nife: + Longest clock path from clock ek to source register is 2,430 ne -
S >
Syatemn }\ Prnl:essing/
|MESSGQEZ 239 of 291 + |9 |Lc-catic-n 1: filkref Compilation Report - Tloorplan Wigw j Locate
I \

Arrow buttons allow Location list allows Clicking the Locate
you to select nextand you to select from button displays the
previous messages multiple locations selected location

92 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
ANALYZING FITTING RESULTS

In the Messages window, you can choose Help from the right button pop-
up menu to get Help on a particular message.

If you want to filter the messages that appear in the Messages window, you
can set options in the Filtering tab under Messages in the Options dialog
box (Tools menu) that control the display of information and/or warning
messages. The right button pop-up menu of the Messages window also
provides commands that let you control the display of warning messages,
critical warning messages, information messages, and extra information
messages, or sort the messages by type.

The Messages tab of the Options dialog box allows you to specify options
for displaying separate tabs for each type of message, and the Colors tab
allows you to customize the colors for each type of message.

You can select the message and then choose a command from the right
button pop-up menu to locate to the Assignment Editor, Chip Editor, Design
File, Last Compilation Floorplan, Resource Property Editor, or Timing
Closure Floorplan, depending on which locations are available for that
message. You can also select a message and then select a location from the
Message Location list and click Locate to locate to a specific location.

“ .. Py For Information About Refer To

Viewing messages “Viewing Messages” in Quartus Il Help
Locating the source of a message Compilation module of the Quartus Il
Tutorial

“Locating the Source of a Message” in
Quartus Il Help

Using the Report Window or Report
File to View Fitting Results

\ The Report window contains many sections that can help you analyze the
é way the Fitter performed place and route for your design. It includes several
sections that show resource usage. It also lists error messages that were
generated by the Fitter, as well as messages for any other module you were
running.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 93

CHAPTER 5: PLACE & ROUTE
ANALYZING FITTING RESULTS

By default, the Report window opens automatically when you run the Fitter
or any other compilation or simulation module; however, you can specify
that it should not open automatically by turning off Automatically open the
Report window before starting a processing task if the appropriate Tool
window is not already open in the Processing page of the Options dialog
box (Tools menu). Also, if the Compiler Tool window is open, the Report
window does not open automatically, but clicking on the Report File icon for
each module displays the report for that module. When the Fitter is
processing the design, the Report window continuously updates with new
information. If you stop the Fitter, the Report window contains only the
information created prior to the point at which you stopped the Fitter. See
Figure 4.

Figure 4. Fitter Section of the Report Window

& filtref Compilation Report

S B Legal Notice
&5 Flow Summary
&5E8 Flow Settings
55 Flow Elapsed Time
EHB Flow Log
+- & Analysis & Synthesis
- &§ 2 Fitter
&SHFT Fitter Summary
SHEE Fitker Settings
5B Fitter Device Options
é@ Floorplan Wiew
& Pin-Out File
+-&H1] Resource Section
ESHEE Fitker INI Usage
&5 L2 Fitter Messages
+ &5 Assembler
+- & Timing Analyzer

Fitter Status
Quartus I Version
Rewvigion Mame
Toplevel Entity Name
Fanily

Device

Timing Models
Total logic elements
Total ping

Total mermary bits
Toatal PLL:

@ Compilation Report Fitter Summary

Successful - Thu Apr 15 10:11:10 2004
41

filtref

filtref

Cyclone
EF1C120240CE
Production
12120601 %]
22AITI2E)
0/239E1610%)
os200%)

The Quartus Il software automatically generates text and HTML versions of
the Report window, depending on which options you specify in the
Processing page of the Options dialog box.

94 =

INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
ANALYZING FITTING RESULTS

“ ._ Py For Information About Refer To

Report Window sections “Report Window & File Format” in Quartus |l
Help
Using the Report Window “Overview: Viewing the Results of a

Compilation or Simulation in the Report
Window” in Quartus Il Help

Viewing the compilation report Compilation module of the Quartus Il
Tutorial

Using the Floorplan Editor to Analyze
Results

After you run the Fitter, the Floorplan Editor displays the results of place
and route. In the Compilation Report, you can view the noneditable (read-
only) Floorplan View, which shows the resource assignments and routing
made during the last compilation. In addition, you can back-annotate the
fitting results to preserve the resource assignments made during the last
compilation. The editable Timing Closure floorplan allows you to view logic
placement made by the Fitter and/or user assignments, make LogicLock™
region assignments, and view routing congestion. See Figure 5.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 95

CHAPTER 5: PLACE & ROUTE
ANALYZING FITTING RESULTS

Figure 5. The Floorplan Editor

% Chip: filtref. (Timing Closure)

Chipname: |filvef (EP1C120240CE) =
3B 37 33 41 42 LY
= — =y = = =

= al - m
m L n m
17 — : - —
m L I m
) —) -
= =) B = =

16

—
—

|||r'i

JIzc=Szsa==all] [F=zannnneE=]t
N

Jj===sns==ns]|] [snnsnsnnns]

-

926

The Floorplan Editor allows you to view resource usage and routing

™

If you compile a design that is targeted for an Excalibur™ device, you can
also view the Excalibur embedded processor stripe in the Floorplan Editor.
The stripe is located between the logic cells and pins, and contains interfaces
to the embedded logic for the microprocessor, as well as to the dual-port
RAM.

Resource usage in the Floorplan Editor is color coded. Different colors
represent different resources, such as unassigned and assigned pins and
logic cells, unrouted items, MegaLAB™ structures, columns, and row
FastTrack® fan-outs. The Floorplan Editor also provides different floorplan
views that show the pins and interior structure of the device.

To edit assignments in the Floorplan Editor, you can click a resource
assignment and drag it to a new location. While dragging a resource in the
Floorplan Editor, you can use rubberbanding to display a visual
representation of the number of routing resources affected by the move.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
ANALYZING FITTING RESULTS

You can view the routing congestion in a design, view routing delay
information for paths, and view connection counts to specific nodes. The
Floorplan Editor also allows you to view the node fan-out and node fan-in
for specific structures, or view the paths between specific nodes. If
necessary, you can change or delete resource assignments. For more
information on using the Floorplan Editor, refer to “Using the Timing
Closure Floorplan” on page 138 in Chapter 8, “Timing Closure.”

If you want to view more fitting details and make additional fitting
adjustments, the Chip Editor reveals additional details about design
placement and routing that are not visible in the Floorplan Editor, and
allows you to make changes by using the Resource Property Editor and
Change Manager. For more information, refer to “Chapter 11: Engineering
Change Management” on page 179.

“ .- Py For Information About Refer To

Viewing assignment and routing “Overview: Working with Assignments in

information in the Floorplan Editor the Floorplan Editor” and “Overview:
Viewing Routing Information” in Quartus Il
Help

Viewing the fit in the Floorplan Editor Chapter 7, “Timing Closure Floorplan” in
Quartus Il Handbook, vol. 2, on the Altera
web site

Compiler module of the Quartus Il Tutorial

Using the Design Assistant to Check
Design Reliability

The Quartus II Design Assistant allows you to check the reliability of your

design, based on a set of design rules, to determine whether there are any

issues that may affect fitting or design optimization. The Design Assistant

page of the Settings dialog box (Assignments menu) allows you to specify
. which design reliability guidelines to use when checking your design. For

more information, refer to “Using the Design Assistant to Check

Design Reliability” on page 67 in Chapter 3, “Synthesis.”

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 97

CHAPTER 5: PLACE & ROUTE
OPTIMIZING THE FIT

Optimizing the Fit

928

Once you have run the Fitter and have analyzed the results, you can try
several options to optimize the fit:

Using location assignments

Setting options that control place and route
Using the Resource Optimization Advisor
Using the Design Space Explorer

Using Location Assignments

You can assign logic to physical resources on the device, such as a pin, logic
cell, or Logic Array Block (LAB), by using the Floorplan Editor or the
Assignment Editor in order to control place and route. You may want to use
the Floorplan Editor to edit assignments because it gives you a graphical
view of the device and its features. If you want to create new location
assignments, you may want to use the Assignment Editor command (Tools
menu), which allows you to create several node-specific assignments at
once. In addition to using the Floorplan Editor or Assignment Editor to
create assignments, you can also use Tcl commands. If you want to specify
global assignments for the project, you can use the Settings dialog box
(Assignments menu). For more information about specifying initial design
constraints, refer to “Specifying Initial Design Constraints” on page 48 in
Chapter 2, “Design Entry.”

Once you create an assignment, you can edit it in the Assignment Editor or
the Floorplan Editor. After compilation, you can use the Floorplan Editor to
edit existing resource assignments to pins, logic cells, rows, columns,
regions, MegaLAB structures, and LABs. You can use the Floorplan Editor,
the LogicLock Regions window, or the LogicLock Region Properties dialog
box to assign nodes or entities to LogicLock regions.

The Floorplan Editor provides different views of the device and helps you
make precise assignments to specific locations. You can also view equations
and routing information, and demote assignments by dragging and
dropping assignments to various regions in the Regions window. If your
design has too many constraints that prevent it from fitting in the device,
you may also be able to optimize fitting by removing some of the location
assignments and allowing the Fitter to place the logic.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
OPTIMIZING THE FIT

Setting Options that Control Place &
Route

You can set several options that control the Fitter and may affect place and
route:

m Fitter options
m Fitting optimization and physical synthesis options
B Individual and global logic options that affect fitting

Setting Fitter Options

The Fitter Settings page of the Settings dialog box (Assignments menu)
allows you to specify options that control timing-driven compilation and
compilation speed. You can specify whether the Fitter should try to use
registers in I/O cells (rather than registers in regular logic cells) to meet
timing requirements and assignments that relate to I/O pins. You can
specify whether you want the Fitter to use standard fitting, which works
hardest to meet your fyjax timing constraints, to use the fast fit feature,
which improves the compilation speed but may reduce the fyjax, or to use
the auto fit feature, which reduces Fitter effort after meeting timing
requirements and may decrease compilation time. The Fitter Settings page
also allows to you specify that you want to limit Fitter effort to only one
attempt, which may also reduce the fygax.

Setting Physical Synthesis Optimization Options
The Quartus II software allows you to set options for performing physical
synthesis to optimize the netlist during fitting. You specify physical
synthesis optimization options in the Physical Synthesis Optimizations
page under Fitter Settings in the Settings dialog box (Assignments menu).
Physical synthesis optimization options include the following options:

B Perform physical synthesis for combinational logic

B Physical synthesis for registers:

— Perform register duplication
— Perform register retiming

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 99

CHAPTER 5: PLACE & ROUTE
OPTIMIZING THE FIT

m Physical synthesis effort:

- Normal (default effort level; average of 2 to 3 compile times

- Extra (more compile time than Normal; should improve
performance gains)

— Fast (less compile time than Normal; may reduce performance
gains)

For more information about physical synthesis options, refer to “Using

Netlist Optimizations to Achieve Timing Closure” on page 143 in Chapter 8,
“Timing Closure.”

“ .- - For Information About Refer To

Using Quartus Il physical synthesis Chapter 8, “Netlist Optimizations & Physical

optimizations Synthesis” in the Quartus Il Handbook,
vol.2, on the Altera web site

Using Quartus |l Fitter optimization “Using Physical Synthesis” in Quartus Il

options Help

Setting Individual Logic Options that Affect Fitting

Quartus II logic options allow you to set attributes without editing the
source code. You can specify Quartus II logic options for individual nodes
and entities in the Assignment Editor (Assignments menu) and can specify
global default logic options in More Fitter Settings dialog box, which is
available by clicking More Settings in the Fitter Settings page of the
Settings dialog box (Assignments menu). For example, you can use logic
options to specify that the signal should be available throughout the device
on a global routing path, specify that the Fitter should create parallel
expander chains automatically, specify that the Fitter should automatically
combine a register with a combinational function in the same logic cell, also
known as “register packing,” or limit the length of carry chains, cascade
chains, and parallel expander chains.

“ ._ Py For Information About Refer To

Using Quartus Il logic options to “Logic Options,” “Creating, Editing &

control place and route Deleting Assignments,” and “Specifying
Settings for Default Logic Options” in
Quartus Il Help

100 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
OPTIMIZING THE FIT

Using the Resource Optimization
Advisor

The Resource Optimization Advisor offers recommendations for optimizing
your design for resource usage in the following areas:

logic element usage
memory block usage
DSP block usage

I/0 usage

routing resource usage

If you have an open project, you can view the Resource Optimization
Advisor by choosing Resource Optimization Advisor (Tools menu). If the
project has not been compiled yet, the Resource Optimization Advisor
provides only general recommendations for optimizing resource usage. If
the project has been compiled, however, the Resource Optimization Advisor
can provide specific recommendations for the project, based on the project
information and current settings. Figure 6 shows the Resource Optimization
Advisor.

Figure 6. Resource Optimization Advisor Summary Page

?' Resource Optimization Advisor

Status Design fit successfully

L) How to use the Resource Optimization Advisar
‘k} General Recommendations

Logic Element Usage [19)

Memory Block Usage { 0%)

DSP Elock Usage (MiA)

I} Usage { 12%)

Routing Resource Usage

Logic Element Llzage 10212060 (< 1%)
kemomy Block Uszage 04239 B16[0%)
D5SP Block Usage Mot available
1/0 Usage 22417312 %)
Open Flows Summary [Compilation Bepart]

The first page of the Resource Optimization Advisor summarizes the
resource usage after compilation, and indicates possible problem areas. The
left pane of the Resource Optimization Advisor shows a hierarchical list of
problems and recommendations, with icons that indicate whether the
recommendation might be appropriate for the current design and target
device family, or whether the current design already has the recommended
setting. When you click on a recommendation in the hierarchical list, the
right pane provides a detailed description of the recommendation, a
summary, and one or more recommended actions, as shown in Figure 7.

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il = 101

CHAPTER 5: PLACE & ROUTE
OPTIMIZING THE FIT

Figure 7. Resource Optimization Advisor Recommendation Page

® Resource Optimization Advisor,

ES0UFCE SUMMary # | | Recommendation| Direct the Compiler to optimize the design for area.

A How to use the Resource Optimizakion Adwisor Dezcription During synthasiz, the design iz optimized for area, that is.
+ ’\iij General Recommendations the Compiler makes the design as small as pessible in order
=] Logic Element Usage { 1%) to minimize fesource usage.
= Stage 1 Surnmary The following areas will be affected by the recommended
changes:

_l\, Restructure multiplexers
LMY Cptimize for area
_l\, Perform WiySIwyG primitive resynthesis

Turn on auto ROMRAMIDSPShift Register Replacement

- Dielay may increaze [fmax may decreaze)
+ Logic element usage may decreaze
- Compilation time may increase

. i X Action To optimize the design for area for the entire project, select
/1y Use register packing Area under Optimization Technique in the Analysis &
/N Remave locationfLogicLock region assignments Sunthesiz Settings page of the Settings dialog box

¥ Shage 2 [Assighments menu). Yiou can alzo direct the Quartus ||

software to optimize specific entities for area uzing the

Sk 3 X " ;
* 9e Azzignment Editor [Assignments menu).

v Block Usage { 0%)
target memory blocks Current Settings:

move automatic inferencing of memory blocks CyCLOME_OPTIMIZATION_TECHMIGUE = SPEED
; move locationfLogicLock region assignments [Recommended: AREA)

'EJ Optimize source code

- DSP Blbck Lisage { Hja) Open Fettings dialog bow - Analyziz & Synthesis Settings
A v page
z LOLsboe Ll > Open Assignment Editor - Synthesis category
Hierarchical list of recommendations—icons Clicking a link in the recommendations page opens the
indicate potential problem areas appropriate dialog box, page, or feature.

If the recommended action involves changing a Quartus II setting, the right
pane of the Resource Optimization Advisor may include a link to the
appropriate dialog box, page, or feature in the Quartus II software. It may
also include links to Quartus II Help or other documentation on the Altera
web site.

If you want to view recommendations for improving timing results, you can
use the Timing Optimization Advisor. See “Using the Timing Optimization
Advisor” on page 142 in Chapter 8, “Timing Closure.”

Using the Design Space Explorer

Another way to control Quartus II fitting is to use the Design Space
Explorer (DSE) Tcl script, dse.tcl, which can help you optimize your design.
The DSE interface allows you to explore a range of Quartus II options and
settings automatically to determine which settings should be used to obtain
the best possible result for the project. You can start DSE from the command
line with the quartus_sh executable, or you can start DSE from the Windows
Start menu with the Quartus II <version number> Design Space Explorer
command; you should not start DSE from within the Quartus II interface.

102 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
OPTIMIZING THE FIT

You can specify the effort level that DSE puts into determining the optimal
settings the current project. The DSE interface also allows you to specify
optimization goals and allowable compilation time. See Figure 8.

Figure 8. Design Space Explorer Interface

%4 Altera Design Space Explorer - fir_filter EJ@|E|

File Processing Options Help

& Ani]

B

Project Settings

Froject: fir_filter

F amily: Cyclone

Revision: | filtref |
Seeds: [35711

[Project Uses Quartus || Integrated Synthesis

[v o LogicLock Fegion Bestructuing

Exploration Settings

" Search for Best Area

{* Search for Best Performance
Effart Level: |Highest [Physical Synthesiz with Retiming Space) ﬂ

" Adwvanced Search

| Quartus I Version 4.1

DSE provides several exploration modes, which are listed under
Exploration Settings in the DSE window:

B Search for Best Area
B Search for Best Performance (allows you to specify an effort level)
B Advanced Search

Selecting the Advanced Search option and clicking Configure opens the
Advanced Search dialog box, which allows you to specify additional
options for exploration space, optimization goal, and search method. See
Figure 9.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 103

CHAPTER 5: PLACE & ROUTE
OPTIMIZING THE FIT

Figure 9. Advanced Search Dialog Box for DSE

%% Configure Advanced Search. ..

Exploration Space
|Seed Sweep j

A simple seed sweep.

Optimization Goal

| Optimize for Speed j

Chooze the best settings for your design based on the best worst-case
glack walue in pour dezign.

Search Method

|E:4haustive Search of Exploration Space j

An exhaustive search of your exploration space.

[Running the Design Space Explorer

You can run DSE in graphical user interface mode by typing the following command
at a command prompt:

quartus_sh --dse ¢

You can run DSE in command-line mode by typing the following command at a
command prompt, along with any additional DSE options:

quartus_sh --dse -nogui <project name> [-c <revision name>]

For help on DSE options, type quartus_sh --help=dse *' at command prompt, or
choose Show Documentation (Help menu) in the DSE window.

You should not run DSE from within the Quartus Il graphical user interface.

104 m INTRODUCTION TO QUARTUS I ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
PERFORMING INCREMENTAL FITTING

Many of the Exploration Space modes allow you to specify the degree of
effort you want DSE to spend in fitting the design; however, increasing the
effort level usually increases the compilation time. Custom exploration
mode allows you to specify various parameters, options, and modes and
then explore their effects on your design.

The Signature modes allow you to explore the effect of a single parameter on
your design and its trade-offs for fygax, slack, compile time, and area. In the
Signature modes, DSE tests the effects of a single parameter over multiple
seeds, and then reports the average of the values so you can evaluate how
that parameter interacts in the space of your design.

DSE also provides a list of Optimization Goal options, which allow you to
specify whether DSE should optimize for area, speed, or for negative slack
and failing paths.

In addition, you can specify Search Method options, which provide
additional control over how much time and effort DSE should spend on the
search.

After you have completed a design exploration with DSE, you can create a
new revision from a DSE point. You can then close DSE and open the project
with the new revision from within the Quartus II software.

“ .. Py For Information About Refer To

Using the Design Space Explorer Chapter 9, “Design Space Explorer” in the
Quartus Il Handbook, vol. 2, on the Altera
web site

Parameters and settings for optimizing Chapter 6, “Design Optimization for Altera
performance Devices” in the Quartus Il Handbook, vol. 2,
on the Altera web site

Performing Incremental Fitting

If you have made a change that affects only a few nodes, you can also avoid
running a full compilation by using incremental fitting. Incremental fitting
allows you to run the Fitter module of the Compiler in a mode that attempts
to preserve the fitting results of the previous compilation. Incremental
fitting attempts to reproduce the results of the previous compilation as

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 105

CHAPTER 5: PLACE & ROUTE
PRESERVING ASSIGNMENTS THROUGH BACK-ANNOTATION

closely as possible, which prevents unnecessary changes in the timing
results, and because it reuses the results of the previous compilation, it
usually requires less compilation time than standard fitting.

You can turn on incremental fitting by choosing the Start > Start
Incremental Fitting command (Processing menu).

[Running Incremental Fitting from the Command Line

You can also run incremental fitting with the quartus_fit executable by typing the
following command at the command prompt:

quartus_fit <project name> --incremental_fitting '

Preserving Assignments through
Back-Annotation

You can preserve resource assignments from the last compilation by back-
annotating assignments to any device resource. You can back-annotate all
the resource assignments in a project; you can also back-annotate the size
and location of LogicLock regions. You can specify assignments to back-
annotate in the Back-Annotate Assignments dialog box (Assignments
menu).

The Back-Annotate Assignments dialog box allows you to select the type of
back-annotation: Default type or Advanced type. See Figure 10.

106 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 5: PLACE & ROUTE
PRESERVING ASSIGNMENTS THROUGH BACK-ANNOTATION

Figure 10. Back-Annotate Assignments Dialog Box

Back-Annotate Assignments

Back annotation type:

Agzzignments to back-annatate

Defaut |\

O

Device assignment
Fin & device assignments

Q
® Pin, cell & device assignments
Q
O

Delay chaing

Sawve intermediate synthesis results
[Save a node-level netizt into a Yerlog Quartus

Back annotation type:

File rame:

| L]

Back-Annotate Assignments dialog box
(Default type)

Back-Annotate Assignments
dialog box (Advanced type)

) Derpc-te cel gsslgnments LRFEN Back-Annotate Assignments §|
Fin, cell, routing & device assignments B

|Advanced ﬂ

Agzzighments to back-annatate

Device
O Delay chaine
LogicLock regions: |“ |
Lack zize and arigin
I [[
Azzignment type
(® Create assignments
) Remove assignments
Ptz
O Demote pin assignments to 1/0 bank
Logic cel
O Demote cell assignments to L&Es
Register
Combinational
Rdihd
[LENS
Frewvent further netlist optimization
O Fouting

Region Filter |

Mode Filter ||

Sawve intermediate synthesis results
[Save a node-level netlist into a Verilog Quartus Mapping File

File name:

L]

Cancel |

.

The Back-Annotate Assignments (Default type) dialog box allows you to
“demote” pin and/or logic cell assignments to less restrictive location
assignments so that you can allow the Fitter more freedom in rearranging
assignments. The Back-Annotate Assignments (Advanced type) dialog box
allows you to do everything that the Default back-annotation type allows
you to do, as well as back-annotate LogicLock regions, and optionally the
nodes and routing within them. The Advanced back-annotation type also
provides many options for filtering based on region, path, resource type,
and so on, and allows you to use wildcards. You should use only one type

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il = 107

CHAPTER 5: PLACE & ROUTE
PRESERVING ASSIGNMENTS THROUGH BACK-ANNOTATION

of back-annotation or the other, but not both. If you are not sure which type
to use, Altera recommends that you use the Advanced back-annotation type
for most situations because it offers more options, especially if you are using
LogicLock regions. For more information about using back-annotation with
LogicLock regions, refer to “Back-Annotating LogicLock Region
Assignments” on page 116 in Chapter 6, “Block-Based Design.”

For Information About Refer To

Back-annotating location assignments “Back-Annotating Assignments for a
Project” in Quartus Il Help

Back-annotating LogicLock region “Back-Annotating a LogicLock Region” in
assignments Quartus Il Help

Back-annotating LogicLock placement LogicLock module of the Quartus Il Tutorial

108 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 6:

Introduction

Quartus Il Block-Based Design Flow
Using LogicLock Regions

Saving Intermediate Synthesis Results
Using LogicLock with EDA Tools

110
110
112
115
119

Chapter
Six

Block-Based Design

L

CHAPTER 6: BLOCK-BASED DESIGN

INTRODUCTION

Introduction

-

The Quartus® II LogicLock™ feature enables a block-based design flow by
allowing you to create modular designs, designing and optimizing each
module separately before incorporating it into the top-level design.

LogicLock regions are flexible, reusable constraints that increase your ability
to guide logic placement on the target device. You can define any arbitrary
rectangular region of physical resources on the target device as a LogicLock
region. Assigning nodes or entities to a LogicLock region directs the Fitter to
place those nodes or entities inside the region during fitting.

LogicLock regions support team-oriented, block-based design by enabling
you to optimize logic blocks individually, and then import them and their
placement constraints into a larger design. The LogicLock methodology also
promotes module reuse, because modules can be developed separately and
then constrained to LogicLock regions to be used in other designs with no
loss in performance, allowing you to leverage resources and shorten design
cycles.

