
Using Library Modules in VHDL Designs

This tutorial explains how Altera’s library modules can be included in VHDL-based designs, which are imple-
mented by using the QuartusR© II software.

Contents:

Example Circuit
Library of Parameterized Modules
Augmented Circuit with an LPM
Results for the Augmented Design

1

Practical designs often include commonly used circuit blocks such as adders, subtractors, multipliers, decoders,
counters, and shifters. Altera provides efficient implementations of such blocks in the form of library modules that
can be instantiated in VHDL designs. The compiler may recognize that a standard function specified in VHDL
code can be realized using a library module, in which case it may automaticallyinfer this module. However, many
library modules provide functionality that is too complex to be recognized automatically by the compiler. These
modules have to be instantiated in the design explicitly by the user.

QuartusR© II software includes alibrary of parameterized modules(LPM). The modules are general in struc-
ture and they are tailored to a specific application by specifying the values of general parameters.

Doing this tutorial, the reader will learn about:

• Library of parameterizes modules (LPMs)

• Configuring an LPM for use in a circuit

• Instantiating an LPM in a designed circuit

The detailed examples in the tutorial were obtained using the Quartus II version 5.0, but other versions of the
software can also be used.

1 Example Circuit

As an example, we will use the adder/subtractor circuit shown in Figure 1. It can add, subtract, and accu-
mulaten-bit numbers using the 2’s complement number representation. The two primary inputs are numbers
A = an−1an−2 · · ·a0 andB = bn−1bn−2 · · · b0, and the primary output isZ = zn−1zn−2 · · · z0. Another input
is theAddSubcontrol signal which causesZ = A + B to be performed whenAddSub= 0 andZ = A − B when
AddSub= 1. A second control input,Sel, is used to select the accumulator mode of operation. IfSel= 0, the
operationZ = A ± B is performed, but ifSel= 1, thenB is added to or subtracted from the current value ofZ.
If the addition or subtraction operations result in arithmetic overflow, an output signal,Overflow, is asserted.

To make it easier to deal with asynchronous input signals, they are loaded into flip-flops on a positive edge of
the clock. Thus, inputsA andB will be loaded into registersAregandBreg, while SelandAddSubwill be loaded
into flip-flopsSelRandAddSubR, respectively. The adder/subtractor circuit places the result into registerZreg.

2

m0mn 1–

a0an 1–

n-bit adder

n-bit register

F/F

n-bit register

F/F

areg0aregn 1–

n-bit register

z0zn 1–

g0gn 1–

n-bit 2-to-1 MUX

A =

G =

M =

Z =

Areg = breg0bregn 1–Breg =

SelR

carryin

b0bn 1–B =

h0hn 1–H =

Sel AddSub

hn 1–

carryout

F/F

Overflow

AddSubR

Zreg

zreg0zregn 1–Zreg =over_flow

Figure 1. The adder/subtractor circuit.

The required circuit is described by the VHDL code in Figure 2. For our example, we use a 16-bit circuit as
specified byn = 16. Implement this circuit as follows:

• Create a projectaddersubtractor.

• Include a fileaddersubtractor.vhd, which corresponds to Figure 2, in the project. For convenience, this file is
provided in the directoryDE2_tutorials\design_files, which is included on the CD-ROM that accompanies
the DE2 board and can also be found on Altera’s DE2 web pages.

• Choose the Cyclone II EP2C35F672C6 device, which is the FPGAchip on Altera’s DE2 board.

• Compile the design.

• Simulate the design by applying some typical inputs.

3

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

−− Top-level entity
ENTITY addersubtractor IS

GENERIC (n : INTEGER := 16) ;
PORT (A, B : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

Clock, Reset, Sel, AddSub : IN STD_LOGIC ;
Z : BUFFER STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;
Overflow : OUT STD_LOGIC) ;

END addersubtractor ;

ARCHITECTURE Behavior OF addersubtractor IS
SIGNAL G, H, M, Areg, Breg, Zreg, AddSubR_n : STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
SIGNAL SelR, AddSubR, carryout, over_flow : STD_LOGIC ;
COMPONENT mux2to1

GENERIC (k : INTEGER := 8) ;
PORT (V, W : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;

Selm : IN STD_LOGIC ;
F : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0)) ;