Quartus Il Block-Based Design Flow

In traditional top-down design flows, there is only one netlist for the design.
In a top-down design flow, individual modules of the design can have
different performance from the overall design when implemented on their
own. In bottom-up block-based design flows, there are separate netlists for
each module. This allows designers to create block-based designs, where
each module is optimized independently and then incorporated into the
top-level design. You can use block-based design in the following design
flows:

B Modular design flow: In the modular design flow, you divide a design
into a top-level design that instantiates separate submodules. You can
develop each module separately and then incorporate each module
into the top-level design. Placement is determined manually by you or
by the Quartus II software.

B Incremental design flow: In the incremental design flow, you create
and optimize a system, and then add future modules with little or no
effect on the performance of the original system.

110 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 6: BLOCK-BASED DESIGN
QUARTUS |l BLOCK-BASED DESIGN FLOW

B Team-based design flow: In the team-based design flow, you partition
a design into separate modules, and instantiate and connect the
modules in a top-level design. Other team members then separately
develop the lower-level modules, creating separate projects for each
module, and using the assignments developed for the top-level design.
Once the lower-level modules are complete, they are imported into the
top-level design, which then undergoes final compilation and
verification.

In all three design flows, you can preserve performance at all levels of
development by partitioning designs into functional blocks, organized
according to the physical structure of the circuit or by critical paths. Figure 1
illustrates the basic block-based design flow.

Figure 1. Block-Based Design Flow

Design, verify, & lock
individual modules

Module A — Module A
— Verilog Quartus Mapping | o
File (vam) & Quartus Il |4 —
Settings File (.gsf)
— Quartus Il o
Module B == | Compiler Database I‘\;’g‘;;';slf& QsF é
:l quartus_cdb
\ Module C -
D VQM File & QSF e
Module C Eg
—— e e e e
| Top-level Design_|
Module C | Integrate individual modules
| I into top-level design
| Module A I -
| Module B |
=

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 111

CHAPTER 6: BLOCK-BASED DESIGN
USING LoGIcLOoCK REGIONS

Using LogicLock Regions

A LogicLock region is defined by its size (height and width) and location on
the device. You can specify the size and location of a region, or direct the
Quartus II software to create them automatically. Table 1 lists the major
properties of LogicLock regions that you can specify in the Quartus II
software.

Table 1. LogicLock Region Properties

Property

Values

Behavior

State

Floating or
Locked

Floating regions allow the Quartus Il software to
determine the region’s location on the device. Locked
regions have a user-defined location. Locked regions
are shown in the floorplan with a solid boundary and
floating regions shown by a dashed boundary in the
floorplan. A locked region must have a fixed size.

Size

Auto or Fixed

Auto-sized regions allow the Quartus Il software to
determine the appropriate size of a region given its
contents. Fixed regions have a user-defined shape and
size.

Reserved

On or Off

The reserved property allows you to define whether
the Quartus Il software can use the resources within a
region for entities that are not assigned to the region.
If the reserved property is on, only items assigned to
the region can be placed within its boundaries.

Enforcement

Hard or Soft

Soft regions give more deference to timing

constraints, and allow some entities to leave a region
if it improves the performance of the overall design.
Hard regions do not allow the Quartus Il software to
place contents outside the boundaries of the region.

Origin

Any Floorplan
Location

The origin defines the placement of the LogicLock
region in the floorplan.

112 =

INTRODUCTION TO QUARTUS Il

With the LogicLock design flow, you can define a hierarchy for a group of
regions by declaring parent and child regions. The Quartus II software
places child regions completely within the boundaries of a parent region.
You can lock a child module relative to its parent region without
constraining the parent region to a locked location on the device.

ALTERA CORPORATION

CHAPTER 6: BLOCK-BASED DESIGN
USING LoGICLOCK REGIONS

You can create and modify LogicLock regions by using the Floorplan Editor,
the LogicLock Regions Window command (Assignments menu), the
Hierarchy tab of the Project Navigator, or by using Tcl scripts. All LogicLock
attributes and constraint information (clock settings, pin assignments, and
relative placement information) are stored in the Quartus II Settings

File (.qsf) for the project.

You can use the Floorplan Editor to create and edit LogicLock region
assignments. You can draw LogicLock regions in the Timing Closure
floorplan with the Create New Region button and then drag and drop nodes
from the floorplan view, the Node Finder, or the Hierarchy tab of the Project
Navigator.

After you have created a LogicLock region, you can use the LogicLock
Regions window to view all of the LogicLock regions in your design,
including size, state, width, height, and origin. You can also edit and add
new LogicLock regions. See Figure 2.

Figure 2. LogicLock Regions Window

ogicLock Regions X

Regioh name | Size | State | ‘width | Height | Origin |
= h LogicLock Regions
5 Root_region WAL | NAL | MM | MAA M A%
£ <<news:
LR filker_filterfilter_i0 Fized | Floating 17 5 ESB_1_I2
R filker_fiter:filer_i1 Fized|Floating 17 5 ESB_1_I2
h filker_filter:filker_i2 Fixed Floating 17 5 ESB_1_I2
Ry fiter_fiterfiter_i2 Fived Floating 17 |} ESB_1_I2

You can also use the LogicLock Regions Properties dialog box to edit
existing LogicLock regions, open the Back-Annotate Assignments dialog
box to back-annotate all nodes in a LogicLock region, view information on
the LogicLock regions in the design, and determine which regions contain
illegal assignments.

In addition, you can add path-based assignments (based on source and

destination nodes), wildcard assignments, and Fitter priority for path-based
and wildcard assignments to LogicLock regions. Setting the priority allows

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 113

CHAPTER 6: BLOCK-BASED DESIGN
USING LoGIcLOoCK REGIONS

you to specify the order in which the Quartus Il software resolves conflicting
path-based and wildcard assignments. You can open the Priority dialog box
from the LogicLock Region Properties dialog box. See Figure 3.

Figure 3. LogicLock Region Properties Dialog Box

Logiclock Region Properties -- filter_filter:filter_i0

Contents l Size] Localion]

Specify nodes, entities, and path-based assignments for the selected LogicLock region.

embers:
Degign Element Agsigned | Add Mode. .
o filker:filker_i0

Add Path..
Pricrity...

Back-Annotate Contents ... | Delete Back-Annotated Assignments

Back-annotated nodes:

Back-annotated Node | Node Location | ~

filker:fiter_iQladder:adder_ilmodgen_add_1_m«100 LAB_E L2
filker:filker_iQladder: adder_ilmodgen_add 1_n«104 LAB B L2
filker:filker_iQladder:adder_ilmodgen_add 1_m«108 LAE_E L2
filter:filker_iOladder:adder_ilmodgen_add_1_n«112 LAE_F_L2
filker:filker_idladder:adder_ilmodgen_add 1_n«56 LAE 4 L2
filker:fiter_iQladderadder_ilmodgen_add 1_n=E0 LAE_4 L2
filter:filker_iOladder:adder_ilmodgen_add_1_n«64 LAB_4_L2 w

[Dizable back-annatated node locations Content status:

I Reserve unused logic cells

QK | Cancel |

114 =m

After you have performed analysis and elaboration or a full compilation, the
Quartus Il software displays the hierarchy of the design in the Hierarchy tab
of the Project Navigator. You can click any of the design entities in this view
and create new LogicLock regions from them, or drag them into an existing
LogicLock region in the Floorplan Editor.

Altera also provides LogicLock Tcl commands to assign LogicLock region
content at the command line or in the Quartus II Tcl Console window. You
can use the provided Tcl commands to create floating and auto-size

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 6: BLOCK-BASED DESIGN
SAVING INTERMEDIATE SYNTHESIS RESULTS

LogicLock regions, add a node or a hierarchy to a region, preserve the
hierarchy boundary, back-annotate placement results, import and export
regions, and save intermediate synthesis results.

“ .. - For Information About Refer To

Using LogicLock with the Quartus Il Chapter 10, “LogicLock Design
software Methodology,” in the Quartus Il Handbook,
vol. 2, on the Altera web site

“Overview: Using LogicLock Regions” in
Quartus Il Help

The LogicLock module in the Quartus II
Tutorial

Saving Intermediate Synthesis
Results

You can save synthesis results for individual entities in conjunction with the
block-based LogicLock design flows by creating a Verilog Quartus Mapping
File (.vqm) for an entity in a design, with a corresponding QSF that contains
the LogicLock constraint information for the entity.

You can design a block of custom logic or instantiate a block of preverified
Intellectual Property (IP), make assignments to that block, verify
functionality and performance, lock the block to maintain this placement
and performance, and then export the block to be imported into another
design. In this way, blocks can be designed, tested, and optimized
individually and can maintain their performance when integrated into a
larger design.

In addition, by saving intermediate synthesis results into a VOM File and
replacing the entity with the VOM File in the project when you import the
assignments, you ensure that the node names synthesized in the new project
correspond to the node names in the imported assignments.

The following steps describe the basic flow for saving intermediate synthesis

results as a VOM File, back-annotating assignments, and exporting and
importing QSFs for designs that contain LogicLock regions:

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 115

CHAPTER 6: BLOCK-BASED DESIGN
SAVING INTERMEDIATE SYNTHESIS RESULTS

1. Create LogicLock regions.
2. Compile the design.

3. Use the Back-Annotate Assignments (Advanced type) dialog box
(Assignments menu) to lock the logic placement in the LogicLock
region(s).

4. Export the LogicLock region assignments to a QSF by using the Export
Assignments dialog box (Assignments menu).

5. Instantiate the module in the VQM File into a top-level design and
import the LogicLock region assignments by using the Import
Assignments dialog box (Assignments menu). Click LogicLock Import
File Assignments to specify the name of the QSF that contains the
LogicLock region assignments, the entity name in the QSF that you are
importing, and the entity name in the design to which you are applying
the assignments.

[[& Using the quartus_cdb executable

You can also save intermediate synthesis results as a VQM File, back-annotate
assignments, and export and import LogicLock regions separately at the command
prompt or in a script by using the quartus_cdb executable.

If you want to get help on the quartus_cdb executable, type one of the following
commands at the command prompt:

quartus_cdb -h ¢
quartus_cdb --help ¢
quartus_cdb --help=<topic name> '

Back-Annotating LogicLock Region
Assignments

You can use the Back-Annotate Assignments (Advanced Type) command
to lock the logic placement into LogicLock regions in a design before
exporting the assignments for use in a top-level design. Back-annotation
allows you to maintain the performance of a LogicLock region when
importing the region and its assignments into a top-level design.

116 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 6: BLOCK-BASED DESIGN
SAVING INTERMEDIATE SYNTHESIS RESULTS

You must use the Back-Annotate Assignments (Advanced Type) command
to back-annotate LogicLock region assignments, and you can also use it to
back-annotate designs that do not include LogicLock region assignments.
For more information on back-annotating assignments, refer to “Preserving
Assignments through Back-Annotation” on page 106 in Chapter 5, “Place &
Route.”

Exporting & Importing LogicLock
Assignments

The Export Assignments and Import Assignments dialog boxes
(Assignments menu) allow you to optimize entities individually using
LogicLock region assignments and preserve your optimization when you
instantiate those entities in a top-level design.

When you export LogicLock region assignments, the Quartus II software
writes all LogicLock region assignments, other QSF assignments, and 1/0O
standard assignments that apply to the specific entity instance to a QSF that
you specify in the Export Assignments dialog box. By default, the Quartus II
software exports the LogicLock region assignments for the entire design.
You can specify subdesign entities to export in the Export focus full
hierarchy path box. See Figure 4.

Figure 4. Export LogicLock Regions Dialog Box

Export Assignments ﬁl

Specify settings for exporting azsignments. The Export Focus specifies the design
component (instance] whoze assignments should be exported.
By default, the Export Focus iz the project's top-level design entity.

Export focus full hierarchy path:

|Ialgefilter

File name:
|D:.-’qdesigns.n’largefiltera"atom_netlists.:"largefilter.qsf .

Save intermediate syntheziz results
v Save a node-level netlist into a Yerilog Quartus Mapping File

File name: [:/gdesigneslargefiltersatom_netlists/largefiler.vwqm

oK | Cancel |

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 117

CHAPTER 6: BLOCK-BASED DESIGN
SAVING INTERMEDIATE SYNTHESIS RESULTS

When you import LogicLock region assignments, the Quartus II software
traverses the compilation hierarchy, starting at the current compilation
focus. If the current project contains multiple instances of a lower-level
entity, the Quartus Il software instantiates the assignments imported for that
lower-level entity once for each instance.

To prevent placement conflicts, the Quartus II software assigns imported
top-level LogicLock regions to floating locations. However, it preserves the
location of imported child regions relative to their parents. Figure 5 shows
the Import Assignments dialog box.

Figure 5. Import Assignments Dialog Box

Import Assignments El

Specify the zource and categories of assignments to import. Click LogicLock Import File Assignments
to zelect LogicLock Impart File(z).

Aszignment source .
| Cateqgories...

™ File: narne:
. . . Advanced...
{* |se LogicLock aszignments LogicLock Impart File Assignments... | 4

v Copy existing agsignments inta largefilter. qsf. bak. before importing

Ok | Cancel |

When importing LogicLock regions, you can click Advanced in the Import
Assignments dialog box to specify the nature of the assignments to import,
specify global or instance-level assignments to import, and specify how the
assignments affect the current design. You can also create a backup of the
current QSF for the design before importing assignments.

For Information About Refer To

Saving intermediate synthesis results Chapter 10, “LogicLock Design

as a VQM File, back-annotating Methodology,” in the Quartus Il Handbook,
assignments, and exporting and vol. 2, on the Altera web site

importing LogicLock region

assignments “Overview: Saving Intermediate Synthesis

Results” and “Overview: Using LogicLock
Regions” in Quartus Il Help

The LogicLock Module in the Quartus Il
Tutorial

118 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 6: BLOCK-BASED DESIGN
USING LocGicLock wiTH EDA TooLs

Using LogicLock with EDA Tools

The block-based LogicLock design flow supports modules that have been
created and optimized in EDA design entry and synthesis tools and then
imported as separate modules in the Quartus II software. You use an EDA
design entry and synthesis tool to create separate netlist files (EDIF Input
Files (.edf) or VQM Files) for modules in a design hierarchy, or to maintain
blocks of logic within a netlist file. You can then use the Quartus II software
to place each netlist file or module within a netlist file into a separate
LogicLock region in a top-level design. Once in the Quartus II software, you
can make changes, optimize, and resynthesize specific modules in the
design by using the EDA tool to update the corresponding part of the design,
without affecting the other modules in the design.

The Mentor Graphics LeonardoSpectrum, Synplicity Synplify, Synopsys
FPGA Compiler II, and Mentor Graphics Precision RTL Synthesis software
provide customized features for using these tools in the block-based
LogicLock design flow.

“ ._ Py For Information About Refer To

Using LogicLock with EDA synthesis Chapter 9, “Synplicity Synplify and Synplify
tools Pro Support,” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Chapter 10, “Mentor Graphics
LeonardoSpectrum Support,” in the
Quartus Il Handbook, vol. 1, on the Altera
web site

Chapter 11, “Mentor Graphics Precision RTL
Synthesis Support,” in the Quartus Il
Handbook, vol. 1, on the Altera web site

Chapter 12, “Synopsys FPGA Compiler Il
BLIS and the Quartus Il LogicLock Design
Flow,” in the Quartus Il Handbook, vol. 1 on
the Altera web site

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 119

What’s in Chapter 7:

Introduction 122
Performing Timing Analysis in the

Quartus Il Software 123
Viewing Timing Analysis Results 128

Performing Timing Analysis with
EDA Tools 133

Chapter
Seven

Timing Analysis

&

CHAPTER 7: TIMING ANALYSIS

INTRODUCTION

Introduction

&

\ 5

The Quartus® II Timing Analyzer allows you to analyze the performance of
all logic in your design and helps to guide the Fitter to meet the timing
requirements in your design. By default, the Timing Analyzer runs
automatically as part of a full compilation to observe and report timing
information such as the setup times (tsy), hold times (ty), clock-to-output
delays (tco), pin-to-pin delay (tpp), maximum clock frequencies (fpax),
slack times, and other timing characteristics for the design. You can use the
information generated by the Timing Analyzer to analyze, debug, and
validate the timing performance of your design. You can also use the
Quartus II Timing Analyzer to perform a minimum timing analysis, which
reports the best-case timing results to verify clock-to-pad delays for signals
driving off-chip. Figure 1 shows the timing analysis flow.

Figure 1. Timing Analysis Flow

Report
Files
from Quar;iutiell > Quartus Il (.rpt, .htm)
Timing Analyzer
quartus_tan
_ | Quartus Il
Assignment Editor
Quartus Il
Settings —
File (.qsf) L=—
| | Quartus Il
Settings Dialog Box
R
Quartus Il >
from Quartus Il g EDA Netlist Writer > E-é E'iA Bloa.r d'TLe"Ie'
quartus_eda nalysis 100
Stamp Model Files
(.data, .mod, or .lib)
Verilog Output Files (.vo),

VHDL Output Files (.vho),

Standard Delay Format . SYnOPSYS
Output Files (.sdf) & — PrimeTime Software

Tcl Script Files (.tcl)

|

122 = INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS IN THE QUARTUS Il SOFTWARE

Performing Timing Analysis in the
Quartus Il Software

The Timing Analyzer automatically performs timing analysis on your
design during a full compilation. The following guidelines describe some of
the tasks that you can accomplish with the Quartus II Timing Analyzer:

B Specify initial project-wide and individual timing requirements, using
the Timing Wizard (Assignments menu), the Settings dialog box
(Assignments menu), and the Assignment Editor.

B Perform the timing analysis during a full compilation or separately
after an initial compilation.

B View the timing results using the Report Window, Timing Closure
floorplan, and 1ist_paths Tcl command.

Specifying Timing Requirements

Timing requirements allow you to specify the desired speed performance
for the entire project, for specific design entities, or for individual entities,
nodes, and pins.

You can use the Timing wizard to help you to create initial project-wide
timing settings. Once you have specified initial timing settings, you can
modify settings either by using the Timing wizard again, or by using the
Settings dialog box.

You can make individual timing settings with the Assignment Editor. After
specifying project-wide timing assignments and/or individual timing
assignments, you can run a timing analysis by compiling the design, or by
running the Timing Analyzer separately after an initial compilation.

If you do not specify timing requirement settings or options, the Quartus II
Timing Analyzer will run the analyses using default settings. By default, the
Timing Analyzer calculates and reports the fppax of every register, the tgy
and ty of every input register, the tco of every output register, the tpp
between all pin-to-pin paths, slack times, hold times, minimum tco, and
minimum tpp of the current design entity.

You can specify I/O timing requirements using the traditional tgy

requirement, tco requirement, and/or ty requirement timing assignments,
or you can include these paths as part of the clock analysis by using the

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 123

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS IN THE QUARTUS Il SOFTWARE

Input Maximum Delay, Input Minimum Delay, Output Maximum Delay,
or Output Minimum Delay assignments to specify delays based on external
device timing. Both types of I/O timing requirements ultimately produce

similar results through different methods.

Using the Settings dialog box or the Timing wizard, you can specify the
following timing requirements and other options:

m Overall frequency requirement for the project, or settings for individual

clock signals

B Delay requirements, minimum delay requirements, and path-cutting

options

B Reporting options, including the number or source and destination
registers and exclude paths
B Timing-driven compilation options

Specifying Project-Wide Timing Settings

Project-wide timing settings include maximum frequency, setup time, hold
time, clock-to-output delay and pin-to-pin delay, and minimum timing
requirements. You can also set project-wide clock settings and multiple
clock domains, and path-cutting options.

Table 1. Project-Wide Timing Settings (Part 1 of 2)

Requirement

Description

fmax (maximum frequency)

The maximum clock frequency that can be achieved
without violating internal setup (tsy) and hold (ty) time
requirements.

tgy (clock setup time)

The length of time for which data that feeds a register
via its data or enable input(s) must be present at an input
pin before the clock signal that clocks the register is
asserted at the clock pin.

ty (clock hold time)

The length of time for which data that feeds a register
via its data or enable input(s) must be retained at an
input pin after the clock signal that clocks the register is
asserted at the clock pin.

tco (clock-to-output delay)

The time required to obtain a valid output at an output
pin that is fed by a register after a clock signal transition
on an input pin that clocks the register.

124 m INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS IN THE QUARTUS Il SOFTWARE

Table 1. Project-Wide Timing Settings (Part 2 of 2)

Requirement

Description

tpp (pin to pin delay)

The time required for a signal from an input pin to
propagate through combinational logic and appear at an
external output pin.

minimum tcgo (clock-to-
output delay)

The minimum time required to obtain a valid output at
an output pin that is fed by a register after a clock signal
transition on an input pin that clocks the register. This
time always represents an external pin-to-pin delay.

minimum tpp (clock-to-
output delay)

Specifies the minimum acceptable pin-to-pin delay, that
is, the time required for a signal from an input pin to
propagate through combinational logic and appear at an
external output pin.

Specifying Individual Timing Assignments

You can make individual timing assignments to individual entities, nodes,
and pins with the Assignment Editor. Individual timing assignments
override project-wide requirements (if they are more stringent). The
Assignment Editor supports point-to-point timing assignments, wildcards
to identify specific nodes when making assignments, and timegroup
assignments to make individual assignments to groups of nodes.

The timing requirements that you enter for pins and nodes are saved in the
Quartus II Settings File (.qsf) for the top-level entity in the current hierarchy.

You can make the following types of individual timing assignments in the

Timing Analyzer:

B Individual clock settings: allow you to perform an accurate multiclock
timing analysis by defining the timing requirements and relationship of
all clock signals in the design. The Timing Analyzer supports both
single-clock and multiclock frequency analysis.

B Multicycle paths: paths between registers that require more than one
clock cycle to become stable. You can set multicycle paths to instruct the
Timing Analyzer to relax its measurements and avoid incorrect setup
or hold time violations.

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il = 125

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS IN THE QUARTUS Il SOFTWARE

B Cut paths: by default, the Quartus II software will cut paths between
unrelated clock domains when there are no timing requirements set or
only the default required fygax clock setting is used. The Quartus II
software will also cut paths between unrelated clock domains if
individual clock assignments are set but there is no defined relationship
between the clock assignments. You can also define cut paths for
specific paths in the design.

B Minimum delay requirements: individual ty, minimum tco, and
minimum tpp timing requirements for specific nodes or groups. You
can make these assignments to specific nodes or groups to override
project-wide minimum timing requirements.

B Individual tgy, tpp, and tco requirements on specific nodes in the
design.

B timegroup assignments: advanced timing assignment that you can
define in the Time Groups dialog box (Assignments menu), the
Quartus II Tcl Console, or one of the Quartus II executables that
support Tcl. Members of a defined timing group can include regular
node names, wildcards, and/or other timing group names. Conversely,
you can exclude specific nodes, wildcards, and/or other timing group
names from a timing group.

Performing a Timing Analysis

Once you have specified timing settings and assignments, you can run the
Timing Analyzer by performing a full compilation.

After compilation is complete, you can rerun timing analysis separately by
using the Start > Start Timing Analyzer command (Processing menu), run
a minimum timing analysis by choosing Start > Start Minimum Timing
Analysis (Processing menu), or use the Timing Analyzer Tool command
(Tools menu).

The Timing Analyzer Tool window provides an alternative interface for
controlling the Timing Analyzer. This interface is similar to the Timing
Analyzer interface in the MAX+PLUS II software. You can use the Timing
Analyzer Tool window to start and stop the Timing Analyzer, quickly view
summary timing analysis results, or to access detailed timing analysis
results in the Compilation Report. You can click List Paths to display
propagation delays for the selected path. See Figure 2.

126 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS IN THE QUARTUS Il SOFTWARE

Figure 2. Timing Analyzer Tool

2/ Timing Analyzer, Tool

Registered Parfomance |pd | tsu | teo | th | Custom Delays |

Clack: |c|k ﬂ
Valueg |

From state_mcinstl[filber~23

To acciinstAresult{11]

Clock period | 8.046 ns
Frequency |124.29 MHz

100 125 450

75 175
50 | 200

25

00:00:00

ki Start & Repart | Mumber of paths to list: |10 List Paths

[[5> Using the quartus_tan executable

You can also run the Timing Analyzer separately at the command prompt or in a
script by using the quartus_tan executable. You must run the Quartus Il Fitter
executable quartus_fit before running the Timing Analyzer.

The quartus_tan executable creates a separate text-based report file that can be
viewed with any text editor.

You can also launch the quartus_tan Tcl scripting shell, to run timing-related Tcl
commands, by typing the following command at a command prompt:

quartus_tan -s ¢

If you want to get help on the quartus_tan executable, type one of the following
commands at the command prompt:

quartus_tan -h ¢

quartus_tan -help ¢
quartus_tan --help=<topic name> '

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 127

CHAPTER 7: TIMING ANALYSIS
VIEWING TIMING ANALYSIS RESULTS

“ ._ Py For Information About Refer To

Specific timing settings and “Overview: Using the Timing Analyzer” in
performing a timing analysis in the Quartus Il Help
Quartus Il Software

Chapter 4, “Quartus Il Timing Analysis,” in
the Quartus Il Handbook, vol. 3, on the
Altera web site

Timing Analysis module of the Quartus I

Tutorial
Using the Timing Analyzer Tool MAX+PLUS Il Conversion module of the
window Quartus Il Tutorial

Viewing Timing Analysis Results

After you run a timing analysis, you can view the timing analysis results in
the Timing Analyzer folder of the Compilation Report. You can then list the
timing paths to validate circuit performance, determine critical speed paths
and paths that limit the design’s performance, and make additional timing
assignments. Additionally, you can use the 1ist_paths Tcl command to
locate and view information on any delay path in the design.

You can also use the Timing Closure floorplan (Project menu) to view
information on the critical paths in the design and view routing congestion.
For more information on using the Timing Closure floorplan to view critical
paths and routing congestion, refer to “Using the Timing Closure Floorplan”
on page 138 in Chapter 8, “Timing Closure.”

If you are familiar with MAX+PLUS® II timing reporting, you can find
timing information, such as the delay information from the MAX+PLUS II
Delay Matrix, in the Timing Analyzer sections of the Compilation Report
and in the Custom Delays tab of the Timing Analyzer Tool window.

Using the Report Window

information for clock setup and clock hold; tsy, ty, tpp, tco; minimum pulse

g The Timing Analysis sections in the Report window list the reported timing
width requirements; any timing assignments that were ignored during the

128 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 7: TIMING ANALYSIS
VIEWING TIMING ANALYSIS RESULTS

timing analysis; and any messages generated by the Timing Analyzer. By
default, the Timing Analyzer also reports the best-case minimum clock-to-
output times and best-case minimum point-to-point delays.

The Report Window reports the following types of information for timing
analysis:

Settings for timing requirements
Slack and minimum slack
Source and destination clock names
Source and destination node names
Required and actual point-to-point times
Required hold relationships
Actual fpax

Figure 3. Timing Analysis Results in the Report Window

2 filtref Compilation Report

% Compilation Report

B Legal Notice

ég Timing Analyzer Settings
éﬁ Timing Analyzer Summary
SHEA Clock Settings Summary

SR dock Setup: 'k
SR dock Setup: ‘2!

SR Minimum tco

'\i) Timing Analyzer Messages

< >

nalyzer Sunimary
Type

Slack |Required Time

Actual Time

From To

SR Flow Sumf‘nary 1§ Worst-case tsu MAA Mone 4403 ns net taps:instxn[3]~1egl clf
gg E:OW :angdsT i Worst-case koo MN/& Mone E519ns state_minstfilker™27 | follow clk
orst-case H one -3. ns taps:instln[7] el cl
=4 o L:g"se me 3] w h Ni& [N 237 7] Jan{7}reg0) I
< élj analysis & Synthesis i ‘Worst-case Minimum tea | NAA MHone 5.997 ng instd walid clk
- &5 Fitter 15| Clock Setup: ‘el 1.954 ne|100.00 MHz [perio... |124.29 MHz [pe... | state_minst [filker~29| accinst3resull[11] | clk ch
+ 5[:] Assermbler E Clock Setup: 'clkes2" 3,635 nz| 200.00 MHz [perio... |NA& instd insta[1] clk cl
= Timing Analyzer otal number of failed paths
| | 7| Total number of failed path

ALTERA CORPORATION

Making Assignments & Viewing Delay
Paths

You can access the Assignment Editor, List Paths and Locate in Timing
Closure Floorplan commands directly from the Timing Analyzer sections in
the Report Window to make individual timing assignments and view delay
path information. In addition, you can use the 1ist_paths Tcl command
to list delay path information.

INTRODUCTION TO QUARTUS Il = 129

CHAPTER 7: TIMING ANALYSIS
VIEWING TIMING ANALYSIS RESULTS

130 =

You can use the Assignment Editor to make an individual timing
assignment on any path in a Timing Analyzer report. This feature allows
you to easily make point-to-point assignments on paths.

The following steps describe the basic flow for making individual timing
assignments in the Assignment Editor:

1. Inthe Category bar, click Timing to indicate the category of assignment
you wish to make.

2. Click the To cell in the spreadsheet and use the Node Finder to find a
node, or type a node name, wildcard, and/or timegroup character that
identifies the destination node you want to assign.

3. Click the From cell in the spreadsheet and use the Node Finder to find
a node, or type a node name, wildcard, and/or timegroup character
that identifies the source node you want to assign.

4. Inthe spreadsheet, double-click the Assignment Name cell and select
the timing assignment you wish to make. For assignments that require
a value, double-click the Value cell and type or select the appropriate
assignment value.

You can also use the Locate in Timing Closure Floorplan command (Project
menu) to locate a path in the Timing Closure floorplan, which allows you to
take advantage of the Timing Closure floorplan features to make
assignments to a specific path. For more information on using the Timing
Closure floorplan, refer to “Using the Timing Closure Floorplan” on page
138 in Chapter 8, “Timing Closure.”

You can use the List Paths command (right button pop-up menu) to display
the intermediate delays of any path in a Timing Analyzer report panel in the
Messages window. The List Paths command allows you to find pin-to-pin,
register-to-register, and clock-to-output-pin delay paths, and display
information about any delay path in the design that appears in the Report
Window. See Figure 4.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 7: TIMING ANALYSIS
VIEWING TIMING ANALYSIS RESULTS

Figure 4. Output from List Paths Command

R

El&2 Info: + Longest pin ta register delay is 6.737 ns ~

Info: 1z + [C[0.000 ng] + CELL1.130 nz) = 1.130 ng; Loc. = PIM_15E; Fanout = 34; FIM Mode -

Info: & + IC[5.000 ng] + CELL[D.EBEY nz) = 6.797 ng; Loc. = LC_ 39 v15 MB; Fanout = 2; RE(

i} Info: Total cell delay = 1.797 ns [26.44 %]

Infa: Total interconnect delay = 5.000 ns [7356 %)

L} Info: + Micro setup delay of destination iz 0.029 ns -

< >
System /i Processing /

|Message: Oaf12 9 | J Q

The 1ist_paths Tcl command, which you can use in the quartus_tan
module and the Quartus II Tcl Console, allows you to specify any point-to-
point path and view the delay information. You can specify the number of
paths to report, the type of path (including minimum timing paths), and use
wildcards to identify source and destination nodes. This option reports
information in the same manner as the List Path command. See Figure 5.

Figure 5. Sample Output from list_paths Command

Fath Mumber: 1

tco from clock clock to destination pin gtl through register auto_maxiautolstreet_mapl0] is 8,869 n=

+ Longest clock path from clock clock to source register is 2,793 ns™M
13 + ICE0,000 nay + CELL{O,E1S ns) = 0,619 ns3 Loc, = Pin_WZ: CLK Mode = “clock”

23 + ICE1,638 nzy + CELL{0,542 ns)

2,799 n=; Loc, = LC_K31_Y1_M3: REG Mode = "auto_maxiautolstrest_maplil”

Total cell delay = 1,161 ns

Total interconnect delay = 1,632 ns
+ Micro clock to output delay of source is 0,156 nz
+ Longest register to pin delay is 5,914 ns

1:
21
EH
41

+ [C00,000 nst + CELLCO,000 nsd = 0,000 nst Loc,
+ 000,716 ned + CELL(OLOYS nz)
+ ICi0,518 nz» + CELL{0,366 ns)
+ 001,300 ned + CELL(Z,839 ns)

LC_X31_Y¥1_MN3: REC Node = “auto_maxiautolstrest_mapl0]”
LC_KZ0_Y1_MN3r COME Mode = “rtl™2817

LC_¥30_Y1_M3: COME Mode = "rt1™17°

Fin_AAL3: PIM Mode = “gtl”

0,791 ns: Loc,
1,675 n=t Loc,
5,914 n=s: Loc,

Total cell delay = 3,330 nz
Total interconnect delay = 2,584 ns

Using the Technology Map Viewer

The Quartus Il Technology Map Viewer provides a low-level, or atom-level,
technology-specific schematic representation a design. The Technology Map
Viewer includes a schematic view, and also includes a hierarchy list, which
lists the instances, primitives, pins, and nets for the entire design netlist.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 131

CHAPTER 7: TIMING ANALYSIS

VIEWING TIMING

ANALYSIS RESULTS

After performing Timing Analysis or performing a full compilation that
includes Timing Analysis, you can use the Technology Map Viewer to view
the nodes that make up a timing path, including information about total
delay and individual node delay. See Figure 6.

You can display the Technology Map Viewer after performing a timing
analysis by using the following methods:

® using the Technology Map Viewer command (Tools menu)

B using the Locate in Technology Map Viewer command (right button
pop-up menu) from a Timing Analyzer section in the Report Window

B using the Location list in the Messages window (after using the List

Paths command)

Figure 6. Technology Map View Window—Delay Information

:& Tech Viewer: chiptrip | Timing | Page 1 of 1

chiptrip
=-Inskances
#- aukao_max;: auto
#-speed_ch:speed
% - tick_cnt:tick.
#- ke _cnik:kime_c
#-Pins
#-MNetks

EBX

| Timing | Page 1 of 1 |

Total delay: 4.818 ns

street_map[1] (0.000 ns,0.161 ns)

DATAS

Selectd3 (1.094 nz, 0873 ns)

DATAE Select~73 (0,260 ns,0.879 ns)

DATAS

DATAL —

DATAS

DATA_OUTD DATEE
DATAD DATA_OUTO| DATAE

DATAC DATA_CUTY
CLK —

DATAC

L&]

DATAD
LCELL (BFBE)

ACLR
LCELL iSFEE)

DATAD

LCELL (BOES)

132 =

INTRODUCTION TO QUARTUS Il

For Information About Refer To

Using the Quartus Il Technology Map Chapter 14, “Analyzing Designs with the

Viewer Quartus Il RTL Viewer and Technology Map
Viewer” in the Quartus Il Handbook, vol. 1,
on the Altera web site

ALTERA CORPORATION

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS BY USING EDA TooLs

Performing Timing Analysis by
Using EDA Tools

The Quartus II software supports timing analysis and minimum timing
analysis using the Synopsys PrimeTime software on UNIX workstations and
board-level timing analysis using the Mentor Graphics® BLAST or Tau
board-level verification tools.

You can generate the necessary output files for performing timing analysis
in EDA timing analysis tools by specifying the appropriate timing analysis
tool in the Timing Analysis and Board-Level pages under EDA Tool
Settings in the Settings dialog box (Assignments menu) or in the New
Project Wizard (File menu) when creating a project, and then performing a
full compilation. You can also generate the files by using the Start > Start
EDA Netlist Writer command (Processing menu) after an initial
compilation. If you are using the NativeLink™ feature, you can also run a
timing analysis after an initial compilation by using the Run EDA Timing
Analysis Tool command (Tools menu).

[Using the quartus_eda executable

You can also run the EDA Netlist Writer to generate the necessary output files
separately at the command prompt or in a script by using the quartus_eda
executable. You must run the Quartus Il Fitter executable quartus_fit before
running the EDA Netlist Writer.

The quartus_eda executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_eda executable, type one of the following
commands at the command prompt:

quartus_eda -h ¢
quartus_eda -help ¢
quartus_eda --help=<topic name> <

Using the PrimeTime Software

The Quartus II software generates a Verilog Output File or VHDL Output
File, a Standard Delay Format Output File (.sdo) that contains timing delay
information, and a Tcl Script File that sets up the PrimeTime environment.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 133

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS BY USING EDA TooLS

If you are performing a minimum timing analysis, the Quartus II software
uses the minimum delay information generated by the Timing Analyzer in
the SDF Output File for the design.

Using the NativeLink feature, you can specify that the Quartus II software
launches the PrimeTime software in either command-line or GUI mode. You
can also specify a Synopsys Design Constraints File (.sdc) that contains
timing assignments for use in the PrimeTime software.

The following steps describe the basic flow to manually use the PrimeTime
software to perform timing analysis on a design after compilation in the
Quartus II software:

1. Specify EDA tool settings, either through the Settings dialog box
(Assignments menu), or during project setup, using the New Project
Wizard (File menu).

2. Compile your design in the Quartus II software to generate the output
netlist files. The Quartus II software places the files in a tool-specific

directory.

3. Source the Quartus II-generated Tcl Script File (.tcl) to set up the
PrimeTime environment.

4. Perform timing analysis in the PrimeTime software.

Using the BLAST and Tau Software

The Quartus II software generates Stamp model files that can be imported
into the BLAST or Tau software to perform board-level timing verification.

The following steps describe the basic flow for generating Stamp model files:

1. Specify EDA tool settings, either through the Settings dialog box
(Assignments menu), or during project setup, using the New Project
Wizard (File menu).

2. Compile the design in the Quartus II software to generate the Stamp
model files. The Quartus II software places the files in a tool-specific

directory.

3. Use the Stamp model files in the BLAST or Tau software to perform
board-level timing verification.

134 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 7: TIMING ANALYSIS
PERFORMING TIMING ANALYSIS BY USING EDA TooLs

“ ._ Py For Information About Refer To

Using the Synopsys PrimeTime Chapter 5, “Synopsys PrimeTime Support,”
software with the Quartus Il software in the Quartus Il Handbook,” vol. 3, on the
Altera web site

Using the Innoveda BLAST and Mentor “Overview: Using the BLAST Software with
Graphics Tau software with the the Quartus Il Software” in Quartus Il Help
Quartus Il software
“Overview: Using the Tau Software with the
Quartus Il Software” in Quartus Il Help

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 135

What’s in Chapter 8:

Introduction 138
Using the Timing Closure Floorplan 138
Using the Timing Optimization Advisor 142

Using Netlist Optimizations to Achieve
Timing Closure 143

Using LogicLock Regions to Achieve
Timing Closure 146

Using the Design Space Explorer to
Achieve Timing Closure 148

Chapter
Eight

Timing Closure

L

CHAPTER 8: TIMING CLOSURE

INTRODUCTION

Introduction

The Quartus® II software offers a fully integrated timing closure flow that
allows you to meet your timing goals by controlling the synthesis and place
and route of a design. Using the timing closure flow results in faster timing
closure for complex designs, reduced optimization iterations, and automatic
balancing of multiple design constraints.

The timing closure flow allows you to perform an initial compilation, view
design results, and perform further design optimization efficiently. You can
use the Timing Closure floorplan to analyze the design and make
assignments, use the Timing Optimization Advisor to view
recommendations for optimizing your design for timing, use netlist
optimizations on the design after synthesis and during place and route, use
LogicLock™ region assignments, and use the Design Space Explorer to
further optimize the design. Figure 1 shows the timing closure flow.

Figure 1. Timing Closure Flow

l

from Quartus Il
Compiler

to Quartus Il
Compiler
> Netlist A
Optimizations
Timing
> Optimization
Advisor
Timing Closure Analysis with Maredgssignnjents,k
Achieved > Timing Closure ['ncluding LogicLock]
Floorplan region, timing &
location assignments

Using the Timing Closure Floorplan

You can use the Timing Closure floorplan to view logic placement made by
the Fitter, view user assignments and LogicLock region assignments, and
routing information for a design. You can use this information to identify
critical paths in the design and make timing assignments, location
assignments, and LogicLock region assignments to achieve timing closure.

138 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 8: TIMING CLOSURE
USING THE TIMING CLOSURE FLOORPLAN

You can customize the way the Timing Closure floorplan displays
information using options available from the View menu. You can show the
device by package pins and their function; by interior MegaLAB™ structures,
LABs, and cells; by regions of the chip; and by the name and location of
selected signals.

You can also use the Field View command (View menu) to display the major
classifications of device resources in a high-level outline view in the
Floorplan Editor. Assignments are represented in Field view by colored
areas that indicate the amount of user-assigned, Fitter-placed, and
unassigned logic per structure in the device. You can use the information in
the Field view to make assignments to achieve timing closure on a design.

Viewing Assignments & Routing

The Timing Closure floorplan can simultaneously show user assignments
and Fitter location assignments. User assignments are all the location and
LogicLock region assignments you have made in the design. Fitter
assignments are the locations where the Quartus Il software placed all nodes
after the last compilation. You can show user assignments and Fitter
assignments with the Assignments command (View menu).

The Timing Closure Floorplan allows you to show the device resources and
the corresponding routing information for all design logic. Using the
Routing command (View menu), you can select device resources and view
the following types of routing information:

B Paths between nodes: display the path between selected logic cells,
I/0 cells, embedded cells, and pins that feed one another.

B Node fan-in and fan-out: display node fan-in and fan-out routing
information for selected embedded cells, logic cells, I/O cells, and pins.

B Routing delays: display routing delays to or from specific logic cells,
I/0 cells, embedded cells, or pins; between selected nodes; or along one
or more critical paths.

B Connection counts: show or hide the number of connections to a
selected object, from a selected object, or between selected objects.

B Physical timing estimates: displays the approximate delay from one

physical resource to another physical resource. Once you select a
physical resource, the delay is represented by the shade of potential

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 139

CHAPTER 8: TIMING CLOSURE
USING THE TIMING CLOSURE FLOORPLAN

destination resources (the darker the resource, the longer the delay)
and the delay to a destination resource is shown by placing the mouse
over possible destination another physical resource.

B Routing congestion: displays a graphical representation of the routing
congestion in a design. The darker the shading, the greater the routing
resource utilization. You can select a routing resource and then specify
the congestion threshold (displayed as red areas in the device) for the
resource.

m Critical paths: displays the critical paths in a design, including path
edges and routing delays. The default critical path view shows the
register-to-register paths. You can also view all the combinational
nodes for the worst-case path between the source and destination
nodes. You can specify whether you want to view critical paths by
delay or slack criteria and can specify a clock domain, source and
destination node names, and the number of critical paths to display.

You can also view the routing information for LogicLock regions in the
design, including connectivity and intra-region delay. LogicLock region
connectivity displays the connectivity between entities assigned to
LogicLock regions in the design and intra-region delay displays the
maximum time delay between source and destination paths in a LogicLock
region, including its child regions.

The Equations window displays routing and equation information for pin,
170 cell, logic cell, and embedded cell assignments. When you turn on
Equations (View menu), the Equations window is displayed at the bottom
of the Floorplan Editor window. See Figure 2.

Figure 2. Equations Window

Fan-ln [4/4] < GoTo Equations [1/1] GoTo: Fan-Out [2/2]
= clk [clk] [COMBOUT) < B1L03E [taps:insti<n_1[5]"regl] = DFFEA[& N1_decoder_nade[0][5] (mult:instSllpm_rult:|
B newt [newt] [COMBOLT) B1L030_sload_egn, GLOBAL(clk, IGLOBAL[reset). . @ B1LB30 [tapsinstln_2[5]~regl) [SDATA)
P reset [reset] [COMBOUT) newt, .]
@ B1L220 [tapsinstsr(5]regl) (REGOUT) B1L030_sload_eqn = B1L220;
< >

By selecting one or more logic cell, embedded cell, and/or pin assignments
in the floorplan, you can display their equations, fan-in, and fan-out in the
Equations list and expand or collapse the terms. The Fan-In list displays all

140 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 8: TIMING CLOSURE
USING THE TIMING CLOSURE FLOORPLAN

nodes that feed the selected logic cell, embedded cell, and/or pin
assignments. The Fan-Out list displays all nodes that are fed by the selected
logic cell, embedded cell, and/or pin assignments.

Making Assignments

To facilitate achieving timing closure, the Timing Closure floorplan allows
you to make location and timing assignments directly from the floorplan.
You can create and assign nodes or entities to custom regions and to
LogicLock regions in the Timing Closure floorplan, and you can also edit
existing assignments to pins, logic cells, rows, columns, regions, MegaLAB
structures, and LABs.

You can edit assignments in the Timing Closure floorplan in the following
ways:

Cut, copy, and paste node and pin assignments.

Launch the Assignment Editor to make assignments.

Use the Node Finder to help make assignments.

Create and assign logic to LogicLock regions.

Drag and drop nodes and entities from the Hierarchy tab of the Project
Navigator, LogicLock regions, and the Timing Closure floorplan to
other areas of the floorplan.

Before making assignments, you can preserve resource assignments from
the current compilation by back-annotating assignments to pins, logic cells,
rows, columns, regions, LABs, MegaLAB structures, and LogicLock regions
by using the Back-Annotate Assignments command (Assignments menuy).
For more information on using the Back-Annotate Assignments command,
see “Preserving Assignments through Back-Annotation” on page 106 in
Chapter 5, “Place & Route.”

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 141

CHAPTER 8: TIMING CLOSURE
USING THE TIMING OPTIMIZATION ADVISOR

“ ._ Py For Information About Refer To

Viewing and making assignments and Chapter 7, “Timing Closure Floorplan,” in
viewing routing in the Timing Closure the Quartus Il Handbook, vol. 2, on the
floorplan Altera web site

“Overview: Viewing Routing Information” in
Quartus Il Help

“Overview: Working with Assignments in
the Floorplan Editor” in Quartus Il Help

LogicLock module in the Quartus Il tutorial

Using the Timing Optimization
Advisor

The Timing Optimization Advisor offers recommendations for optimizing
your design for timing in the following areas:

maximum frequency (fpax)
setup timing (tsy)
clock-to-output (tco)
propagation delay (tpp)

If you have an open project, you can view the Timing Optimization Advisor
by choosing Timing Optimization Advisor (Tools menu). If the project has
not been compiled yet, the Timing Optimization Advisor provides only
general recommendations for optimizing for timing. If the project has been
compiled, however, the Timing Optimization Advisor can provide specific
timing recommendations for the project, based on the project information
and current settings. Figure 3 shows the Timing Optimization Advisor.

142 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 8: TIMING CLOSURE
USING NETLIST OPTIMIZATIONS TO ACHIEVE TIMING CLOSURE

Figure 3. Timing Optimization Advisor Initial Page

Optimization Advisor

i Status Design meets timing

"iﬁl How to use Timing Optimization &dvisor requiremenw
+' &) General Recommendations wiorst-case bsu 0 fa!led paths
+ Maximum Frequency {fmax) ‘warst-case teo 0 faled paths
+ Sekup Timing (ksu) twlorst-case tpd 0 failed paths
- Clock-to-Cutput (kco’ Clock Setup: ‘clock’ 0 failed paths
+ Fropagation Delay {tpd) Tatal nurnber of failed paths 0 failed paths

Open Aeport Window - Timing
Analyzer Summary

The Timing Optimization Advisor features are very similar to the Resource
Optimization Advisor; for more information, refer to “Using the Resource
Optimization Advisor” on page 101 in Chapter 5, “Place & Route.”

Using Netlist Optimizations to
Achieve Timing Closure

The Quartus II software includes netlist optimization options to further
optimize your design during synthesis and during place and route. Netlist
' optimizations are push-button features that offer improvements to fyrax
"7 results by making modifications to the netlist to improve performance.
These options can be applied regardless of the synthesis tool used.
Depending on your design, some options may have more of an effect than
others.

You can specify synthesis and physical synthesis netlist optimizations in the

Synthesis Netlist Optimizations and Physical Synthesis Optimizations
pages of the of the Settings dialog box (Assignments menu). See Figure 4.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 143

CHAPTER 8: TIMING CLOSURE
USING NETLIST OPTIMIZATIONS TO ACHIEVE TIMING CLOSURE

Figure 4. Netlist Optimizations

Settings - chiptrip1

Categary.
General Physical Synthesis Dptimizations
Files
User Libraries Specily optians for performing physical synthesis optimizations during fitting. Mote: The availability of
Device thege options depends on the curent device family,

Timing Requirements & Options
EDA Tool Settings

Compilation Process

Analysiz & Synthesiz Settings
Fitter Settings

7

[Peifoim physical synthesis for combinational logic

Physical synthesis for registers

#

™ Perform register duplication

Optimizations [~ Perfarm register retiming

Timing Analyzer
Design Assistant
SignalT ap Il Logic Analyzer

Settings - chiptrip1

Timing Requirements & Options
EDA Tool Settings
Compilation Process
Analyziz & Synthesis Settings
WHDL Input
Verilog HOL Input

S
Analpsiz & Synthesis settings)
[V Perform gate-level register retiming

™ Allow register retiming to trade off Tsu/T oo with Frias

Fitter Settings
Timing Analyzer

Design Assistant

SignalT ap Il Logic Analyzer
SignalProbe Settings
Sirnulator

Software Build Settings
HardCopy Settings

+

+

£

SignalProbe Settings Category
Simulator General Synthesis Hethist Optimizations
+- Software Build Settings Files
HardCapy Settings User Libraries Specify options for performing netlist optimizations duning synthesis. Note: The availability of these
Device options depends on the current device Family.

v Peiform W'SIWw'G primitive respnthesis [using optimization technique specified in

| Physical Synthesis
Optimizations

Synthesis Netlist
Optimizations

Canicel

Netlist optimizations for synthesis include the following options:

Perform WYSIWYG primitive resynthesis: Directs the Quartus II

software to unmap WYSIWYG primitives during synthesis. When this
option is turned on, the Quartus II software unmaps the logic elements
in an atom netlist to gates and remaps the gates to Altera® LCELL
primitives. This option allows the Quartus II software to use different
techniques specific to a device architecture during the remapping
process and uses the optimization technique (Area, Balanced, or
Speed) that you specified in the Analysis & Synthesis Settings page of

the Settings dialog box.

144 m INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 8: TIMING CLOSURE
USING NETLIST OPTIMIZATIONS TO ACHIEVE TIMING CLOSURE

B Perform gate-level register retiming: Allows registers to be moved
across combinational logic to balance timing, but does not change the
functionality of the current design. This option moves registers across
combinational gates only, and not across user-instantiated logic cells,
memory blocks, DSP blocks, or carry or cascade chains, and has the
ability to move registers from the inputs of a combinational logic block
to the block’s output, potentially combining the registers. It can also
create multiple registers at the input of a combinational logic block
from a register at the output of a combinational logic block.

B Allow register retiming to trade off Tsu/Tco with Fmax: Directs the
Quartus II software to move logic across registers that are associated
with I/O pins during register retiming to trade off tco and tgy with
fvmax- When you turn on this option, register retiming can affect
registers that feed and are fed by I/O pins. If you do not turn on this
option, register retiming does not touch any registers that are
connected to I/O pins.

Netlist optimizations for physical synthesis and fitting include the following
options:

B Perform physical synthesis for combinational logic: Directs the
Quartus II software to try to increase performance by performing
physical synthesis optimizations on combinational logic during fitting.

B Perform register duplication: Directs the Quartus II software to
increase performance by using register duplication to perform physical
synthesis optimizations on registers during fitting.

B Perform register retiming: Directs the Quartus II software to increase
performance by using register retiming to perform physical synthesis
optimizations on registers during fitting.

B Physical synthesis effort: Specifies the level of effort used by the
Quartus II software when performing physical synthesis (Normal,
Extra, and Fast).

The Quartus II software cannot perform these netlist optimizations for
fitting and physical synthesis on a back-annotated design. In addition, if you
use one or more of these netlist optimizations on a design, and then back-
annotate the design, you must generate a Verilog Quartus Mapping

File (.vqm) if you wish to save the results. The VQM File must be used in
place of the original design source code in future compilations.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 145

CHAPTER 8: TIMING CLOSURE
USING LoGICcLOCK REGIONS TO ACHIEVE TIMING CLOSURE

“ ._ Py For Information About Refer To

Achieving timing closure using netlist Chapter 8, “Netlist Optimizations and
optimizations Physical Synthesis,” in the Quartus Il
Handbook, vol. 2, on the Altera web site

Using LogicLock Regions to Achieve
Timing Closure

You can use LogicLock regions to achieve timing closure by analyzing the
design in the Timing Closure floorplan, and then constraining critical logic
in LogicLock regions. LogicLock regions are generally hierarchical, giving
] you more control over the placement and performance of modules or groups
d of modules. You can use the LogicLock feature on individual nodes, for
instance, by assigning the nodes along the critical path to a LogicLock
region.

Successfully improving performance by using LogicLock regions in a design
requires a detailed understanding of the design’s critical paths. Once you
have implemented LogicLock regions and attained the desired performance,
back-annotate the contents of the region to lock the logic placement.

Soft LogicLock Regions

LogicLock regions have predefined boundaries and nodes assigned to a
particular region always reside within the boundary or LogicLock region
size. Soft LogicLock regions can enhance design performance by removing
the fixed rectangular boundaries of LogicLock regions. With the soft region
property enabled, the Fitter attempts to place as many assigned nodes in the
region as close together as possible, and has the added flexibility of moving
nodes outside the soft region to meet a design’s performance requirement.

Path-Based Assignments

The Quartus II software enables you to assign specific source and
destination paths to LogicLock regions, allowing for easy grouping of
critical design nodes into a LogicLock region. You can create path-based

146 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 8: TIMING CLOSURE
USING LoGICLOCK REGIONS TO ACHIEVE TIMING CLOSURE

assignments with the Paths dialog box, by dragging and dropping critical
paths from the Timing Analyzer section of the Report window and the
Timing Closure floorplan into LogicLock regions.

The Paths dialog box allows you to specify a path by identifying a source
and destination node and using wildcards when identifying nodes. You can
click List Nodes to determine how many nodes will be assigned to the
LogicLock region. You open this dialog box by clicking Add Path or double-
clicking in the Contents tab of the LogicLock Region Properties dialog box,
or by double-clicking on a path in the Floorplan Editor. See Figure 5.

Figure 5. Paths Dialog Box

Paths E|

Specify path-based and wildoard assignments for the selected LogicLock region. Maote: Leaving
the gource name blank directs the Fitter to treat the assignment as a hierarchical or wildcard
assignment.

Path

BN TETE |largefiberfiter-fiter_i0*

[Exclude source

D estination name: |Iargefilterlfilter:filter_i1 |

v Exclude destination

Mame exclude: |

W bl

LogicLock redion: | fikey_filer:fiter_i3
[V Show full hierarchy names

Matching Modes
Modes:

L fiterfilter_idlmult mult_i3la_out_0 A
< filter:filter_iOlmult mult_i3la_out_1
i filterfilter_iOlmulk mult_i3la_out_2
i filter:filter_iOlmult mult_i3la_out_3
4 fiterfilker_illmult mult_i3la_out_4
o
o

filter:filker_i0mult: mult_i3la_out &
filter:filker_i0mult: mult_i3la_out_B v

Mode count: 16

oK Cancel

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 147

CHAPTER 8: TIMING CLOSURE
USING THE DESIGN SPACE EXPLORER TO ACHIEVE TIMING CLOSURE

“ ._ Py For Information About Refer To

Achieving timing closure using the Chapter 7, “Timing Closure Floorplan,” in
LogicLock methodology the Quartus Il Handbook, vol. 2, on the
Altera web site

Chapter 10, “LogicLock Design
Methodology,” in the Quartus Il Handbook,
vol. 2, on the Altera web site

LogicLock module of the Quartus Il Tutorial

Using the Design Space Explorer to
Achieve Timing Closure

You can use the Design Space Explorer (DSE) Tcl script, dse.tcl, to optimize
your design for timing. The DSE interface allows you to explore a range of
Quartus II options and settings automatically to determine which settings
should be used to obtain the best possible result for the project. You can
specify the level of change you will allow DSE to make, your optimization
goals, the target device, and the allowable compilation time.

You can run the Design Space Explorer from the command line by using the
quartus_sh executable or by using the Quartus II <version number> Design
Space Explorer command from the Windows Start menu. For more
information on using the Design Space Explorer, refer to “Using the Design
Space Explorer” on page 102 in Chapter 5, “Place & Route.”

148 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 9:

Introduction 150

Programming One or More Devices
by Using the Programmer 154

Creating Secondary Programming Files 155

Using the Quartus Il Software to
Program Via a Remote JTAG Server 162

Chapter
Nine

Programming &
Configuration

CHAPTER 9: PROGRAMMING & CONFIGURATION
INTRODUCTION

Introduction

Once you have successfully compiled a project with the Quartus® II
software, you can program or configure an Altera® device. The Assembler
module of the Quartus II Compiler generates programming files that the
Quartus II Programmer can use to program or configure a device with
Altera programming hardware. You can also use a stand-alone version of
the Quartus II Programmer to program and configure devices. Figure 1
shows the programming design flow.

Figure 1. Programming Design Flow

from > Quartus Il Altera
Quartus Il —p|Quartus Il Assembler Programmer Programming
Fitter quartus_asm > quartus_pgm Hardware
Programmer *
Object Files (.pof) N
& SRAM Object \
Files (.sof) Jam Files (jam) & N Chain 1/O Pin
Jam Byte-Code % Description State
Files (.jbc) Files (.cdf) Files (.ips)

Serial Vector Format

Files (.svf) & In System
L Configuration Files (.isc)

— p- O other systems,
:l N such as embedded
processors

<%

\d \

Quartus Il Convert

Programming Files
quartus_cpf

Secondary programming files, including Raw
Binary Files (.rbf), Tabular Text Files (.ttf),
Raw Programming Data Files (.rpd),
Hexadecimal Output Files for EPCI16 (.hex),
JTAG Indirect Programming File (.jic) &

POFs for Local Update or Remote Update

The Assembler automatically converts the Fitter’s device, logic cell, and pin
assignments into a programming image for the device, in the form of one or
more Programmer Object Files (.pof) or SRAM Object Files (.sof) for the
target device.

You can start a full compilation in the Quartus II software, which includes
the Assembler module, or you can run the Assembler separately.

150 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 9: PROGRAMMING & CONFIGURATION
INTRODUCTION

[[& Using the quartus_asm executable

You can also run the Assembler separately at the command prompt or in a script by
using the quartus_asm executable. You must run the Quartus Il Fitter executable,
quartus_fit, successfully before running the Assembler.

The quartus_asm executable creates a separate text-based report file that can be
viewed with any text editor.

If you want to get help on the quartus_asm executable, type one of the following
commands at the command prompt:

quartus_asm -h ¢
quartus_asm -help ¢
quartus_asm --help=<topic name> '

You can also direct the Assembler or Programmer to generate programming
files in other formats by using one of the following methods:

B The Device & Pin Options dialog box, which is available from the
Device page of the Settings dialog box (Assignments menu), allows
you to specify optional programming file formats, such as Hexadecimal
(Intel-Format) Output Files (.hexout), Tabular Text Files (.ttf), Raw
Binary Files (.rbf), Jam™ Files (.jam), Jam Byte-Code Files (.jbc), Serial
Vector Format Files (.svf), and In System Configuration Files (.isc).

B The Create/Update > Create JAM, SVF, or ISC File command (File
menu) generates Jam Files, Jam Byte-Code Files, Serial Vector Format
Files, or In System Configuration Files.

B The Create/Update > Create/Update IPS File command (File menu)
displays the ISP CLAMP State Editor dialog box, which allows you to
create or update I/O Pin State Files (.ips) that contain pin state
information for specific devices used to configure pin states during
programming.

B The Convert Programming Files command (File menu) combines and
converts SOFs and POFs for one or more designs into other secondary
programming file formats, such as Raw Programming Data Files (.rpd),
HEXOUT Files for EPC16 or SRAM, POFs, POFs for Local Update or
Remote Update, Raw Binary Files, JTAG Indirect Configuration
Files (.jic), and Tabular Text Files.

These secondary programming files can be used in embedded processor-
type programming environments, and, for some Altera devices, by other

programming hardware.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 151

CHAPTER 9: PROGRAMMING & CONFIGURATION

INTRODUCTION

The Programmer uses the POFs and SOFs generated by the Assembler to
program or configure all Altera devices supported by the Quartus II
software. You use the Programmer with Altera programming hardware,
such as the MasterBlaster™, ByteBlasterM V™, ByteBlaster™ II, USB-Blaster™,
or Ethernet Blaster download cable; or the Altera Programming Unit (APU).

[[& Using the Stand-Alone Programmer

If you want to use only the Quartus Il Programmer, you can install the stand-alone
version of the Quartus Il Programmer, quartus_pgmw, instead of installing the
complete Quartus Il software.

The Programmer allows you to create a Chain Description File (.cdf) that
contains the name and options of devices used for a design. For some
programming modes that allow programming or configuring multiple
devices, the CDF also specifies top-to-bottom order of the SOFs, POFs, Jam
Files, Jam Byte-Code Files, and devices used for a design, as well as the order
of the devices in the chain. Figure 2 shows the Programmer window.

Figure 2. Programmer Window

i Chain1.cdf

éaHardwareSetup... MasterBlaster [COM1] Mode: [JTAG | Progress: 0%

i Start File |Device |Ehecksum Usercode E[nongﬁ[;m; Werify | Eilr?:cljk | E xamine Segﬁrity | EILS&E'IP |
D /gdesigns/tutorial filref. jbe. EF1C12 0011BDS3 FFFFFFFF O [l O
D /gdesigns/tutorial filref.i... EF1C12 0011BDS3 FFFFFFFF O O a Oa O O

ﬂ'ﬂAuto Ditect D /gdesigns/tutorial filref. sof EP1C120240 0011BD53 FFFFFFFF O [l (] O O O

B Add File...

B2 Add Devics...

152 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 9: PROGRAMMING & CONFIGURATION
INTRODUCTION

[[& Using the quartus_pgm executable

You can also run the Programmer separately at the command prompt or in a script
by using the quartus_pgm executable. You may need to run the Assembler
executable, quartus_asm, in order to produce a programming file before running
the Programmer.

If you want to get help on the quartus_pgm executable, type one of the following
commands at the command prompt:

quartus_pgm -h ¢
quartus_pgm -help ¢
quartus_pgm --help=<topic name> '

The Programmer has four programming modes:

Passive Serial mode

JTAG mode

Active Serial Programming mode
In-Socket Programming mode

The Passive Serial and JTAG programming modes allow you to program
single or multiple devices using a CDF and Altera programming hardware.
You can program a single EPCS1 or EPCS4 serial configuration device using
Active Serial Programming mode and Altera programming hardware. You
can program a single CPLD or configuration device using In-Socket
Programming mode with a CDF and Altera programming hardware.

If you want to use programming hardware that is not available on your

computer, but is available via a JTAG server, you can also use the
Programmer to specify and connect to remote JTAG servers.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 153

CHAPTER 9: PROGRAMMING & CONFIGURATION
PROGRAMMING ONE OR MORE DEVICES BY USING THE PROGRAMMER

“ ._ Py For Information About Refer To

General programming information “Programming Files” glossary definition,
“Overview: Working with Chain Description
Files,” and “Overview: Converting
Programming Files” in Quartus Il Help

Using the Programmer The Programming module of the Quartus I
Tutorial
Altera programming hardware Altera Programming Unit User Guide,

MasterBlaster Serial/USB Download Cable
User Guide, ByteBlaster Il Parallel Port
Download Cable User Guide, ByteBlasterMV
Parallel Port Download Cable User Guide,
USB-Blaster User Guide, and Ethernet
Blaster User Guide on the Altera web site

Programming hardware installation Quartus Il Installation & Licensing for PCs
and Quartus Il Installation & Licensing for
UNIX and Linux Workstations manuals

Device-specific programming The Configuration Handbook on the Altera
information web site

Programming One or More Devices
by Using the Programmer

The Quartus II Programmer allows you to edit a CDF, which stores device
name, device order, and optional programming file name information for a
design. You can use a CDF to program or configure a device with one or
more SOFs, POFs, or with a single Jam File or Jam Byte-Code File.

The following steps describe the basic flow for programming one or more
devices by using the Programmer:

1. Connect Altera programming hardware to your system and install any
necessary drivers.

2. Perform a full compilation of the design, or at least run the Analysis &

Synthesis, Fitter, and Assembler modules of the Compiler. The
Assembler automatically creates SOFs and POFs for the design.

154 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 9: PROGRAMMING & CONFIGURATION
CREATING SECONDARY PROGRAMMING FILES

3. Open the Programmer to create a new CDF. Each open Programmer
window represents one CDF; you can have multiple CDFs open, but
you can program using only one CDF at a time.

4. Select a programming hardware setup. The programming hardware
setup you select affects the types of programming modes available in
the Programmer.

5. Selectan appropriate programming mode, such as Passive Serial mode,
JTAG mode, Active Serial Programming mode, or In-Socket
Programming mode.

6. Depending on the programming mode, you can add, delete, or change
the order of programming files and devices in the CDF. You can direct
the Programmer to detect Altera-supported devices in a JTAG Chain
automatically and add them to the device list of the CDF. You can also
add user-defined devices.

7. For non-SRAM, non-volatile devices, such as configuration devices,
MAX 3000, and MAX 7000 devices, you can specify additional
programming options to query the device, such as Verify, Blank-
Check, Examine, and Security Bit.

8. If the design has ISP CLAMP State assignments, or if an I/O Pin State
File exists for the design, turn on ISP CLAMP.

9. Start the Programmer.

Creating Secondary Programming
Files

You can also create secondary programming files in other formats, such as
Jam Files, Jam Byte-Code Files, Serial Vector Format Files, In System
Configuration Files, Raw Binary Files, Tabular Text Files, or I/O Pin State
Files for use by other systems, such as embedded processors. Additionally,
you can convert SOFs or POFs into other programming file formats, such as
a POF for Remote Update, a POF for Local Update, a HEXOUT File for
EPC16, a HEXOUT File for SRAM, or a Raw Programming Data File. You
can create these secondary programming files by using the Create/Update >
Create JAM, SVF, or ISC File command (File menu), the Create/Update >
Create/Update IPS File command (File menu), and the Convert

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 155

CHAPTER 9: PROGRAMMING & CONFIGURATION
CREATING SECONDARY PROGRAMMING FILES

Programming Files command (File menu). You can also use the
Programming Files tab of the Device & Pin Options dialog box, which is
available from the Device page in the Settings dialog box (Assignments
menu), to specify optional programming file formats for the Assembler to
generate during compilation.

Creating Other Programming File
Formats

You can use the Create/Update > Create JAM, SVF, or ISC File command
(File menu) to create Jam Files, Jam Byte-Code Files, Serial Vector Format
Files, or In System Configuration Files. These files can then be used in
conjunction with Altera programming hardware or an intelligent host to
configure any Altera device supported by the Quartus II software. You can
also add Jam Files and Jam Byte-Code Files to CDFs. See Figure 3.

Figure 3. Create JAM, SVF, or ISC File Dialog Box

Create JiM, SYF, or ISC File X
File narne:; |D:.n"qclesigns!tutolialﬁ'filtref.svf J
File farmat: |Serial Wector Format [zwf) j

Operation Programming options
* Program [~ Blank-check
" Verify v

Clock frequency

TCK freguency: |1D.D MHz

Supply voltage:

You can use the Create/Update > Create/Update IPS File command (File
menu) to create I/0O Pin State Files that describe the ISP CLAMP state for
device pins used at the start of programming. The Create/Update >
Create/Update IPS File command opens the ISP CLAMP State Editor
dialog box, which is shown in Figure 4.

156 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 9: PROGRAMMING & CONFIGURATION
CREATING SECONDARY PROGRAMMING FILES

Figure 4. ISP CLAMP State Editor Dialog Box

ISP CLAMP State Editor

Device: |[EPM71288F100 Select Device...
File name: |D:a"qdesigns.n"tutoriaIa"fir_filter.ips Open IPS File...

BRI
}

N,,-'
HIGH
Tri-ztate Save

Tri-zhates
Tri-state Save bz .
A7 Tri-state
BE Tri-state
£8 Loy Cloze

A9 Tri-zhate
B3 Tri-zkate
Tri-zhate
B10 Sample and Sustain
10 Tri-zhate
C3 Tri-state
uls} Tri-zhate hd

The following steps describe the basic flow for creating Jam Files, Jam Byte-
Code Files, Serial Vector Format Files, In System Configuration Files, or I/O
Pin State Files:

1. Perform a full compilation of the design, or at least run the Analysis &
Synthesis, Fitter, and Assembler modules of the Compiler. The
Assembler automatically creates SOFs and POFs for the design.

2. Open the Programmer window to create a new CDF.

3. Specify JTAG mode.

4. Add, delete, or change the order of programming files and devices in
the CDF. You can direct the Programmer to detect Altera-supported
devices in a JTAG Chain automatically and add them to the device list
of the CDF. You can also add user-defined devices.

5. If you want to create Jam Files, Jam Byte-Code Files, Serial Vector
Format Files, or In System Configuration Files, choose Create/Update >
Create Jam, SVF, or ISC File (File menu) and specify the name and file
format of the file you want to create.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 157

CHAPTER 9: PROGRAMMING & CONFIGURATION
CREATING SECONDARY PROGRAMMING FILES

158 =m

6. If you want to create I/O Pin State Files, choose Create/Update >
Create/Update IPS File (File menu), and in the ISP CLAMP State
Editor dialog box (File menu), specify the appropriate ISP CLAMP state
pin settings and specify a name for the file.

Converting Programming Files

You can use the Convert Programming Files dialog box (File menu) to
combine and convert SOFs or POFs for one or more designs into other
programming file formats for use with different configuration schemes. For
example, you can add a remote update-enabled SOF to a POF for Remote
Update, which is used to program a configuration device in remote update
configuration mode, or you can convert a Programmer Object File into a
HEXOUT File for EPC16 for use by an external host. Or you can convert a
POF into a Raw Programming Data File for use with some configuration
devices. You can also convert SOFs or POFs into JTAG Indirect
Configuration Files, which you can use to program the configuration data
for a Cyclone™ device into an EPCS1 or EPCS4 serial configuration device.

You can use the Convert Programming Files dialog box to set up output
programming files by arranging the chain of SOFs stored in a HEXOUT File
for SRAM, POFs, Raw Binary Files, or Tabular Text Files, or by specifying a
POF to be stored in a HEXOUT File for EPC16. The settings you specify in
the Convert Programming Files dialog box are saved to a Conversion Setup
File (.cof) that contains information such as device and file names, device
order, device properties, and file options. Figure 5 shows the Convert
Programming Files dialog box.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 9: PROGRAMMING & CONFIGURATION
CREATING SECONDARY PROGRAMMING FILES

Figure 5. Convert Programming Files Dialog Box

Convert Programming Files Fz|

Specify the input files to convert and the type of programming file to generate.
*Y'ou can alzo import input file information from other files and save the conversion setup information created here for
future use.

Converzion setup files

Open Converzion Setup Data... Save Conversion Setup...

Output programmirg file

Frogramming file type: |Programmer Obiject File [.pof] j
Options... Configuration device: |EF'EI1 BUCES j Mode: |1-bit Passive Serial j
File name: |D:.-"qdesigns.-"tutorial.-"output_file.pof J
Femate/Local update difference file: | J
v temary Map File
Input files to conwvert
| File/Data area | Properties | Add Data

Main Block D ata

Add File...

Battom Boat D1ata

ILLERE

Froperties

(] 8 | Cancel |

For a POF for an EPC4, EPCS, or EPC16 configuration device, you can also
specify the following information:

Establish different configuration bitstreams, which are stored in pages
in the configuration memory space.

Create parallel chains of SOFs within each page.

Arrange the order of SOFs and Hexadecimal (Intel-Format) Files (.hex)
stored in flash memory.

Specify the properties of SOF Data items and HEX Files.

Add or remove SOF Data items from the configuration memory space.
If you wish, create Memory Map Files (.map).

For POFs for Local Update and POFs for Remote Update, you can specify the
following information:

Add or remove remote update enabled POFs and remote update
enabled SOFs from the configuration memory space.
Specify the properties of SOF Data items.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 159

CHAPTER 9: PROGRAMMING & CONFIGURATION
CREATING SECONDARY PROGRAMMING FILES

B Add or remove SOF Data items.
m If you wish, create Memory Map Files, and generate remote update
difference files and local update difference files.

You can also use the Convert Programming Files dialog box to arrange and
combine multiple SOFs into a single POFs in Active Serial Configuration
mode. The POF can be used to program an EPCS1 or EPCS4 serial
configuration device, which can then be used to configure multiple devices
through a Cyclone device.

[[& Using the quartus_cpf executable

You can also run the Convert Programming Files feature separately at the command
prompt or in a script by using the quartus_cpf executable. You may need to run

the Assembler executable, quartus_asm, in order to produce a programming file
before running the Programmer.

If you want to get help on the quartus_cpf executable, type one of the following
commands at the command prompt:

quartus_cpf -h ¢
quartus_cpf -help ¢
quartus_cpf --help=<topic name> ¢

The following steps describe the basic flow for converting programming
files:

1. Run the Assembler module of the Compiler. The Assembler
automatically creates SOFs and POFs for the design.

2. Use the Convert Programming Files dialog box and specify the format
and name of the programming file you want to create.

3. Specify a configuration mode that is compatible with the configuration
memory space of the programming file.

4. Specify appropriate programming options for the programming file
type and target device.

5. (Optional) Direct the Programmer to generate a remote update
difference file or a local update difference file for a Programmer Object
File for Remote Update or a Programmer Object File for Local Update,
by selecting the type of difference file.

160 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 9: PROGRAMMING & CONFIGURATION
CREATING SECONDARY PROGRAMMING FILES

6. Add or remove SOF Data items and assign them to pages.

7. (Optional) Add, remove, or change the order of SOFs and POFs to be
converted for one or more SOF Data item(s) or POF Data item.

8. (Optional) Add a HEX File to a Bottom Boot Data or Main Block Data
item for a POF for an EPC4, EPCS, or EPC16 configuration device, and
specify additional properties of SOF Data items, POF Data items, and
HEX Files.

9. Save the current state of the Input files to convert list and the output
programming file settings in a Conversion Setup File.

10. Convert the file. If you want, you can also specify a Memory Map File

to be created.

« ._ Py For Information About Refer To

In-system programmability and Configuration Handbook on the Altera web
in-circuit reconfigurability site

Application Note 100 (In-System
Programmability Guidelines) on the Altera
web site.

Application Note 95 (In-System
Programmability in MAX Devices) on the
Altera web site.

Application Note 88 (Using the Jam
Language for ISP & ICR via an Embedded
Processor) on the Altera web site.

Application Note 122 (Using Jam STAPL for
ISP & ICR via an Embedded Processor) on
the Altera web site.

Application Note 298 (Reconfiguring
Excalibur Devices under Processor Control)
on the Altera web site

In-system programming The Programming module of the Quartus Il
Tutorial
Remote system configuration Chapter 15, “Using Remote System

Configuration with Stratix & Stratix GX
Devices” of the Stratix Device Handbook,
vol. 2, on the Altera web site

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 161

CHAPTER 9: PROGRAMMING & CONFIGURATION
USING THE QUARTUS Il SOFTWARE TO PROGRAM VIA A REMOTE JTAG SERVER

Using

the Quartus Il Software to

Program Via a Remote JTAG Server

In the Hardware Setup dialog box, which is available from the Hardware
button in the Programmer window or from the Edit menu, you can add
remote JTAG servers, which you can connect to, for example, to use
programming hardware that is not available on your computer, and
configure local JTAG server settings so remote users can connect to your
local JTAG server.

You can specify that remote clients should be enabled to connect to the JTAG
server in the Configure Local JTAG Server dialog box, which is available
from the JTAG Settings tab of the Hardware Setup dialog box.

You can specify the remote server you want to connect to in the Add Server
dialog box, which is available from the JTAG Settings tab of the Hardware
Setup dialog box. When you connect to a remote server, the programming
hardware that is attached to the remote server will be displayed in the
Hardware Settings tab.

For Information About Refer To

Using a Local JTAG Server “Configuring Local JTAG Server Settings,”
and “Adding a JTAG Server” in Quartus Il
Help

162 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 10:

Introduction
Using the SignalTap Il Logic Analyzer
Using SignalProbe

Using the In-System Memory Content
Editor

Using the RTL Viewer & Technology
Map Viewer

Using the Chip Editor

164
165
172

174

176
177

Chapter
Ten

Debugging

CHAPTER 10: DEBUGGING

INTRODUCTION

Introduction

4

The Quartus® II SignalTap® II Logic Analyzer and the SignalProbe™ feature
analyze internal device nodes and I/O pins while operating in-system and
at system speeds. The SignalTap II Logic Analyzer uses an embedded logic
analyzer to route the signal data through the JTAG port to either the
SignalTap II Logic Analyzer or an external logic analyzer or oscilloscope,
based on user-defined trigger conditions. You can also use a stand-alone
version of the SignalTap II Logic Analyzer to capture signals. The
SignalProbe feature uses incremental routing on unused device routing
resources to route selected signals to an external logic analyzer or
oscilloscope. Figure 1 and Figure 2 show the SignalTap II and SignalProbe
debugging flows.

Figure 1. SignalTap Il Debugging Flow

Quartus Il Fitter Quartus Il Assembler
quartus_fit quartus_asm

\/

Programming
Files

SignalTap Il
File (.stp)

— Quartus Il Assembler

Quartus Il
Programmer
quartus_pgm

Altera Device

A

quartus_asm

. | 1

External Logic SignalTap Il

Analyzer or Logic Analyzer
Oscilloscope

Figure 2. SignalProbe Debugging Flow

from Quartus Il
Compiler
(full compilation)

Full Compilation

Assign SignalProbe Quartus Il Assembler

— q a or —
Fios Lislie o SignalProbe Compilation quartus_asm
Programming —
Files 9=
External Logic Quartus Il
Analyzer or < Altera Device = Programmer
Oscilloscope quartus_pgm

164 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 10: DEBUGGING
USING THE SIGNALTAP Il LOGIC ANALYZER

Using the SignalTap Il Logic
Analyzer

The SignalTap II Logic Analyzer is a second-generation system-level
debugging tool that captures and displays real-time signal behavior,
allowing you to observe interactions between hardware and software in
system designs. The Quartus II software allows you to select the signals to
capture, when signal capture starts, and how many data samples to capture.
You can also select whether the data is routed from the device’s memory
blocks to the SignalTap II Logic Analyzer via the JTAG port, or to the I/O
pins for use by an external logic analyzer or oscilloscope.

You can use a MasterBlaster™, ByteBlasterMV™, ByteBlaster™ II,
USB-Blaster™, or Ethernet Blaster communications cable to download
configuration data to the device. These cables are also used to upload
captured signal data from the device’s RAM resources to the Quartus II
software. The Quartus II software then displays data acquired by the
SignalTap II Logic Analyzer as waveforms.

Setting Up & Running the SignalTap Il
Logic Analyzer

To use the SignalTap II Logic Analyzer, you must first create a

SignalTap II File (.stp), which includes all the configuration settings and
displays the captured signals as a waveform. Once you have set up the
SignalTap II File, you can compile the project, program the device, and the
use the logic analyzer to acquire and analyze data.

Each logic analyzer instance is embedded in the logic on the device. The
SignalTap II Logic Analyzer supports up to 1,024 channels and 128K

samples on a single device.

After compilation, you can run the SignalTap II Logic Analyzer by using the
Run Analysis command (Processing menuy).

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 165

CHAPTER 10: DEBUGGING
USING THE SIGNALTAP Il LOGIC ANALYZER

[[Using the quartus_stp executable

You can also run the SignalTap Logic Analyzer separately at the command prompt
orin a script by using the quartus_stp executable. You must run the quartus_stp
executable first to set up the SignalTap Il File. You can then run the SignalTap Logic
Analyzer after compilation to capture signals.

If you want to get help on the quartus_stp executable, type one of the following
commands at the command prompt:

quartus_stp -h ¢
quartus_stp -help ¢
quartus_stp --help=<topic name> '

The following steps describe the basic flow to set up an SignalTap II File and

acquire signal data:

1. Create a new SignalTap II File.

2. Add instances to the SignalTap II File and nodes to each instance. You
can use the SignalTap II filters in the Node Finder to find all pre-
synthesis and post-fitting SignalTap Il nodes.

3. Assign a clock to each instance.

4. Set other options, such as sample depth and trigger level, and assign
signals to the data/trigger input and debug port.

5. Ifnecessary, specify Advanced Trigger conditions.
6. Compile the design.
7. Program the device.

8. Acquire and analyze signal data in the Quartus II software or using an
external logic analyzer or oscilloscope.

Figure 3 shows the SignalTap Logic Analyzer.

166 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 10: DEBUGGING
USING THE SIGNALTAP Il LOGIC ANALYZER

Figure 3. The SignalTap Il Logic Analyzer

B clock.stp*

Instance Manager: @ #2 |Ready to acquire @) X | JTAG Chain Configuration: [JTAG ready @) X
Instance | Status | LEs: 1438| Memory: 3988|
] auto_signaltap_0 Mot rwnhing 1299 cells 3904 hits Hardware: Setup.
F auto_signalap_1 Mot 159 cell B4 bil -
suto-snaiap- oLnnng e e Device: [@1 EP20KZ00C/E (0:08200000)] [Sean Chain
ﬂ SOF Manager: g (I |clock.sof D
Embedded SOF Files ‘ autg_sighaltap_0 ‘ auto_signaftap_1 ‘
[clock.sof compatible compatible]
trigger: PO04M4A T 21:46:49 #0 Lack mode: ‘é‘ Allove all changes j | Signal Configuration; x
Hode ||m:,___ I)ehu...lnm |Trigger...‘ Trigger Levels Clock ‘n:lk EI d
ﬂ Hame |RﬂUlB Out | 61561 | 61161 ‘1|7|Easic j|2|_|Bas\cleegMdvancedi .
fQoinstioycles r ~ ~ 4566 HHHREHAAN. . i Hodes alocated
= ted:
Tuiresttemp r ¥ P 00ee0000. e Sample dgpth: | Hedes alooats
il B =] | e @ e [T 2
o forinst/sin r I~ ~ FREO1NMh | MMHFRMHOD —=l
- foo:inst/sin(s] r I~ [hY RAM type:
- foninstjsin(7] r I~ [Vi
- foninstjsin[E] r I~ [X
m Tonnstisings] r ¥l F = Buffer acqlisiion mode
- too:instisin4] r ~ 2 o " Circuldr: ‘ J
| toa:instjsin(3] r ~ I3 T
— & . -
pr—— I v 5 = Segmanted: ‘2 32 bit segments ﬂ
| toa:instisin(1] r ~ I3 = T
— rigger:
- foinstjweight r ~ 4 WD [RRRHD
. T = — - — v Trigger levels: Modes allocated:
< > 3 | =1 | fuwo & Manuat 61 =1 &2
[®] Dat ‘@ Setup (5] Advanced Trigger 3 |
Hierarchy) Display: X | Datalbg £ £
= | clock i |£| autg_signaltap_0 ~
» fooinst =¥ [signal_set: 2002/08/29 11:21:15 #H
| =M Hinner 20N2/M9479 11-91-15_# .
[aulo_bignaltep 0 | #,_auto_signaltep 1 |
Instance Setup View Signal Configuration ~ JTAG Chain
Manager Panel Configuration

ALTERA CORPORATION

You can use the following features to set up the SignalTap II Logic Analyzer:

Multiple Logic Analyzers: The SignalTap II Logic Analyzer supports
multiple embedded instances of the logic analyzer in each device. You
can use this feature to create a separate and unique logic analyzer for
each clock domain in the device, and apply different settings to
multiple embedded logic analyzers.

Instance Manager: The Instance Manager allows you create and
perform SignalTap II logic analysis on multiple instances. You can use
it to create, delete, and rename instances in the SignalTap II File. The
Instance Manager displays all instances in the current SignalTap II File,
the current status of each associated instance, and the number of logic
elements and memory bits used in the associated instance. The Instance
Manager helps you to check the amount of resource usage that each

INTRODUCTION TO QUARTUS Il m 167

CHAPTER 10: DEBUGGING
USING THE SIGNALTAP Il LOGIC ANALYZER

logic analyzer requires on the device. You can start multiple logic
analyzers at the same time by selecting them and selecting Run
Analysis (Processing menu).

Triggers: A trigger is a pattern of logic events defined by logic levels,
clock edges, and logical expressions. The SignalTap II Logic Analyzer
supports multilevel triggering, multiple trigger positions, multiple
segments, and external trigger events. You can set trigger options using
the Signal Configuration panel in the SignalTap II Logic Analyzer
window and specify advanced triggers by selecting Advanced in the
Trigger Levels column in the Setup tab of the SignalTap II Logic
Analyzer window.

Advanced triggers provide the ability to build flexible, user-defined
logic expressions and conditions based on the data values of internal
buses or nodes. Using the Advanced Trigger tab, you can drag and
drop symbols from the Node List and the Object Library to create a
logical expression composed of logical, comparison, bitwise, reduction,
shift operators, and event counters. Figure 4 shows the Advanced
Trigger tab of the SignalTap II window.

Figure 4. Advanced Triggers Tab of the SignalTap Il Window

B clock.stp*

Instance Manager: ’Q L) ‘Heady to acquire X | JTAG Chain Configuration: [JTAG ready x
Instance ‘ Status ‘ LEs: 1498 ‘ Memor: 3968 ‘
E—auto_s\gna\lap_ﬂ Mot running 1299 cells 3904 bits Hardware |USB'B|‘“‘E' [USE-0] j Setup...
2, auto_signaltap_1 Mot runirin 199 cells 4 bits:
-5 P ? Device: |@T: EP20K200C/E (0x0820000D0) j Scan Chain
ﬂ SOF Manager &] [clock sof D
Node List “ | Advanced Trigger Condition Editor: Level 3
Type | Alias Hame Result: cycles<lah&s (sin<=7||sin>10) ~
=) fon nstjoycles ‘B comparond |
=3 fooinstitemp all
.cycles o = I
— el
o - fooinst|sin 25 b0 ah
< foncinet{sing] [ioh Jthe—s =
2 logical_0
o foorinstisin(7] . gical |
= PR— | El comparison_1 THAM
= e -
g o1 =) tesult
Obiect Library: I | <=l
[7 I i
Edge & Level Detector g LESS THARN dEata[n]‘oglcaU
- Input Objects OR EQUAL TO el
- @ Comparison Operators _Eb_"\;—c
#-# Bitwise Operatars El comparison_2 data(0]
-4 Logical Operators g[] LOGICAL OR double-click to insert & new object
w2 Reduction Dperators 2 o Gk result
- Shift Operators — £ i
- Counter Dperators g GREATER v
£ b
= Data |5 Setup] Advanced Trigger 3
Hierarchy Display, X [Datalog Rl *
=[] # clock = @ auto_signaltap_01
footinst =lEF signal_set: 2002/08/2311:21:15 #0
] = Yk binaer OIN?ANR/2911-21-1R i1 b
[®] auto_signaltap 0 | auta_signaktap 1

168 =m

INTRODUCTION TO QUARTUS Il

ALTERA CORPORATION

CHAPTER 10: DEBUGGING
USING THE SIGNALTAP Il LOGIC ANALYZER

You can configure the logic analyzer with up to ten trigger levels,
helping you to view only the most significant data. You can specify four
separate trigger positions: pre, center, post, and continuous. The trigger
position allows you to specify the amount of data that should be
acquired before the trigger and the amount that should be acquired
after the trigger in the selected instance.

Segmented mode allows you to capture data for periodic events
without allocating a large sample depth by segmenting the memory
into discrete time periods.

B Incremental Routing: The incremental routing feature helps to shorten
the debugging process by allowing you to analyze post-fitting nodes
without performing a full recompilation.

Before using the SignalTap II incremental routing feature, you must
perform a smart compilation by turning on Automatically turn on
smart compilation if conditions exist in which SignalTap II with
incremental routing is used, in the SignalTap II Logic Analyzer page
of the Settings dialog box (Assignments menu). Also, you must reserve
trigger or data nodes for SignalTap II incremental routing using the
Trigger Nodes allocated and Data Nodes allocated boxes before
compiling the design. You can find nodes for SignalTap II incremental
routing sources by selecting SignalTap II: post-fitting in the Filter list
in the Node Finder.

m Attach Programming File: Allows you to have multiple SignalTap II
configurations (trigger setups) and the associated programming files in
a single SignalTap II File. You can use the SOF Manager to add, rename,
or remove SRAM Object Files (.sof), extract SOFs from the SignalTap II
File, or program the device.

Analyzing SignalTap Il Data

When you use the SignalTap II Logic Analyzer to view the results of a logic
analysis, the data is stored in the internal memory on the device and then
streamed to the waveform view in the logic analyzer, via the JTAG port.

In the waveform view, you can insert time bars, align node names, and
duplicate nodes; create, rename, and ungroup a bus; specify a data format
for bus values; and print the waveform data. The data log that is used to
create the waveform shows a history of data that is acquired with the

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 169

CHAPTER 10: DEBUGGING
USING THE SIGNALTAP Il LOGIC ANALYZER

SignalTap Il Logic Analyzer. The data is organized in a hierarchical manner;
logs of captured data using the same trigger are grouped together in Trigger
Sets. Figure 5 shows the waveform view.

Figure 5. SignalTap Il Waveform View

I clock.stp* E‘ @l El
X

Instance Manager. ¥g kg |Fready to acquie @ X | JTAG ChanCorfiguation: [JTAGready [3)
Instance: | Status | LEs: 1498 | Memory: 3968 ‘
] auto_signaltap 0 Not unning 1299 cells 3904 bits Hardware: | USBBlaster [USB0] x| sewn
. auo_signatzp_ 1 Not uunning 139 cells B bis Device: [@1 EP20KZ00C/E (0:0820000D) | Sean Chain
ﬂ SOF Manager: g (I ,c\ocksol—D
log: 20034117 81326 #0 R = 1':2 :‘g ad
lode |0 Segment LO 1 2||
Type| Alias llame 2 e Eo @ e 2 e 2 24 28 0 4 ® dz 15 20 4 3w 0
© | oyes | ® fesineicyaies Bre_ O DOGe00E00000000C0000000GRNCACD000000ROE00K00N0CH000ME000N]
fooinst|sin
E -l T
|”“”“““lllllllllll'””l “l
© | sindip | 3 tocensten T O0000000GeN 000000 GHRC0EOCCHOENG00ECRRE0I0G0000C000]
o fominstjweight 169 13
= I foainsttemp (and Fitteen seconds | (C0GOGUULNGO00GICCACUOCIRO00CO000CTu NN HNaN00aad
o L fooiinsthempl18] i
o L foaiinsthempl18] i
o L foaiinsthempl17] 1
o L foaiinsthempl16] 1
o L foaiinsthempl15] 1 ~
E Data | Setup |] Advanced Trigger 3 |
Hierarchy Display: X I Datalog A £
=[] ® clock = |£| auto_signaltap_0
E» fooinst =g signal_set: 2002/08/2311:21:15 #0
. = YR hinner 2002/08/7911-271-1R_#1 b
[#] auln_signaltap 0 | F autosignaltsp 1

The Waveform Export utility allows you to export the acquired data to the
following industry-standard formats that can be used by EDA tools:

Comma Separated Values File (.csv)
Table File (.tbl)

Value Change Dump File (.ved)
Vector Waveform File (.vwf)

You can also configure the SignalTap II Logic Analyzer to create mnemonic
tables for a group of signals. The mnemonic table feature allows a
predefined name to be assigned to a set of bit patterns, making captured data
more meaningful. See Figure 6.

170 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 10: DEBUGGING
USING THE SIGNALTAP Il LOGIC ANALYZER

Figure 6. Mnemonic Table Setup Dialog Box

Mnemonic Table Setup E|
Table: || &dd Table...
Entries: Irnport T able...

Pattern | Mnemanic
0000 Tuelve Delete Table
aam Ore
ooo Two Add Entmy...
oo Three
o100 Faour Delete Entry
mnm Fiwe
o110 Sin Pattern Legend
o Sewven 1 - High
1000 Eight
10m Mire 0-Low
1010 Ten .
1011 Eleven st
1100 Twelve L - Low
LOnEwE LOnEwE
R - Rizing Edge
F - Falling Edge
E - Either Edge
< | & #-Don't Care
ar. | Cancel

[Using the Stand-Alone SignalTap Il Logic Analyzer

If you want to use only the SignalTap Il Logic Analyzer, you can use the stand-alone
version of the SignalTap Il Logic Analyzer, quartus_stpw.

“ ._ Py For Information About Refer To

Using the SignalTap Il Logic Analyzer Chapter 9, “Design Debugging Using
SignalTap Il Embedded Logic Analyzer,” in
the Quartus Il Handbook, vol. 3, on the
Altera web site

“Overview: Using the SignalTap Il Logic
Analyzer” in Quartus Il Help

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 171

CHAPTER 10: DEBUGGING
USING SIGNALPROBE

Using SignalProbe

L

172 =

The SignalProbe feature allows you to route user-specified signals to output
pins without affecting the existing fitting in a design, so that you can debug
signals without needing to perform another a full compilation. Starting with
a fully routed design, you can select and route signals for debugging
through I/0O pins that are either previously reserved or currently unused.

The SignalProbe feature allows you to specify which signals in the design to
debug, and then perform a SignalProbe compilation that connects those
signals to unused or reserved output pins, and then sends the signals to an
external logic analyzer. You can use the Node Finder when assigning pins to
find the available SignalProbe sources. A SignalProbe compilation typically
takes approximately 20% to 30% of the time required for a normal
compilation.

To use the SignalProbe feature to reserve pins and perform a SignalProbe
compilation on a design:

1. Perform a full compilation of the design.

2. Select signals for debugging and the I/O pins to route the signals, and
turn on the SignalProbe feature in the Assign SignalProbe Pins dialog
box, which is available from the SignalProbe Settings page of the
Settings dialog box (Assignments menu). See Figure 7.

3. Perform a SignalProbe compilation. A SignalProbe compilation
compiles a design without affecting the design’s fit, and routes the
SignalProbe signals faster than a normal compilation. Alternatively,
you can turn on Automatically route SignalProbe signals during
compilation in the SignalProbe Settings page of the Settings dialog
box and then choose Start Compilation (Processing menu) to include
SignalProbe connections in a full compilation, which may affect the
placement and routing of the design.

4. Configure the device with the new programming data to examine the
signals.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 10: DEBUGGING
USING SIGNALPROBE

Figure 7. Assign SignalProbe Pins Dialog Box

Assign SignalProbe Pins g|
Select a device pin and the type of assignment you wizh to make. Y'ou can alzo make pin azsignments in the Azzignment Editar and the
Floarplan Editor. *f'ou can reserve unused ping on a device-wide basis with the Unused Pinz tab in the Device & Pin Options dialog box.
Available Pins & Existing Assignments:
Murmnber: | Name: | 1/0 Bank: | 1/0 Standard: | Tupe: | SignalProbe 5ource Name | Enahled | Status Clia
2 pinl 3 LWTTL Row /0 off
4 3 LWTTL Row /0 off
5 3 LWTTL Row /0 off
7 3 LWTTL Row /0 off
9 3 LWTTL Row /0 off
11 3 1WTTI R 1211 i3 ¥
< >
™ Show 'no cotnect’ pins [~ Show curent and potential SignalProbe ping
Assignment
Pin name: |Difﬂ J SignalProbe source: |ECCE|

J [v SignalPrabe enable

¥ Reserve pin [even if it does not exist in the design fil]:
|As SignalProbe output j |

140 standard: [LYTTL

L

Change | Delete | |

aK Cancel |

When reserving SignalProbe pins, you can also use the register pipelining
feature to ignore jitter, to force signal states to output on a clock edge, or to
delay a signal output. You can also use register pipelining to synchronize
multiple SignalProbe outputs from a bus of signals, or to prevent
SignalProbe routing from becoming the critical path because of fyjax
changes.

You can keep or remove all or some of the SignalProbe routing after
debugging. If you keep SignalProbe routing in a design, you can
automatically route SignalProbe routing during a full compilation.

You can also use the SignalProbe feature with Tcl. With Tcl commands, you
can add and remove SignalProbe assignments and sources, perform a
SignalProbe compilation on a design, and compile routed SignalProbe
signals in a full compilation.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 173

CHAPTER 10: DEBUGGING
USING THE IN-SYSTEM MEMORY CONTENT EDITOR

Using

For Information About Refer To

Using the SignalProbe feature Chapter 8, “Quick Design Debugging Using
SignalProbe,” in the Quartus Il Handbook,
vol. 3, on the Altera web site

“SignalProbe Introduction” in Quartus I

Help
Using TCL commands with the Chapter 3, “Tcl Scripting” in the Quartus Il
SignalProbe feature Handbook, vol. 2, on the Altera web site

the In-System Memory

Content Editor

The In-System Memory Content Editor allows you to view and modify, at
run-time, RAM, ROM, or register content independently of the system clock
of a design. A debug node communicates to the In-System Memory Content
Editor through a JTAG interface using standard programming hardware.

You can use the In-System Memory Content Editor by using the
MegaWizard® Plug-In Manager (Tools menu) to set up and instantiate
lpm_rom, lpm_ram_dq, altsyncram, and lpm_constant
megafunctions or by instantiating these megafunctions directly in the
design, using the 1pm_hint megafunction parameter.

The In-System Memory Content Editor (Tools menuy) is used to capture and
update the data in the device. You can export or import data in Memory
Initialization File (.mif), Hexadecimal (Intel-Format) File (.hex), and RAM
Initialization File (.rif) formats. The In-System Memory Content Editor has
the following features:

m Instance Manager: contains a list of memory instances, including
index, instance name, status, data width, data depth, type, and mode.
The Instance Manager controls which memory blocks have data being
viewed, offloaded, or updated. Commands from the Instance Manager
affect the entire selected memory block.

B JTAG Chain Configuration: used to select the programming hardware
and device to acquire data from or read data to, and to select the SRAM
Object File (.sof) for programming.

174 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 10: DEBUGGING
USING THE IN-SYSTEM MEMORY CONTENT EDITOR

m HEXEditor: used to make edits and save changes to in-system memory
at run-time, to display the current data within the memory block, and
to update or offload selected sections of a memory block. You can use
the Go To command (right button pop-up menu) to automatically go to
a specific data address within a specific memory block within a specific
instance. Words are displayed with each hexadecimal value separated
by a space. Memory addresses are displayed in the left column, and the
ASCII values (if the word width is a multiple of 8) in the right column.
Each memory instance has a separate pane in the HEX Editor. Figure 8
shows the Hex Editor in the In-System Memory Content Editor
window.

Figure 8. In-System Memory Content Editor Window

In-System Memory Content Editor D@E|

Instance Manager: EB | | ‘Heady to acquire EI X | JTAG Chain Configuration: |JTAG ready @ x
Index | Instance | Status | width | Depth | Type | Mode |
w0 cons Mot runming 32 1 Constant Readfwfite Hardware ‘ USE-Blaster [USB-0] j Setup...
&1 om Matrunking 32 32 RaM/ROM ReadAwrite .
: : Scan Ch,
- Notwrming 25 = PEE | Pt i Device: ‘ @ EF‘1525/_HAF\DCDPY_FPGA_F‘HEj can Chain
=3 mega Motrnning 8 65536 RAM/ROM ReadAwrite Fie & |]
0 cons e’
oopoop - 2E 31 32 32 122
=1 om

ooooon 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 ¥5 76 77 78 abcdefghijklmnopgrstuvex
opoooe 7% FA OD 00 00 52 4F 4D 20 45 78 61 6D 70 6C 65 00 00 00 00 00 00 00 00 wz...ROM Example.
go0oooc 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00 00 00 00 O0 00 00 a0 00 4o

goooi2 00 00 00 00 OO0 0O 00 0O 0O OO0 0O OO0 OO0 OO0 00 OO0 00 00 00 00 00 00 00 0o

opoois 00 00O 00 00 OO0 0O OO0 OO 0O OO0 0O OO OO0 OO0 0O OO OO0 OO0 00 00 OO OO0 00 00

00001E 00 0O OO0 00 00 00 00 00

w2 mik:
000000 00 01 02 03 04 05 06 O7 08 09 04 OB OC OD OE OF 10 11 12 13 14 15 16 17 18 19 14 1B 1C 1D 1IEIF
oooool 20 21 22 23 24 26 26 27 28 29 24 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 34 3B 3C 3D JE IF VRS (et - /1

000002 40 41 42 43 44 45 46 47 48 49 44 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 54 5B 5C 5D S5E 5F @ABCDEFGHIJKLHNOE
000003 60 k1 62 B3 64 65 BR 67 6B 69 64 BB 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 Y9 74 7B 7C 7D 7E ?F abodefghijklnnop
ooopoo4 80 81 82 83 00 00 OO0 00 OO0 OO0 00O OO0 0O OO0 0O OO 0O OO 0O OO OO OO 00 OO OO0 89 94 9B 83C 9D SE 9F
0pooos 54 68 69 73 20 69 F3 20 61 20 00 00 00 00 00 00 B0 Bl BZ B3 B4 BS Bt BY B8 B9 Bi BB BC BD BE BF This is a ..
00o0oe 73 63 72 65 65 BE 20 73 68 6F 74 CB CC CD CE CF DO DL D2 D3 D4 D5 D6 D7 D8 D9 Da DB DC DD DE DF screen shot.
000007 6F 66 20 6D 65 6D 6F 72 79 E9 EA EE EC ED EE EF FO0 F1 F2Z F3 F4 FS5 F& F? F& F9 FA FB FC FD FE FF of nemory
000008 65 k4 69 74 6F 72 06 07 08 09 04 OB OC 0D OE OF 10 11 12 13 14 15 16 17 18 19 14 1B 1C 1D 1E 1F editor

00ooos 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 31 32 33 34 35 36 37 38 39 34 3B 3C 3D 3E 3F

000004 54 68 65 20 77 6F 72 64 F3 20 69 GE 00 00 00 00 2E 2E 52 53 54 55 56 57 58 59 54 5B 5C 5D SE 5F The words in
00000B 62 eC 75 65 20 73 68 6F F7 73 20 20 20 20 20 20 2E 2E 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F blus shows
00000C 74 6& 61 74 20 74 68 B5 20 77 &F 72 A4 20 BE 8F 90 91 92 93 94 95 96 97 96 99 34 9B 3C 9D 3E 9F that the word
oooooDp 68 k1 73 20 62 65 65 BE Z0 00 00 00 00 00 00 AF BO Bl BZ B3 B4 BS Be BY B8 BY Bi BE EC BD BE BF has been
ODO00E 6D BF 64 69 66 69 65 64 2C 20 &2 75 74 0D CE CF DO DL D2 D3 D4 DS De D7 D& D9 Di DE DC DD DE DF modified, but
00000F 6E 6F 74 20 63 6F 6D 6D 69 74 65 64 EC ED EE EF FO FL F2 F3 F4 F5 Fo F7 F8 F9 Fi FB FC FD FE FF not comnited
0ooolo 00 01 02 03 04 05 06 OF 08 09 0A OB OC OD OE OF 10 11 12 13 14 15 16 17 18 19 14 1B 1C 1D 1IE 1IF
000011 54 68 65 20 77 BF 72 B4 73 Z0 69 BE 20 20 20 20 20 31 32 33 34 35 36 37 36 39 32 3B 3C 3D 3E 3F The words in
ooo012 72 eS 64 20 73 B8 BF 77 Y3 20 20 20 20 20 20 20 20 20 52 53 54 55 &6 57 58 59 54 5B 5C 5D S5E 5F red shows
000013 74 68 61 74 20 74 68 65 20 77 &F 72 64 20 20 20 20 20 72 73 74 75 76 77 7@ 79 FA 7B YC 7D VYE 7F that the word
000014 68 61 73 20 62 65 65 6E 20 63 68 61 6E 67 65 64 90 91 92 93 94 95 96 97 98 99 94 9B 9C 9D 9E IF has been changed.
000015 73 69 6E 63 65 20 6C 61 73 74 20 72 65 61 64 AF BO Bl B2 B3 B4 BS Bé B7 B8 BY BA BE EC ED BE BF =ince last read. .
000016 CO C1 C2 C3 C4 C5 CA C7 C& C3 CACEBCC CD CECF DO DL D2 D3 D4 DS D& D7 D& D9 Da DE DC DD DE DF

000017 EO E1 E2 E3 E4 ES E6 E7 E8 E9 EA EB EC ED EE EF FO F1 F2 F3 F4 F5 F& F? F& F9 F& FB FC FD FE FF

00o018 00 01 02 02 04 05 06 O7 08 0% 04 OB OC 0D QE OF 10 11 12 13 14 15 16 17 18 19 14 1B 1C 1D 1E 1F
000019 20 21 22 23 24 26 26 27 28 29 24 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 34 3B 3C 3D 3E IF P52 (et = 1
00001& 40 41 42 43 44 45 46 47 48 49 44 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 GA 5B 5C 5D SE 5F @ABCDEFGHIJKLHNOE
00001B 60 61 G2 A3 B4 GBS GR G7 6& 69 KA BB 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 74 7B 7C 7D 7E ?F ~abodefghijklnnop
00001C 80 81 82 83 84 BS 86 B7 88 B9 84 8B BC 8D BE 8F 90 91 92 93 94 95 96 97 98 99 94 9B 38C 9D SE 9F
000010 AD A1 A2 A3 A4 AS A6 AT AR A9 AL AR AC AD AE AF E0 Bl B2 B3 B4 BS Bt BV EE BY Bi BB EC ED BE EF
00001E CO C1 C2 C3 C4 C5 C6 C7 CB C9 CACBCC CDCECF DO DL D2 D3 D4 DS D6 D7 D8 D9 Da DB DC DD DE DF
0000lF EO E1 E2 E3 E4 ES E6 E7 E8 E9 EA EB EC ED EE EF FO F1 F2 F2 F4 F5 Fo F7 F8 F9 FA FB FC FD FE FF
aoaozo

=3 mega

oooooo 00 01 02 03 04 05 Oe O7 O8 09 04 OB OC OD OE OF 10 11
00001C 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2& 2B 2C 2D 2E 2F 30 31 32 33 34 35 3p 37 CoL DUESHES (J%+, —. /01234567
AnAnAA A0 o LA

A AL AT A/~ AT AT AT A 44 4n 47 44 AF 4e AT 4R A°m 4% AT A; AT AT AT FA P4 FA PR AR AT T T AATAT AT

Instance Z: mak ‘Word: 0x000013 |Bit: 0x00006F

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il ®m 175

CHAPTER 10: DEBUGGING
USING THE RTL VIEWER & TECHNOLOGY MAP VIEWER

“ ._ Py For Information About Refer To

Using the In-System Memory Content Chapter 11, “In-System Editing of Memory
Editor and Constants,” in the Quartus Il
Handbook, vol. 3, on the Altera web site

“Overview: Using the In-System Memory
Content Editor” in Quartus Il Help

Using the RTL Viewer & Technology
Map Viewer

You can use the RTL Viewer to analyze your design after analysis and
elaboration has been performed. The RTL Viewer provides a gate-level
schematic view of your design and a hierarchy list, which lists the instances,
primitives, pins, and nets for the entire design netlist. You can filter the
information that appears in the schematic view and navigate through
different pages of the design view to examine your design and determine
what changes should be made.

The Quartus II Technology Map Viewer provides a low-level, or atom-level,
technology-specific schematic representation of a design. The Technology
Map Viewer includes a schematic view, and also includes a hierarchy list,
which lists the instances, primitives, pins, and nets for the entire design
netlist.

For more information on using the RTL Viewer and the Technology Map
Viewer, refer to “Analyzing Synthesis Results with the RTL Viewer” and
“Analyzing Synthesis Results with the Technology Map Viewer” on pages 68
and 70 in Chapter 3, “Synthesis.”

176 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 10: DEBUGGING
USING THE CHIP EDITOR

Using the Chip Editor

You can use the Chip Editor in conjunction with the SignalTap II and
SignalProbe debugging tools to speed up design verification and
incrementally fix bugs uncovered during design verification. After you run
the SignalTap II Logic Analyzer or verify signals with the SignalProbe
feature, you can use the Chip Editor to view details of post-compilation
placement and routing. You can also use the Resource Property Editor to
make post-compilation edits to the properties and parameters of logic cell,
I/0O element, or PLL atoms, without requiring a full recompilation. For more
information on using the Chip Editor, refer to the next chapter, Chapter 11,
“Engineering Change Management.”

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 177

What’s in Chapter 11:

Introduction

Identifying Delays & Critical Paths by
Using the Chip Editor

Creating & Moving Atoms in the Chip
Editor

Modifying Resource Properties by
Using the Resource Property Editor

Viewing & Managing Changes with
the Change Manager

Verifying the Effect of ECO Changes

180

181

182

183

185
187

Chapter
Eleven

Engineering Change
Management

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT

INTRODUCTION

Introduction

The Quartus® II software allows you to make small modifications, often
referred to as engineering change orders (ECO), to a design after a full
compilation. These ECO changes can be made directly to the design
database, rather than to the source code or the Quartus II Settings and
Configuration File (.qsf). Making the ECO change to the design database
allows you to avoid running a full compilation in order to implement the
change. Figure 1 shows the engineering change management design flow.

Figure 1. Engineering Change Management Design Flow

From Quartus Il
Compiler (full —»
compilation)

I Quartus Il > Resource - Change

Chip Editor Property Editor Manager
Compiler
Database
Files (.cdb)

to Assembler, EDA
Netlist Writer, or
Timing Analyzer

The following steps outline the design flow for engineering change
management in the Quartus II software.

After a full compilation, use the Chip Editor to view design placement
and routing details and identify which resources you want to change.

Create and move atoms in the Chip Editor.

Use the Resource Property Editor to edit internal properties of
resources and to edit or remove connections.

Use the Check Resource Properties command (Edit menu) to check the
legality of the change for the resource.

View the summary and status of your changes in the Change Manager
and control which changes to resource properties are implemented
and/or saved. You can also add comments to help you reference each
change.

Use the Check and Save All Netlist Changes command (Edit menu) to
check the legality of the change for all of the other resources in the
netlist.

180 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
IDENTIFYING DELAYS & CRITICAL PATHS BY USING THE CHIP EDITOR

7. Runthe Assembler to generate a new programming file or run the EDA
Netlist Writer again to generate a new netlist. If you want to verify
timing changes, you can run the Timing Analyzer.

Identifying Delays & Critical Paths
by Using the Chip Editor

You can use the Chip Editor to view details of placement and routing. The
Chip Editor reveals additional details about design placement and routing
that are not visible in the Quartus II Floorplan Editor. It shows complete
routing information, showing all possible and used routing paths between
each device resource. See Figure 2.

Figure 2. Chip Editor

4% Chip, Editor: filtref -- Netlist good and saved

I || I
L[

| -_—:I | | =
i ———— —
|-
< | >
Displays Shows routing Displays fan-in and fan-out
resource usage delays connections of a selected resource

The Chip Editor displays all the resources of the device, such as
interconnects and routing lines, logic array blocks (LABs), RAM blocks, DSP
blocks, I/0Os, rows, columns, and the interfaces between blocks and
interconnects and other routing lines.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 181

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
CREATING & MOVING ATOMS IN THE CHIP EDITOR

You can control the level of detail of the Chip Editor display by zooming in
and out, selecting specific paths you want to display, and displaying a
separate Bird’s Eye View window, which shows magnification of the device
view. You can also set options that control the display of different resources,
as well as fan-in and fan-out, critical paths, and delay estimates on signals.
You can then use this information to determine which properties and
settings you may want to edit in the Resource Property Editor. You can
select a resource in the Chip Editor and choose Locate in Resource Property
Editor (right button pop-up menu) to open the Resource Property Editor
and edit that resource. Refer to “Modifying Resource Properties by

Using the Resource Property Editor” on page 183 for more information.

For Information About Refer To

Engineering change management and Chapter 5, “Engineering Change
using the Chip Editor Management” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Chapter 10, “Design Analysis and
Engineering Change Management with the
Chip Editor,” in the Quartus Il Handbook,
vol. 3, on the Altera web site

Using the Chip Editor “Overview: Using the Chip Editor” and
“Making Post-Compilation Changes
Introduction” in Quartus Il Help

Creating & Moving Atoms in the
Chip Editor

The Chip Editor also allows you to create new atoms or move existing atoms
to other locations. These changes are reflected in the Change Manager.

You can create a new atom by selecting an unused atom in the Chip Editor
window, choosing Create Atom (right button pop-up menu), and specifying
anew name for the atom. You can then use the Locate in Resource Property
command (right button pop-up menu) to modify the properties and
connections for the new atom. See the following section, “Modifying
Resource Properties by Using the Resource Property Editor,” for more
information.

182 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
MODIFYING RESOURCE PROPERTIES BY USING THE RESOURCE PROPERTY EDITOR

If you want to move an atom to a new location, you can select the atom and
drag it to a new location.

The Check and Save All Netlist Changes command (Edit menu) allows you
to save all the changes you have made to atoms.

Modifying Resource Properties by
Using the Resource Property Editor

The Resource Property Editor allows you to make post-compilation edits to
the properties and parameters of logic cell, I/O element, or PLL resources,
as well as edit or remove connections for individual nodes. You can use the
B> °[toolbar buttons that allow you to navigate forward and backward among the
resources. You can also select and change multiple resources at one time.
You can follow the fan-in and fan-out of a resource and can view the
resource in the Resource Property Editor.

The Resource Property Editor contains a viewer that shows a schematic
diagram of the resource you are modifying, a port connection table that lists
all the input and output ports and their connected signals, and a property
table that displays the properties and parameters that are available for that
resource. If the port connection or property tables are not visible, you can
display them with the View Port Connections and View Properties
commands (View menu). Figure 3 shows the Resource Property Editor.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 183

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
MODIFYING RESOURCE PROPERTIES BY USING THE RESOURCE PROPERTY EDITOR

Figure 3. Resource Property Editor

Viewer shows schematic diagram of resource

‘5 Resource Property Editor - Netlist good and saved

Maode narne: | LC_#40_ 17 _N2 - Filtreflrapz:instie_2[4]reg0 b

v

B

o
Co———{m

__ﬂ |

} "
Properties/Modes [tales | Sum Equation |GND
LUT Maszk Qoo Carry Equation | N/2&
Surm LUT Maszk 00aa
Carry LUT Magk M
Operation Maode Marmal
Synchronous Mode On

Fiegister Cazcade Mode| OFf

Input Port name |Signal name # | Output Port name |Signal name |
addnzub <Dizconnected: carmyout <Dizconnected:
carmin <Disconnected: cazcadeout [filtrefltaps:instln_2[4]™regl
caszcadein <Digconnectad: combot <Digconnected:
clk [filkreflclk regout [filtrefltaps:instln_2[4]™regl
dataa <Digconnectad:
datab {Dizconnected:
datac [filtrefltapsinsti=n_1[4]"regql
datad <Dizconnected:
labclkena | [filkr eflnEst v
Property table displays the properties and values for the Port connection table shows
selected resource and allows you to make changes the input and output ports
You can make changes to the resource in the schematic or in the property
table. If you make a change in the property table, that change is reflected
automatically in the schematic diagram.
The Resource Property Editor also allows you to select a node in the
schematic or in the port connection table and choose Edit Connection (right
button pop-up menu) to specify a new signal for the connection. If you want
to remove the connection, you can select the node and choose Remove
Connection (right button pop-up menu). In the port connection table, you
can create new output ports by choosing Create (right button pop-up menu).
184 = INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
VIEWING & MANAGING CHANGES WITH THE CHANGE MANAGER

Once you have made a change, you can use the Check Resource Properties
command (Edit menu) to perform simple design-rule checking on the
resource. You can also view a summary of your changes in the Change
Manager. Refer to the next section, “Viewing & Managing Changes with
the Change Manager,” for more information.

“ .- - For Information About Refer To

Engineering change management and Chapter 5, “Engineering Change
using the Resource Property Editor Management” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Chapter 10, “Design Analysis and
Engineering Change Management with the
Chip Editor,” in the Quartus Il Handbook,
vol. 3, on the Altera web site

Using the Resource Property Editor “Overview: Using the Resource Property
Editor” and “Making Post-Compilation
Changes Introduction” in Quartus Il Help

Viewing & Managing Changes with
the Change Manager

The Change Manager window lists all the ECO changes that you have made.
It allows you to select each ECO change in the list and specify whether you
want to apply or delete the change. It also allows you to add comments for
your reference. You can open the Change Manager by choosing Utility
Windows > Change Manager (View menu). See Figure 4.

Figure 4. Change Manager

Change Manager 5]
|N0de Name | Change Type | 0ld Value | Target Value | Current ¥ alue | Disk Value | Status | Carnrent
1 | lfiltreflace:inst3wnm[1]~13:CLE:0 Modify Source | Disconnected | [filtref|clks2 ffilreflclkxe | Disconnec... | &pplied
2 | [filtrefmult:instEllprm_mult:lprm_molt_com...| Add Usage DATAC | ADATADAT.. |ADATADAT..| DATAC Applied
3 | filtrefltaps:instlan_3[4]~regl:DATAB:Q Madify Source | [filtrefltaps:ing... | Disconnected | Disconnected | [filtrefltaps:i.. | Applied
4 | [filtrefltaps:instlan_2[4] Tegl:DATALC:O Add Usage SDATA DATACSDA... |DATACSDA...| SDATA Applied
5
< >
Change Manager: Nedist check required ;(

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 185

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
VIEWING & MANAGING CHANGES WITH THE CHANGE MANAGER

The log view of the Change Manager displays the following information for
each ECO change:

Change number

Node name

Change type

Old value

Target value

Current Value

Disk Value

Comments, which are comments you have added about the ECO
change.

Status, which can be one of the following indicators:

Committed: You have made a change in the Chip Editor or
Resource Property Editor, saved the change, and checked it with
the Check and Save All Netlist Changes command (Edit menu).
The change is available for use in the Assembler, Timing Analyzer,
EDA Netlist Writer, and Simulator. The Current Value is equal to
both the Target Value and the Disk Value.

Applied: You have made a change in the Chip Editor or Resource
Property Editor and have saved the change, but have not checked
it with the Check and Save All Netlist Changes command (Edit
menu). The change is not available for use in the Assembler,
Timing Analyzer, EDA Netlist Writer, and Simulator. The Current
Value is equal to the Target Value but is not equal to the Disk
Value, and the Disk Value is not necessarily equal to the Old
Value.

Not Applied: The Current Value is equal to the Old Value, and
the Disk Value is not necessarily equal to the Old Value.

Not Valid: The target node may not exist in the netlist. The
Current Value is not equal to the Old Value or the Target Value,
and the Disk Value is not necessarily equal to the Old Value.

After you have committed the changes you want, you should choose Check
and Save All Netlist Changes (Edit menu) to check the legality of the
change for all of the other resources in the netlist. You can then perform the

186 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 11: ENGINEERING CHANGE MANAGEMENT
VERIFYING THE EFFECT OF ECO CHANGES

following actions on the ECO changes in the list by using commands from
the right button pop-up menu:

Apply Target Value to Preceding and Current Changes
Restore Old Value to Current and Subsequent Changes
Delete Current and Subsequent Changes

Export Preceding and Current Changes to Tcl

Export All Changes to Tcl

“ .. - For Information About Refer To

Engineering change management and Chapter 5, “Engineering Change
using the Change Manager Management” in the Quartus Il Handbook,
vol. 1, on the Altera web site

Chapter 10, “Design Analysis and
Engineering Change Management with the
Chip Editor,” in the Quartus Il Handbook,
vol. 3, on the Altera web site

Using the Change Manager “Overview: Using the Change Manager” and
“Making Post-Compilation Changes
Introduction” in Quartus Il Help

Verifying the Effect of ECO Changes

After you have made an ECO change, you should run the Assembler module
of the Compiler in order to create a new POF. You may also want to run the
EDA Netlist Writer again to generate a new netlist, or run the Timing
Analyzer or Simulator again to verify that the change results in the
appropriate timing improvement. You can run each of these modules
separately by using the Compiler Tool window, or by using the
quartus_asm or quartus_eda, and quartus_tan executables at the command
line or in a script. Performing a full compilation, however, will change the
values of the ECO changes.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il m 187

What’s in Chapter 12:

Introduction 190
Creating SOPC Designs with
SOPC Builder 191

Creating DSP Designs with the
DSP Builder 194

Chapter
Twelve

System-Level Design

CHAPTER 12: SYSTEM-LEVEL DESIGN

INTRODUCTION

Introduction

The Quartus® II software supports the SOPC Builder and DSP Builder
system-level design flows. System-level design flows allow engineers to
rapidly design and evaluate system-on-a-programmable-chip (SOPC)
architectures and design at a higher level of abstraction.

The SOPC Builder is an automated system development tool that
dramatically simplifies the task of creating high-performance SOPC designs.
The tool automates the system definition and integration phases of SOPC
development completely within the Quartus II software. The SOPC Builder
allows you to select system components, define and customize the system,
and generate and verify the system before integration. Figure 1 shows the
SOPC Builder design flow.

Figure 1. SOPC Builder Design Flow

Select components

Customize & Integrate

System verification &

construction

190 =

INTRODUCTION TO QUARTUS Il

Intellectual

Processors property (IP)

S

OS/RTOS

System definition, customization,
and automatic system generation

&

Header files, generic
peripheral drivers,

custom software libraries &
OS/RTOS kernels

SOPC Builder

Es

Simulation test
benches, ESS model
files & object code
compiled to
memory models

Verilog & VHDL
design files
(.v, .vhd)

The Altera® DSP Builder integrates high-level algorithm and HDL
development tools by combining the algorithm development, simulation,
and verification capabilities of the MathWorks MATLAB and Simulink
system-level design tools with VHDL synthesis and simulation tools and the
Quartus II software. Figure 2 on page 191 shows the DSP Builder design
flow.

ALTERA CORPORATION

CHAPTER 12: SYSTEM-LEVEL DESIGN
CREATING SOPC DESIGNS WITH SOPC BUILDER

Figure 2. DSP Builder Design Flow

Y

DSP Builder

A

MATLAB/ -
Simulink EE

\/

Signal
Compiler

Intellectual

property (IP)

v
EDA Synthesis FE‘ N
Tool é
Y

Quartus Il
Fitter

A

h

Verilog design F~ Simulation test

files, VHDL N benches & Tcl
design files é Script Files to run
(v, .vhd) & Tcl the ModelSim

DSP block ready
for SOPC Builder

Script Files (.tcl) Software
ModelSim/
) SOPC
ModelSim-Altera Builder
Software

Quartus Il

Analysis & Synthesis

Creating SOPC Designs with

SOPC Builder

m The SOPC Builder, which is included with the Quartus II software, provides
a standardized, graphical environment for creating SOPC designs
P composed of components such as CPUs, memory interfaces, standard
I peripherals, and user-defined peripherals. The SOPC Builder allows you to
select and customize the individual components and interfaces of your
system module. SOPC Builder combines these components and generates a
single system module that instantiates these components, and automatically

generates the necessary bus logic to connect them together.

The SOPC Builder library includes the following components:

B Processors

B Intellectual property (IP) and peripherals

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il = 191

CHAPTER 12: SYSTEM-LEVEL DESIGN
CREATING SOPC DESIGNS WITH SOPC BUILDER

B Memory interfaces

Communications peripherals

Buses and interfaces, including the Avalon™ interface and AMBA™
high-performance bus (AHB)

Digital signal processing (DSP) cores

Software

Header files

Generic C drivers

Operating system (OS) kernels

You can use SOPC Builder to construct embedded microprocessor systems
that include CPUs, memory interfaces, and I/O peripherals; however, you
can also generate dataflow systems that do not include a CPU. It allows you
to specify system topologies with multiple masters and slaves. SOPC
Builder can also import or provide an interface to user-defined blocks of
logic that are connected to the system as custom peripherals.

Creating the System

When building a system in SOPC Builder, you can choose either user-
defined modules or modules available from the module pool component
library.

SOPC Builder can import or provide an interface to user-defined blocks of
logic. There are four mechanisms for using an SOPC Builder system with
user-defined logic: simple PIO connection, instantiation inside the system
module, bus interface to external logic, and publishing a local SOPC Builder
component.

SOPC Builder provides library components (modules) for download,
including processors, such as the Excalibur embedded processor stripe and
NIOS processor, a UART, a timer, a PIO, an Avalon tri-state bridge, several
simple memory interfaces, and OS/RTOS kernels. In addition, you can
choose from an array of MegaCore® functions, including those that support
the OpenCore® Plus hardware evaluation feature.

You can use the System Contents page of SOPC Builder to define the

system. You can select library components in the module pool and display
the added components in the module table.

192 =m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 12: SYSTEM-LEVEL DESIGN
CREATING SOPC DESIGNS WITH SOPC BUILDER

You can use the information in the module table of the System Contents
page or in a separate wizard to define the following component options:

System components and interfaces
Master and slave connections

System address map

System IRQ assignments

Arbitration priorities for shared slaves
System clock frequency

Generating the System

Each project in SOPC Builder contains a system description file (PTF File),
which contains all the settings, options, and parameters entered in the SOPC
Builder. In addition, each component has a corresponding PTF File. During
system generation, the SOPC Builder uses these files to generate the source
code, software components, and simulation files for the system.

Once system definition is complete, you can generate the system using the
System Generation page of SOPC Builder.

The SOPC Builder software automatically generates all necessary logic to
integrate processors, peripherals, memories, buses, arbitrators, IP functions,
and interfaces to logic and memory outside the system; and creates HDL
source code that binds the components together.

SOPC Builder can also create software development kit (SDK) software
components, such as header files, generic peripheral drivers, custom
software libraries, and OS/real-time operating system (RTOS kernels), to
provide a complete design environment when the system is generated.

For simulation, SOPC Builder creates a Model Technology™ ModelSim®
simulation directory that contains a ModelSim project file, the simulation
data files for all memory components, macro files to provide setup
information, aliases, and an initial set of bus-interface waveforms. It also
creates a simulation test bench that instantiates the system module, drives
clock and reset inputs, and instantiates and connects simulation models.

A Tcl script that sets up all the files necessary for compilation of the system
in the Quartus II software is also generated.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 193

CHAPTER 12: SYSTEM-LEVEL DESIGN
CREATING DSP DESIGNS WITH THE DSP BUILDER

“ ._ Py For Information About Refer To

Using SOPC Builder SOPC Builder Data Sheet on the Altera web
site

Chapter 3, “System Design Using SOPC
Builder,” in the Quartus Il Handbook, vol. 1,
on the Altera web site

“Overview: Using SOPC Builder” in
Quartus Il Help

Application Note 333 (Developing
Peripherals for SOPC Builder) on the Altera
web site

Avalon Specification Reference Manual on
the Altera web site

Creating DSP Designs with the
DSP Builder

The DSP Builder shortens DSP design cycles by helping you create the
hardware representation of a DSP design in an algorithm-friendly
development environment. The DSP Builder allows system, algorithm, and
hardware designers to share a common development platform. The DSP
Builder is an optional software package available from Altera, and is also
included with DSP Development Kits.

The DSP Builder also provides support for system-level debugging using
the SignalTap® Il Logic Analyzer. You can synthesize, compile and
download the design, and then perform debugging, all through the
MATLAB/Simulink interface.

Instantiating Functions

You can combine existing MATLAB functions and Simulink blocks with
Altera DSP Builder blocks and MegaCore functions, including those that
support the OpenCore Plus hardware evaluation feature, to link system-
level design and implementation with DSP algorithm development.

194 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 12: SYSTEM-LEVEL DESIGN
CREATING DSP DESIGNS WITH THE DSP BUILDER

To use MegaCore functions that support the OpenCore Plus feature in your
design, you must download them before running the MATLAB/Simulink
environment.

Generating Simulation Files

After verifying the design in the Simulink software, you can use the
SignalCompiler block to generate files for simulating the design in EDA
simulation tools.

The SignalCompiler generates a Tcl script for RTL simulation in the
ModelSim software, and a Verilog HDL or VHDL test bench file that imports
the Simulink input stimuli. You can use the Tcl script for automated
simulation in the ModelSim software, or simulate in another EDA
simulation tool with the Verilog HDL or VHDL test bench file.

Generating Synthesis Files

DSP Builder provides two synthesis and compilation flows: automated and
manual. You can synthesize the design in the Quartus II software, the
Mentor Graphics LeonardoSpectrum software, or the Synplicity Synplify
software with the Tcl script generated by SignalCompiler. If the DSP Builder
design is the top-level design, you can use either the automated or manual
synthesis flows. If the DSP Builder design is not the top-level design, you
must use the manual synthesis flow.

You can use the automated flow to control the entire synthesis and
compilation flow from within the MATLAB/Simulink design environment.
The SignalCompiler block creates VHDL Design Files and Tcl scripts,
performs synthesis in the Quartus II, LeonardoSpectrum, or Synplify
software, compiles the design in the Quartus II software, and can also
optionally download the design to a DSP development board. You can
specify which synthesis tool to use for the design from within the Simulink
software.

In the manual flow, the SignalCompiler generates VHDL Design Files and
Tcl scripts that you can then use to perform synthesis manually in an EDA
synthesis tool, or the Quartus II software, which allows you to specify your
own synthesis or compilation settings. When generating output files, the
SignalCompiler maps each Altera DSP Builder block to the VHDL library.
MegaCore functions are treated as black boxes.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 195

CHAPTER 12: SYSTEM-LEVEL DESIGN
CREATING DSP DESIGNS WITH THE DSP BUILDER

ag .
gy For Information About Refer To

Using the DSP Builder DSP Builder User Guide on the Altera web
site

196 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 13:

Introduction 198
Using the Software Builder in the

Quartus Il Software 198
Specifying Software Build Settings 199

Generating Software Output Files 199

Chapter
Thirteen

Software Development

CHAPTER 13: SOFTWARE DEVELOPMENT

INTRODUCTION

Introduction

<.

The Quartus® II Software Builder is an integrated programming tool that
transforms software source files into a flash programming file or passive
programming files for configuring an Excalibur™ device, or files that contain
memory initialization data for the embedded processor stripe of an
Excalibur device. You can use the Software Builder to process software
source files for Excalibur designs, including designs created with the SOPC
Builder and DSP Builder system-level design tools.

Using the Software Builder in the
Quartus Il Software

The Software Builder uses the ADS Standard Tools or GNUPro for ARM®
software toolset to process software source files created by the Quartus II
Text Editor or other Assembly or C/C++ language development tools. You
can use the Software Builder to process the following software source files:

Assembly Files (.s, .asm)
C/C++ Include Files (.h)
C Source Files (.c)

C++ Source Files (.cpp)
Library Files (.a)

The Software Builder can perform a software build on software source files
with minimal assistance and allows you to customize processing for a
particular design. Once you have specified software build settings, you can
run the Software Builder by using the Start Software Build command
(Processing menu).

You can also run a program or process for an Excalibur device from within
the Quartus II software by using the Software Builder to run a command-
line command during or after a software build.

198 =m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 13: SOFTWARE DEVELOPMENT
SPECIFYING SOFTWARE BUILD SETTINGS

[[Using the quartus_swb executable

You can also run the Software Builder separately at the command prompt or in a
script by using the quartus_swh executable.

If you want to get help on the quartus_swb executable, type one of the following
commands at the command prompt:

quartus_swb -h ¢
quartus_swb --help ¢
quartus_swb --help=<topic name> ¢

Specifying Software Build Settings

You can use the Software Build Settings wizard or the Software Build
Settings pages of the Settings dialog box (Assignments menu) to specify
software build settings before performing a software build.

Using the Software Build Settings wizard or the Settings dialog box, you
can specify the following settings:

B The name of the software build settings for the project, toolset
directory, architecture and software toolset, byte order, output file
name, custom-build and post-build command-line commands, and
programming file generation options

B C/C++ Compiler options: optimization levels, preprocessor definitions
and include directories, and command-line commands

B Assembler options: preprocessor definitions, additional include
directories, and command-line commands

B Linker options: object files, Library Files, library directories, link type,
and command-line commands

Generating Software Output Files

You can process designs and generate files that contain memory
initialization data, passive programming files, and flash programming files
by performing a software build in the Quartus II software. You can also use

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 199

CHAPTER 13: SOFTWARE DEVELOPMENT
GENERATING SOFTWARE QUTPUT FILES

the makeprogfile utility (which is also used during a software build by the
Quartus Il software) and the stand-alone MegaWizard® Plug-In Manager to
generate passive programming files and flash programming files outside the
Quartus II software.

For more information on using the makeprogfile utility, type
makeprogfile -h ¢ at a command prompt.

[[Using the Stand-Alone MegaWizard Plug-In Manager

You can use the MegaWizard Plug-In Manager from outside the Quartus Il
software by typing the following command at a command prompt:

gqmegawiz ¢

The Software Builder automatically creates simulator initialization files
every time you generate flash programming files with the Software Builder,
or passive programming files with the Compiler or Software Builder.
Simulator initialization files specify the initialization data for each address
in the memory regions in the Excalibur embedded processor stripe. Table 1
lists the simulator initialization files generated by the Software Builder.

Table 1. Simulator Initialization Files

File Name File Contents

memory.regs Register initialization data
memory.sramO0 SRAMO initialization data
memory.sraml SRAMT1 initialization data
memory.dpram0 DPRAMO initialization data

memory.dpram1 DPRAMI initialization data

Generating Flash Programming Files

A flash programming file is a Hexadecimal (Intel-Format) File (.hex) that
programs the flash memory from which an Excalibur device loads
configuration and memory initialization data. The following steps describe
the basic flow for creating a flash programming file with the Software
Builder:

200 =m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 13: SOFTWARE DEVELOPMENT
GENERATING SOFTWARE OUTPUT FILES

5.

Create the software source files and add them to the project.

Run the ARM-based Excalibur MegaWizard Plug-In to generate a
System Build Descriptor File (.sbd).

If you want the flash programming file to contain configuration data for
the programmable logic device (PLD) portion of the Excalibur device,
compile the design to generate a Slave Binary Image File (.sbi).

Specify the toolset directory and software build settings. To generate a
flash programming file, you must specify the output file type and file
name, turn on Flash memory configuration, and, if you are using a
Slave Binary Image File, specify the optional Slave Binary Image File in
the Software Build Settings page of the Settings dialog box
(Assignments menu).

Start the software build.

Figure 1 shows the flow for using the Software Builder to create flash
programming files.

Figure 1. Flash Programming Files Flow

MegaWizard Plug-In
Manager

Software source files
include Assembly Files (.s, .asm),
— C/C++ Include Files (.h),
—— | C Source Files (.c),
——1 C++ Source Files (.cpp) &
Library Files (.a)

111

Y

s to Quartus Il

from Quartus Il

(full compilation)

= . fQuartl:;s !Ild E = Simulator or
L = oftware Builder |—» E other EDA

quartus_swhb

simulation tools

System Build
Descriptor File (.sbd) & Simulator
initialization
— il
Compiler =————9| — files
—_ Flash i
Slave Binary Image — ﬁ;;s(hil;(;grammmg
File (.sbi) :

To generate the flash programming files, the Software Builder performs the
following steps:

1.

ALTERA CORPORATION

An assembler, C/C++ compiler, linker, and code converter converts
software source files into a HEX File that contains Excalibur embedded
processor stripe memory initialization data for the Excalibur device.

INTRODUCTION TO QUARTUS Il = 201

CHAPTER 13: SOFTWARE DEVELOPMENT
GENERATING SOFTWARE QUTPUT FILES

2. Aboot data object file is created from the HEX File, System Build
Descriptor File, and Slave Binary Image File.

3. A linker links the boot data file with a binary bootloader file to create
an Executable and Linkable Format File (.elf).

4. A codeconverter converts the Executable and Linkable Format File into
a flash programming file with the name <project name>_flash.hex.

You can then use the exc_flash_programmer utility to program the
information in the flash programming file into the flash memory for the
Excalibur device via Expansion Bus Interface zero (EB10).

Generating Passive Programming
Files

Passive programming files are used to configure Excalibur devices using the
Passive Parallel Asynchronous (PPA), Passive Parallel Synchronous (PPS),
or Passive Serial (PS) configuration schemes. You can use the Software
Builder, the makeprogfile utility, or the Compiler to generate the following
passive programming files:

Hexadecimal (Intel-Format) Output Files (.hexout)
Programmer Object Files (.pof)

Raw Binary Files (.rbf)

SRAM Object Files (.sof)

Tabular Text Files (.ttf)

The following steps describe the basic flow for using the Software Builder to
create a passive programming file:

1. Create the software source files and add them to the project.

2. Runthe ARM-based Excalibur MegaWizard Plug-In to generate a
System Build Descriptor File.

3. Compile the design to generate a programmable logic Partial SRAM
Object File (.psof).

202 = INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 13: SOFTWARE DEVELOPMENT
GENERATING SOFTWARE OUTPUT FILES

4. Specify the software toolset directory and software build settings. To
generate a flash programming file, you must specify the output file type
and file name, turn on Passive configuration, and specify the PSOF in
the Software Build Settings page of the Settings dialog box
(Assignments menu).

5. Start the Software Builder.

Figure 2 shows the flow for using the Software Builder to create passive
programming files.

Figure 2. Passive Programming Files Flow

Software source files
S include Assembly Files (.s, .asm),
E D C/C++ Include Files (.h),
é C Source Files (.c),

C++ Source Files (.cpp) &
Library Files (.a)

) — Quartus Il to Quartus Il
MegaWizard Plug-In > — Software Builder Simulator or
Manager — quartus_swh other EDA
System Build . simulation tools
Descriptor File A _5”_”_“"{"0’_
(.sbd) ;:I/l;;allzﬂtloﬂ
i
\ Passive programming files
from Quartus_ I — include Hexadecimal (Intel-Format)
Co_mp_ller — =1 Output Files (.hex), Programmer
(full compilation) — = ——| ovject Files (.pof), Raw Binary
Partial SRAM ——1 Files (.rbf), SRAM Object Files (.sof) &
Object File (.psof) Tabular Text Files (.ttf)
_ to Quartus Il

© Programmer

To generate the passive programming files, the Software Builder performs
the following steps:

1. Anassembler, C/C++ compiler, linker, and code converter converts the
software source files into a HEX File that contains Excalibur embedded
processor stripe memory initialization data for the Excalibur device.

2. The makeprogfile utility processes the HEX File, System Build

Descriptor File, and PSOF to create one or more passive programming
files.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 203

CHAPTER 13: SOFTWARE DEVELOPMENT
GENERATING SOFTWARE QUTPUT FILES

Generating Memory Initialization Data
Files

Binary Files (.bin), HEX Files, and Library Files (.a) contain the memory
initialization data for the Excalibur embedded processor stripe. The
following steps describe the basic flow for creating BIN Files, HEX Files, and
Library Files with the Software Builder:

1. Create the software source files and add them to the project.

2. Specify the software toolset directory and software build settings. Use
the Software Build Settings page of the Settings dialog box
(Assignments menu) to specify the output file type and file name. If you
selected a HEX File in the Output file format list, and you do not want
to generate a flash programming file or generate passive programming
files, select None under Programming file generation.

3. Start the software build.

Figure 3 shows the flow for using the Software Builder to generate memory
initialization data files.

Figure 3. Memorvy Initialization Data Files Flow

Software source files

include Assembly Files (.s, .asm),
C/C++ Include Files (.h),

C Source Files (.c),

C++ Source Files (.cpp) &
Library Files (.a)

E = . Quartus |l =" N to Quartus Il
é Software Builder > % Programmer
quartus_swhb

Memory initialization

data files include

Binary Files (.bin), Hexadecimal
(Intel-Format) Output Files (.hex) &
Library Files (.a)

To generate the memory initialization files, the Software Builder performs
the following steps:

1. Anassembler and C/C++ compiler generates intermediate object files
from the design’s software source files.

204 =m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 13: SOFTWARE DEVELOPMENT
GENERATING SOFTWARE OUTPUT FILES

2. Ifyou are generating BIN Files or HEX Files, the linker links the object
files and generates an intermediate ELF File, and the code converter
converts the ELF File into a BIN File or HEX File.

3. If you are generating a Library File, the Software Builder uses the
Software Builder Archiver to process the object files into a Library File.

“ .. - For Information About Refer To

Performing a Software Build “Overview: Using the Software Builder” in
Quartus Il Help

Application Note 299 (System Development
Tools for Excalibur Devices) on the Altera
web site

Generating passive programming files, “Generating Passive Programming Files” in
and optional programming files for Quartus Il Help
POFs and SOFs

Generating BIN Files, HEX Files, and “Generating Binary Files, Hexadecimal
Library Files and generating debugging (Intel-Format) Files, Library Files & Motorola
information S-Record Files” in Quartus Il Help

“Overview: Checking Software Source Files
and Output Files” in Quartus Il Help

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 205

Chapter
Fourteen

Installation, Licensing
& Technical Support

What’s in Chapter 14:
Installing the Quartus Il Software 208
Licensing the Quartus Il Software 208
Getting Technical Support 211

CHAPTER 14: INSTALLATION, LICENSING & TECHNICAL SUPPORT
INSTALLING THE QUARTUS || SOFTWARE

Instal

ling the Quartus Il Software

You can install the Quartus® II software on the following platforms:

B Pentium PC operating at 400 MHz or faster, running one of the
following operating systems:

— Microsoft Windows NT version 4.0 (Service Pack 4 or later)
— Microsoft Windows 2000
— Microsoft Windows XP

® Pentium III or Pentium 4 PC operating at 400 MHz or faster, running
Red Hat Linux version 7.3 or 8.0 or Red Hat Linux Enterprise 3

B Sun Ultra workstation running Solaris version 7 or 8

m HP 9000 Series 700/800 workstation running HP-UX version 11.0 with
ACE dated November, 1999 or later

For Information About Refer To

System requirements and installation Quartus Il Installation & Licensing for PCs
instructions manual on the Altera web site

Quartus Il Installation & Licensing for UNIX
and Linux Workstations manual on the
Altera web site

Specific information about disk space Quartus Il readme.txt file
and memory

Latest information on new features, Quartus Il Software Release Notes on the
device support, EDA interface support Altera web site

Licensing the Quartus Il Software

To use Altera®-provided software, you need to obtain and set up an Altera
subscription license. An Altera subscription enables the following software:

m Altera Quartus II software
B Model Technology™ ModelSim®-Altera software

208 = INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 14: INSTALLATION, LICENSING & TECHNICAL SUPPORT
LICENSING THE QUARTUS Il SOFTWARE

Altera offers several types of software subscriptions. Table 1 shows the
different license and subscription options that are available.

Table 1. Altera License and Subscription Options

License Name Description

FIXEDPC A stand-alone PC license tied to a Parallel Port
Software Guard or a USB Software Guard
(T-guard or “dongle”)

FLOATPC A floating network license for PC users with
either a PC or UNIX license server
FLOATNET A floating network license for PC, Solaris, and

HP-UX users that are using a PC, Solaris, or HP-UX
license server

FLOATLNX A floating network license for PC users that are
running Red Hat Linux and using either a PC,
UNIX, or Linux license server

Quartus Il Web Edition A free, entry-level version of the Quartus I
software that supports selected devices. The
Quartus Il Web Edition software is available from
the Altera web site at www.altera.com.

Customers who purchase selected development kits receive a free version of
the Quartus II software for the PC and are given instructions on how to
obtain a license for the software.

The following steps describe the basic flow for licensing your software:

1. When you start the Quartus II software, if the software cannot detect a
valid ASCII text license file, license.dat, you will see a prompt with the
following options:

— Enable 30-day evaluation period with no license file (no
programming file support). This option allows you to evaluate
the Quartus Il software, without programming file support, for 30
days. After the 30-day grace period is over, you must obtain a
valid license file from the Licensing section of the Altera web site
at www.altera.com/licensing, and then follow the remaining steps
in this procedure.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 209

CHAPTER 14: INSTALLATION, LICENSING & TECHNICAL SUPPORT
LICENSING THE QUARTUS Il SOFTWARE

— Perform automatic web license retrieval. Selecting this option
requests a valid license file automatically from the Altera web site.
If you are using a node-locked (FIXEDPC) license and the
Quartus II software is able to retrieve a license file successfully
from the web site, you can skip the remaining steps of this
procedure. If you are using a network (multiuser) license, or if the
Quartus II software is not able to retrieve a license file, you are
guided through the licensing procedure.

— Specify valid license file. If you have a valid license file but have
not specified the location of the license file, selecting this option
displays the License Setup page of the Options dialog box (Tools
menu). It will give you an option to Specify valid license file or
Use LM_LICENSE_FILE variable. You can also specify the license
file or LM_LICENSE_FILE variable in your System control panel
for Windows NT, Windows 2000, or Windows XP, or in your
.cshrc file for UNIX and Linux workstations. If you select this
option, you can skip the remaining steps of the procedure.

2. If you are requesting a new license file, in the Licensing section of the
Altera web site, choose the link for the appropriate license type. Refer
to Table 1 on page 209.

3. Specify the requested information.

4. After you receive a license file by e-mail, save it to a directory on your
system.

5. Ifnecessary, modify the license file for your license.

6. Setup and configure the FLEXIm license manager server for your
system.

210 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 14: INSTALLATION, LICENSING & TECHNICAL SUPPORT
GETTING TECHNICAL SUPPORT

“ ._ Py For Information About Refer To

Detailed information about licensing Quartus Il Installation & Licensing for PCs

the Quartus Il software, modifying the manual on the Altera web site

license file, and specifying the license

file location Quartus Il Installation & Licensing for UNIX
and Linux Workstations manual on the
Altera web site

General information about Quartus Il “Overview: Obtaining a License File” and
licensing “Specifying a License File” in Quartus Il Help
Altera software licensing Application Note 340 (Altera Software

Licensing) on the Altera web site

Getting Technical Support

The easiest way to get technical support is to use the mySupport web site
and register for an Altera.com account. Your copy of the Quartus Il software
is registered at the time of purchase; however, in order to use the mySupport
web site to view and submit service requests, you must also register for an
Altera.com account. An Altera.com account is required only for using the
mySupport web site; however, having an Altera.com account will also make
it easier for you to use many other Altera web site features, such as the
Download Center, Licensing Center, Altera Technical Training online class
registration, or Buy On-Line-Altera eStore features.

To register for an Altera.com account user name and password, follow these
steps:

1. Go to the mySupport web site:
v/ To start your web browser and connect to the mySupport web site
while running the Quartus II software, choose Altera on the
Web > Quartus Il Home Page (Help menu).

or

v/ Point your web browser to the mySupport web site at
www.altera.com/mysupport.

2. Follow the instructions on the mySupport web site to register for an
Altera.com account.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 211

CHAPTER 14: INSTALLATION, LICENSING & TECHNICAL SUPPORT
GETTING TECHNICAL SUPPORT

If you are not a current Altera subscription user, you can still register for an
Altera.com account.

For information about other technical support resources, refer to Table 2.

Table 2. Quartus Il Technical Support Resources

Resource Description

Altera web site www.altera.com

The Altera web site provides information on Altera and all
of its products.

Support Center www.altera.com/support

The Support Center section of the Altera web site gives you
access to the mySupport web site, and also provides Altera
Find Answers. In addition, it provides software and device
support information as well as design examples that you
can integrate into your design.

mySupport web site www.altera.com/mysupport or choose Altera on the
Web > Quartus Il Home Page (Help menu) in the
Quartus Il software.

The mySupport web site allows you to submit, view, and
update technical support service requests.

Altera Find Answers www.altera.com/answers

Altera Find Answers uses natural language processing
technology (NLP) to analyze the meaning and context of
your question and provide an answer. Unlike simple search
engines that return lists of documents in response to
keyword queries, Altera Find Answers delivers the actual
answer.

Telephone (800) 800-EPLD
(7:00 a.m. to 5:00 p.m. Pacific time, M-F)
You will need your 6-digit Altera ID to access the hotline.

(408) 544-8767
(7:00 a.m. to 5:00 p.m. Pacific time, M-F)

212 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

What’s in Chapter 15:

Getting Online Help 214
Using the Quartus Il Online Tutorial 215

Other Quartus Il Software
Documentation 216

Other Altera Literature 217

Chapter
Fifteen

Documentation &
Other Resources

CHAPTER 15: DOCUMENTATION & OTHER RESOURCES
GETTING ONLINE HELP

Getting Online Help

214 =

The Quartus® Il software includes a platform-independent Help system that
provides comprehensive documentation for the Quartus II software and
more details about the specific messages generated by the Quartus II
software. You can view Help in one of the following ways:

To search through a list of Help topics Choose Index (Help
menu) to perform a search by using the Index tab.

To search through the full text of the Help system Choose
Search (Help menu) to perform a search by using the Search tab.

To search an outline of Help topic categories Choose Contents
(Help menu) to view the Contents tab.

To view help on a message Select the message on which you want to
receive Help, and choose Help (right button pop-up menu). You can also
choose Messages (Help menu) for a scrollable list of all messages.

To get Help on a menu command or dialog box Press F1 from a
highlighted menu command or active dialog box for context-sensitive Help
on that item.

To find a definition of a term Choose Glossary (Help menu) to
view the Glossary list.

[[5> Working with Help Topics

To print Help topics from the Contents tab, select the Help folder or individual Help
topic that you want to print, and choose Print (right button pop-up menu) or click
the Print button on the toolbar. If you select a Help folder to print, you can choose
to print all the topics in the folder. You can also use the Print command or Print
button to print any individual Help topic you are viewing.

To search for a keyword in an open Quartus Il Help topic, press Ctrl+F to open the
Find dialog box, and type the search text, and then click Find Next.

INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 15: DOCUMENTATION & OTHER RESOURCES
USING THE QUARTUS Il ONLINE TUTORIAL

“ ._ Py For Information About Refer To

Using Quartus Il Help “Using Quartus Il Help Effectively” and
“Help Menu Commands” in Quartus Il Help

“Using Quartus Il Help” in the Quartus Il
Installation & Licensing for PCs manual and
Quartus Il Installation & Licensing for UNIX
and Linux Workstations manual

Using the Quartus Il Online Tutorial

The online tutorial introduces you to the features of the Quartus II design
software. It shows you how to create and process your own logic designs
quickly and easily. The modular design of the Basic tutorial modules and
Optional tutorial modules allows you to choose the following areas of the
Quartus II software that you want to learn about:

B The Basic tutorial modules guide you through the steps required to
create, perform timing analysis on, simulate, and program a sample
finite impulse response (FIR) filter design, called fir_filter.

B The Optional tutorial modules focus on topics such as making the
transition from the MAX+PLUS® II software, using the LogicLock™
feature, and using Stratix™ device features. You do not need to
complete the Basic tutorial to begin any of the Optional tutorial
modules.

To start the Quartus II tutorial after you have successfully installed the
Quartus II software:

v/ Choose Tutorial (Help menu).

After you start the tutorial, the Quartus II window resizes to allow you to
view the Tutorial window and the Quartus II software simultaneously.

ALTERA CORPORATION INTRODUCTION TO QUARTUS Il = 215

CHAPTER 15: DOCUMENTATION & OTHER RESOURCES
OTHER QUARTUS Il SOFTWARE DOCUMENTATION

[More Information About Using the Quartus Il Tutorial

You must have installed support for Cyclone™ EP1C6 devices if you want to
complete the Basic or LogicLock tutorial. In addition, you must have installed
support for the MAX® EPM570 and Stratix EP1S25 devices if you want to complete
the Optional MAX+PLUS Il Conversion and Stratix tutorial modules.

The tutorial is designed for display online. However, if you want to print one or more
of the tutorial modules, click the Printing Options button located at the beginning
of each module and then click the link to open the appropriate printable version.

Other Quartus Il Software
Documentation

Table 1 shows the additional software documentation that is available for
the Quartus II software:

Table 1. Additional Quartus Il Documentation (Part 1 of 2)

Document Description Where to Find It
Quartus Il Software Release Provides late-breaking The Altera® web site
Notes information about new

features, device support,
EDA interface support, and
known issues and

workarounds
Quartus Il Installation & Provides detailed In Quartus Il subscription
Licensing for PCs manual information about software packages and on the Altera
requirements, installation, web site
and licensing for PCs
Quartus Il Installation & Provides detailed In Quartus Il subscription
Licensing for UNIX and information about software packages and on the Altera

Linux Workstations manual requirements, installation, web site
and licensing for UNIX and
Linux workstations

216 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

CHAPTER 15: DOCUMENTATION & OTHER RESOURCES
OTHER ALTERA LITERATURE

Table 1. Additional Quartus Il Documentation (Part 2 of 2)

Document

Description Where to Find It

Quartus |l readme.txt file Provides information about On Quartus Il software

memory, disk space, and CD-ROMs and installed with

system requirements the Quartus Il software
Quartus Il Software Quick Shows how to set up your In Quartus Il subscription
Start Guide project, set timing packages and on the Altera

requirements, and compile web site
your project for a target
device

Other Altera Literature

The Literature section of the Altera web site at www.altera.com provides
documentation on many subjects that are related to the Quartus II software.
Many of these documents are also available on the Altera Documentation
Library CD or from Altera Literature Services. You can also purchase
printed sets of documentation from the ShopAltera web site at
www.shopaltera.com.

Altera provides literature that includes some of the following topics:

Quartus II features and guidelines on using these features with your
design flow

Altera device features, functions, structure, specifications,
configuration, and pin-outs

Design solutions and methodologies

Implementing device features

Altera programming hardware features, use, and installation
Using the Quartus II software with other EDA tools

Using other Altera software tools

Implementing IP MegaCore® functions and Altera megafunctions
Optimizing designs or improving performance

Synthesis, simulation, and verification guidelines

Product updates and notifications

The literature that is available from the Altera web site is the most current
information about Altera products and features; it is updated frequently,
even after a product has been released. Altera continues to add new

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il m 217

CHAPTER 15: DOCUMENTATION & OTHER RESOURCES
OTHER ALTERA LITERATURE

literature in order to provide more information on the latest features of
Altera tools and devices, and to provide additional information that Altera
customers have requested.

[Searching through Altera Literature with Altera Find Answers

You can use Altera Find Answers, which is available from the Support Center section
of the Altera web site at www.altera.com/answers, to search through all the
literature that is available on the Altera web site. Altera Find Answers uses natural
language processing technology (NLP) to analyze the meaning and context of your
question and provide an answer. Unlike simple search engines that return lists of
documents in response to keyword queries, Altera Find Answers delivers the actual
answer.

218 m INTRODUCTION TO QUARTUS Il ALTERA CORPORATION

Index

A

ADS Standard Tools software toolset 198
AHDL 40
AHDL Include Files (.inc) 37
Altera Find Answers 212
Altera Hardware Description Language
(AHDL) 40
Altera Megafunction Partners Program
(AMPP) 42
Altera on the Web command 211
Altera Programming Unit (APU) 152
Altera web site 212
Altera.com account 212
AMBA high-performance bus (AHB) 192
AMPP 42
Analysis & Elaboration 56, 68
Analysis & Synthesis 4
design flow 56
netlist optimization 63
performing with EDA tools 60
VHDL and Verilog HDL support 57
Analysis & Synthesis Settings page 64,
144
APU 152
ARM-based Excalibur MegaWizard
Plug-In 201, 202
Assembler 4, 150, 152
Assembly Files (.s, .asm) 198
Assign SignalProbe Pins dialog box 172
Assignment Editor 49, 98, 123, 130
Assignment Editor command 98
assignments
importing 51
location 98
making 48, 141
path-based 146
verifying 52
viewing 139
attributes 63
Avalon interface 192

ALTERA CORPORATION

Back-Annotate Assignments
command 116, 141

back-annotation 106, 116, 141

batch files 21

Binary Files (.bin) 204

black-box methodology 45

Block Design Files (.bdf) 37

Block Editor 37

Block Symbol Files (.bsf) 37, 39

block-based design 53, 111

Board-Level page 133

bus functional model 85

ByteBlaster II download cable 152, 165

ByteBlasterMV download cable 152, 165

C

C Source Files (.c) 198
C++ Source Files (.cpp) 198
Chain Description Files (.cdf) 152, 154
change management design flow 180
Check Resource Properties command 185
Chip Editor 97,177,181, 182
clear box methodology 46
command-line executables 16
Comma-Separated Value Files (.csv) 49,
170

compilation flows 5, 20
Compiler

compilation flows 5, 20

modules 4

specifying settings 50

starting 4

status 91
Compiler Database Interface 4
compiler directives 63
Compiler Settings wizard 48
configuring 150
Convert MAX+PLUS II Project

command 35

INTRODUCTION TO QUARTUS Il = 219

INDEX

Convert Programming Files
command 151, 155

Copy Project command 31

Create command 184

Create/Update > Create Jam, SVF, or ISC
File command 151, 155

Create/Update > Create/Update IPS File
command 151, 155, 156

Create/Update command 38, 39

critical paths 140

Customize dialog box 6,7

customizing look and feel 6

D

debugging see SignalTap II Logic Analyzer;
SignalProbe feature

Design Assistant 4, 67, 97

Design Assistant page 67

design constraints 48

design entry 30

design partitioning 54

Design Space Explorer 102, 148

devices, programming and configuring 150

documentation conventions xi

DSE 102, 148

dse.tcl Tcl script 102, 148

DSP Builder 190, 194
creating designs 194
design flow 191
generating simulation files 195
generating synthesis files 195
instantiating functions 194
SignalCompiler 195
using with other EDA tools 195

E

ECOs 180
creating 183
verifying 187

EDA interfaces 10, 23
EDA Netlist Writer 4, 75,77, 133
EDA Tool Settings page 13, 61

220 = INTRODUCTION TO QUARTUS Il

EDA tools
functional simulation 78
minimum timing analysis 133
power estimation 77
simulation 75
specifying settings 13, 50, 61, 76
starting synthesis tools 62
supported tools 11, 60, 75, 133
synthesis 60
timing analysis 133
timing simulation 79
using LogicLock with 119
EDIF Input Files (.edf) 37
EDIF netlist files (.edf) 56, 60
Edit Connection command 184
engineering change orders see ECOs
Equations window 140
ESS model 86
Ethernet Blaster download cable 152
exc_flash_programmer utility 202
Excalibur designs, simulating 84
Excalibur Stripe Simulator (ESS) model 86
Executable and Linkable Format Files
(.elf) 202
executables 16
Export Assignments dialog box 117
Export command 49
Export Database command 34

F

Field View command 139
Files page 31
Fitter 4, 90
Fitter Settings page 99
fitting
analyzing 92
design flow 90
incremental fitting 105
optimization 98, 145
flash programming files 200, 201
Floorplan Editor 95, 97
flows for compilation 5, 20
full compilation 4

ALTERA CORPORATION

INDEX

functional simulation
EDA tools 78
Quartus II Simulator 81

G

GNUPro for ARM software toolset 198
Graphic Design Files (.gdf) 37
Graphic Editor see Block Editor
graphical user interface 3

H

Help, getting 214
Hexadecimal (Intel-Format) Files
(-hex) 159, 200
Hexadecimal (Intel-Format) Output Files
(-hexout) 151, 155, 158, 202
Hierarchy Display see Project Navigator

I/0O Pin State Files (.ips) 151, 155, 156

Import Assignments command 51

Import Assignments dialog box 117

Import Database command 34

In System Configuration Files (.isc) 151,
152,155

incremental fitting 105

Integrated Synthesis 57

Intellectual Property (IP) functions 41

ISP CLAMP State Editor dialog box 151,
155, 156

J

Jam Byte-Code Files (.jbc) 151, 152, 154, 155

Jam Files (.;jam) 151, 152, 154, 155

Jam STAPL Byte Code Format File (.jbc) see
Jam Byte-Code Files (.jbc)

JEDEC STAPL Format File (.jam) see Jam
Files (.jam)

JTAG Indirect Configuration Files (.jic) 151

JTAG port 164

ALTERA CORPORATION

L

Last Compilation floorplan 95, 97
layout, customizing 6
Library Files (.a) 198, 204
Library Mapping Files (.Imf) 57
library of parameterized modules (LPM)
functions 40
List Paths command 130
list_paths Tcl command 131
LMFs 57
Locate in Timing Closure Floorplan
command 130
location assignments 98
logic options 64, 100
LogicLock 110, 112
saving intermediate synthesis
results 115
using with other EDA tools 119
using with Tcl 114
LogicLock Region Properties dialog
box 98
LogicLock regions 112
achieving timing closure 146
exporting 117
importing 117
path-based assignments 146
properties 112
soft LogicLock regions 146
viewing connectivity 140
viewing intra-region delay 140
LogicLock Regions window 113
LogicLock Regions Window
command 113
look and feel, customizing 6
LPM 40

makefile support 26

makeprogfile utility 200

MasterBlaster download cable 152, 165

MATLAB/Simulink environment 195

MAX+PLUS II Assignment &
Configuration Files (.acf) 52

INTRODUCTION TO QUARTUS Il = 221

INDEX

MAX+PLUS II look and feel 6
MAX+PLUS II quick menu 7
MAX+PLUS II Simulator Channel Files
(.scf) 83
MAX+PLUS Il Symbol Files (.sym) 39
MegaCore functions 42
megafunctions 40
inferring 45, 46
instantiating 40, 44, 58
instantiating in other EDA tools 45, 58
MegaWizard Plug-In Manager 40, 200
gqmegawiz executable 17
stand-alone version 17
using with black-box methodology 45
using with clear box methodology 46
Memory Editor 78
memory initialization data files 204
Memory Initialization Files (.mif) 78
Messages window 92
minimum timing analysis 122,126
modules of the Compiler 4
mySupport web site 211, 212

NativeLink 78, 134

netlist optimization
achieving timing closure 143
fitting 145
physical synthesis 145
synthesis 63, 66, 144

New Project Wizard 31

o

OpenCore hardware evaluation feature 42
OpenCore Plus hardware evaluation
feature 42

P

partitioning 54

passive programming files 202, 203
Path dialog box 147

path-based assignments 146

222 m INTRODUCTION TO QUARTUS Il

Perl scripts 21
Physical Synthesis Optimizations
page 99, 143
physical synthesis, optimization 99, 145
physical timing estimates 139
place and route
see also fitting
design flow 90
incremental fitting 105
POFs 150, 154, 155
power estimation 77, 83
Power Input Files (.pwf) 77
PowerFit Fitter 90
Priority dialog box 114
programmable logic Partial SRAM Object
Files (.psof) 202
Programmer 150
quartus_pgm executable 153
quartus_pgmw executable 17
stand-alone version 17, 152
Programmer Object Files (.pof) 150, 154,
155,202
programming 150
design flow 150
programming hardware 152
programming files
converting 151, 155
creating secondary 155
Programming Files tab 155
Project Navigator window 32

Q

qmegawiz executable 17
QSF 31, 113, 125
Quartus 100
Quartus II Default Settings Files (.qdf) 31
Quartus II look and feel 6
Quartus II Project Files (.qpf) 31
Quartus II quick menu 7
Quartus II Settings Files (.qsf) 31, 113, 125
Quartus II software
command-line design flow 16
EDA tool design flow 10, 23

ALTERA CORPORATION

INDEX

Quartus II software (continued)

general design flow 2

GUI design flow 3
Quartus II Tutorial 215
Quartus I Workspace Files (.qws) 31
quartus_asm executable 18, 151
quartus_cdb executable 18, 35, 116
quartus_cpf executable 18, 160
quartus_drc executable 17, 68
quartus_eda executable 18,77, 133
quartus_fit executable 17, 91
quartus_map executable 17, 57
quartus_pgm executable 18, 153
quartus_pgmw executable 17, 152
quartus_sh executable 18
quartus_sim executable 18, 82
quartus_stp executable 18, 166
quartus_stpw executable 17,171
quartus_swb executable 18, 199
quartus_tan executable 17, 127
quick menus 7

R

RAM Initialization Files (.rif) 78
Raw Binary Files (.rbf) 151, 155, 202
Regions window 98
Remove Connection command 184
Report window 93, 128
Resource Optimization Advisor 101
Resource Property Editor 183
revisions 32
Revisions dialog box 32
routing 90

congestion 140

connection counts 139

critical paths 140

delays 139
RTL Viewer 68,176

Run EDA Simulation Tool command 77

Run EDA Timing Analysis Tool
command 133

ALTERA CORPORATION

S

saving intermediate synthesis results 115
Serial Vector Format Files (.svf) 151, 152,
155
settings
Analysis & Synthesis 64
Compiler 50
Design Assistant 67
EDA tools 13, 61,76
Fitter 99
Fitter optimization 145
HardCopy 50
physical synthesis optimization 99
Quartus II Project Files (.qpf) 31
Quartus II Settings Files (.qsf) 31
SignalProbe 172
SignalTap II Logic Analyzer 166, 169
Simulator 50, 82
Software Builder 50, 199, 201, 203, 204
synthesis optimization 66, 144
Timing Analyzer 50
Verilog HDL input 57
VHDL input 57
Settings dialog box 50, 98, 123
shell, Tcl scripting 18
Shop Altera web site 217
SignalProbe feature 164, 172
compilation 172
design flow 164
reserving pins 173
using 172
SignalProbe Settings page 172
SignalTap II Files (.stp) 165
SignalTap II Logic Analyzer 164, 165
analyzing data 169
design flow 164
incremental routing 169
Instance Manager 167
mnemonic tables 170
multiple analyzers 167
quartus_stpw executable 17
setting up and running 165
stand-alone version 17,171
triggers 168

INTRODUCTION TO QUARTUS Il = 223

INDEX

SignalTap II Logic Analyzer page 169
simulation
libraries 80
simulation flow 74
Simulation page 76
Simulator 81
specifying settings 50
using 81
simulator initialization files 200
Simulator Tool 84
Slave Binary Image File (.sbi) 201
SOFs 150, 154, 155
Software Build Settings page 199,201, 203,
204
Software Build Settings wizard 199
Software Builder 198
flash programming files 200
generating output files 199
makeprogfile utility 200
memory initialization data files 204
passive programming files 202
simulator initialization files 200
specifying settings 50, 199
software development see Software Builder
SOPC Builder 190
creating designs 191
creating system 192
design flow 190
generating system 193
System Contents page 192
System Generation page 193
using 191
SRAM Object Files (.sof) 150, 154, 155, 202
stand-alone Programmer 150
Standard Delay Format Output Files
(.sdo) 75
STAPL see Jam Files (.jam); Jam Byte-Code
Files (.jbc)
Start EDA Netlist Writer command 77, 133
Start EDA Synthesis command 62
Start I/O Assignment Analysis
command 52
Start Minimum Timing Analysis
command 126
Start Software Build command 198

224 m INTRODUCTION TO QUARTUS Il

Start Timing Analyzer command 126
Support Center 212
Symbol Editor 39
Synopsys Design Constraints File
(.sdc) 134
synthesis
design flow 56
netlist optimization 63, 66, 144
performing with EDA tools 60
VHDL and Verilog HDL support 57
Synthesis Netlist Optimizations page 66,
143
System Build Descriptor Files (.sbd) 201
system debugging see SignalTap II Logic
Analyzer; SignalProbe feature
system-on-a-programmable-chip
(SOPC) 190

T

Table Files (.tbl) 170
Tabular Text Files (.ttf) 151, 155, 202
Tcl 18,21,23
technical support 211, 212
Technology Map Viewer 70, 131, 176
Technology Map Viewer command 132
test bench files 77
Text Design Files (.tdf) 37
Text Editor 39
Time Groups dialog box 126
timegroup assignments 125
timing analysis 122
design flow 122
performing 123, 126
performing with EDA tools 133
specifying settings 50
viewing delay paths 129
viewing results 128
Timing Analysis page 133
Timing Analyzer 4, 122
timing closure 138
design flow 138
making assignments 141
using LogicLock regions 146
using netlist optimization 143

ALTERA CORPORATION

INDEX

timing closure (continued)
viewing assignments 139
viewing routing 139
Timing Closure floorplan 95, 97, 138
Timing Optimization Advisor 142
timing requirements 123
individual 125
project-wide 124
specifying 123
timing simulation
EDA tools 79
Quartus II Simulator 81
Timing wizard 48, 123
tutorial 215

U

USB-Blaster download cable 152, 165

\%

Value Change Dump Files (.ved) 170

Vector Files (.vec), 83

Vector Table Output Files (.tbl) 83

Vector Waveform Files (.vwf) 83,170

Verilog Design Files (.v) 37, 56, 60

Verilog HDL 39, 57

Verilog HDL Input page 57

Verilog Output Files (.vo) 75

Verilog Quartus Mapping Files (.vqm) 37,
56, 60, 115, 145

Verilog Test Bench Files (.vt) 77

VHDL 39, 57

VHDL Design Files (.vhd) 37, 56, 60

VHDL Input page 57

VHDL Output Files (.vho) 75

VHDL Test Bench Files (.vht) 77

View Port Connections command 183

View Properties command 183

VQM Files 56, 60

w

Waveform Editor 77, 83
Waveform Export utility 170

ALTERA CORPORATION

INTRODUCTION TO QUARTUS Il

m 225

	Introduction to Quartus II manual
	Contents
	Preface
	Documentation Conventions
	Chapter 1: Design Flow
	Introduction
	Graphical User Interface Design Flow
	EDA Tool Design Flow
	Command-Line Design Flow
	Command-Line Executables
	Using Standard Command-Line Commands & Scripts
	Using Tcl Commands
	Creating Makefile Scripts

	Chapter 2: Design Entry
	Introduction
	Creating a Project
	Using Revisions
	Using Version-Compatible Databases
	Converting MAX+PLUS II Projects

	Creating a Design
	Using the Quartus II Block Editor
	Using the Quartus II Text Editor
	Using the Quartus II Symbol Editor
	Using Verilog HDL, VHDL & AHDL

	Using Altera Megafunctions
	Using Intellectual Property (IP) Megafunctions
	Using the MegaWizard Plug-In Manager
	Instantiating Megafunctions in the Quartus II Software
	Instantiation in Verilog HDL & VHDL
	Using the Port & Parameter Definition
	Inferring Megafunctions

	Instantiating Megafunctions in EDA Tools
	Using the Black Box Methodology
	Instantiation by Inference
	Using the Clear Box Methodology

	Specifying Initial Design Constraints
	Using the Assignment Editor
	Using the Settings Dialog Box
	Importing Assignments
	Verifying Pin Assignments

	Design Methodologies & Design Planning
	Top-Down versus Bottom-Up Design Methodologies
	Block-Based Design Flow
	Design Partitioning

	Chapter 3: Synthesis
	Introduction
	Using Quartus II Verilog HDL & VHDL Integrated Synthesis
	Using Other EDA Synthesis Tools
	Controlling Analysis & Synthesis
	Using Compiler Directives and Attributes
	Using Quartus II Logic Options
	Using Quartus II Synthesis Netlist Optimization Options

	Using the Design Assistant to Check Design Reliability
	Analyzing Synthesis Results with the RTL Viewer
	Analyzing Synthesis Results with the Technology Map Viewer

	Chapter 4: Simulation
	Introduction
	Simulating Designs with EDA Tools
	Specifying EDA Simulation Tool Settings
	Generating Simulation Output Files
	EDA Simulation Flow
	Functional Simulation Flow
	NativeLink Simulation Flow
	Manual Timing Simulation Flow
	Simulation Libraries

	Simulating Designs with the Quartus II Simulator
	Creating Waveform Files
	Performing PowerGauge Power Estimation
	Using the Simulator Tool

	Simulating Excalibur Designs
	Simulating Excalibur Designs in the Quartus II Software
	Using the Bus Functional Model with EDA Tools
	Using the Full-Stripe Model with EDA Tools
	Using the ESS Model with EDA Tools

	Chapter 5: Place & Route
	Introduction
	Analyzing Fitting Results
	Using the Messages Window to View Fitting Results
	Using the Report Window or Report File to View Fitting Results
	Using the Floorplan Editor to Analyze Results
	Using the Design Assistant to Check Design Reliability

	Optimizing the Fit
	Using Location Assignments
	Setting Options that Control Place & Route
	Setting Fitter Options
	Setting Physical Synthesis Optimization Options
	Setting Individual Logic Options that Affect Fitting

	Using the Resource Optimization Advisor
	Using the Design Space Explorer

	Performing Incremental Fitting
	Preserving Assignments through Back-Annotation

	Chapter 6: Block-Based Design
	Introduction
	Quartus II Block-Based Design Flow
	Using LogicLock Regions
	Saving Intermediate Synthesis Results
	Back-Annotating LogicLock Region Assignments
	Exporting & Importing LogicLock Assignments

	Using LogicLock with EDA Tools

	Chapter 7: Timing Analysis
	Introduction
	Performing Timing Analysis in the Quartus II Software
	Specifying Timing Requirements
	Specifying Project-Wide Timing Settings
	Specifying Individual Timing Assignments

	Performing a Timing Analysis

	Viewing Timing Analysis Results
	Using the Report Window
	Making Assignments & Viewing Delay Paths
	Using the Technology Map Viewer

	Performing Timing Analysis by Using EDA Tools
	Using the PrimeTime Software
	Using the BLAST and Tau Software

	Chapter 8: Timing Closure
	Introduction
	Using the Timing Closure Floorplan
	Viewing Assignments & Routing
	Making Assignments

	Using the Timing Optimization Advisor
	Using Netlist Optimizations to Achieve Timing Closure
	Using LogicLock Regions to Achieve Timing Closure
	Soft LogicLock Regions
	Path-Based Assignments

	Using the Design Space Explorer to Achieve Timing Closure

	Chapter 9: Programming & Configuration
	Introduction
	Programming One or More Devices by Using the Programmer
	Creating Secondary Programming Files
	Creating Other Programming File Formats
	Converting Programming Files

	Using the Quartus II Software to Program Via a Remote JTAG Server

	Chapter 10: Debugging
	Introduction
	Using the SignalTap II Logic Analyzer
	Setting Up & Running the SignalTap II Logic Analyzer
	Analyzing SignalTap II Data

	Using SignalProbe
	Using the In-System Memory Content Editor
	Using the RTL Viewer & Technology Map Viewer
	Using the Chip Editor

	Chapter 11: Engineering Change Management
	Introduction
	Identifying Delays & Critical Paths by Using the Chip Editor
	Creating & Moving Atoms in the Chip Editor
	Modifying Resource Properties by Using the Resource Property Editor
	Viewing & Managing Changes with the Change Manager
	Verifying the Effect of ECO Changes

	Chapter 12: System-Level Design
	Introduction
	Creating SOPC Designs with SOPC Builder
	Creating the System
	Generating the System

	Creating DSP Designs with the DSP Builder
	Instantiating Functions
	Generating Simulation Files
	Generating Synthesis Files

	Chapter 13: Software Development
	Introduction
	Using the Software Builder in the Quartus II Software
	Specifying Software Build Settings
	Generating Software Output Files
	Generating Flash Programming Files
	Generating Passive Programming Files
	Generating Memory Initialization Data Files

	Chapter 14: Installation, Licensing & Technical Support
	Installing the Quartus II Software
	Licensing the Quartus II Software
	Getting Technical Support

	Chapter 15: Documentation & Other Resources
	Getting Online Help
	Using the Quartus II Online Tutorial
	Other Quartus II Software Documentation
	Other Altera Literature

	Index