END COMPONENT ;
COMPONENT adderk

GENERIC (k : INTEGER := 8) ;
PORT (carryin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
carryout : OUT STD_LOGIC) ;

END COMPONENT ;
BEGIN

PROCESS (Reset, Clock)
BEGIN

IF Reset = ’1’ THEN
Areg<= (OTHERS => ’0’); Breg <= (OTHERS => ’0’);
Zreg<= (OTHERS => ’0’); SelR <= ’0’; AddSubR<= ’0’; Overflow <= ’0’;

ELSIF Clock’EVENT AND Clock = ’1’ THEN
Areg<= A; Breg<= B; Zreg<= M;
SelR<= Sel; AddSubR<= AddSub; Overflow<= over_flow;

END IF ;
END PROCESS ;

nbit_adder: adderk
GENERIC MAP (k => n)
PORT MAP (AddSubR, G, H, M, carryout) ;

multiplexer: mux2to1
GENERIC MAP (k => n)
PORT MAP (Areg, Z, SelR, G) ;

AddSubR_n<= (OTHERS => AddSubR) ;
H <= Breg XOR AddSubR_n ;
over_flow<= carryout XOR G(n−1) XOR H(n−1) XOR M(n−1) ;
Z <= Zreg ;

END Behavior;
. . . continued in Partb

Figure 2. VHDL code for the circuit in Figure 1 (Parta).

4

−− k-bit 2-to-1 multiplexer
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux2to1 IS
GENERIC (k : INTEGER := 8) ;
PORT (V, W : IN STD_LOGIC_VECTOR(k−1 DOWNTO 0) ;

Selm : IN STD_LOGIC ;
F : OUT STD_LOGIC_VECTOR(k−1 DOWNTO 0)) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

PROCESS (V, W, Selm)
BEGIN

IF Selm = ’0’ THEN
F <= V ;

ELSE
F <= W ;

END IF ;
END PROCESS ;

END Behavior ;

−− k-bit adder
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_signed.all ;

ENTITY adderk IS
GENERIC (k : INTEGER := 8) ;
PORT (carryin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(k−1 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(k−1 DOWNTO 0) ;
carryout : OUT STD_LOGIC) ;

END adderk ;

ARCHITECTURE Behavior OF adderk IS
SIGNAL Sum : STD_LOGIC_VECTOR(k DOWNTO 0) ;

BEGIN
Sum<= (’0’ & X) + (’0’ & Y) + carryin ;
S<= Sum(k−1 DOWNTO 0) ;
carryout<= Sum(k) ;

END Behavior ;

Figure 2. VHDL code for the circuit in Figure 1 (Partb).

5

2 Library of Parameterized Modules

The LPMs in the library of parameterized modules are generalin structure and they can be configured to suit a spe-
cific application by specifying the values of various parameters. SelectHelp > Megafunctions/LPM to see a list-
ing of the available LPMs. One of them is an adder/subtractormodule calledlpm_add_sub megafunction. Select
this module to see its description. The module has a number ofinputs and outputs, some of which may be omitted
in a given application. Several parameters can be defined to specify a particular mode of operation. For example,
the number of bits in the operands is specified in the parameter LPM_WIDTH. The LPM_REPRESENTATION
parameter specifies whether the operands are to be interpreted as signed or unsigned numbers, and so on. Tem-
plates on how an LPM can be instantiated in a hardware description language are given in the description of the
module. Using these templates is somewhat cumbersome, so Quartus II software provides a wizard that makes the
instantiation of LPMs easy.

We will use thelpm_add_submodule to simplify our adder/subtractor circuit defined in Figures 1 and 2.
The augmented circuit is given in Figure 3. Thelpm_add_submodule, instantiated under the namemegaddsub,
replaces the adder circuit as well as the XOR gates that provide the inputH to the adder. Since arithmetic overflow
is one of the outputs that the LPM provides, it is not necessary to generate this output with a separate XOR gate.

To implement this adder/subtractor circuit, create a new directory namedtutorial_lpm, and then create a project
addersubtractor2. Choose the same Cyclone II EP2C35F672C6 device, to allow a direct comparison of imple-
mented designs.

m0mn 1–

a0an 1–

n-bit register

F/F n-bit register

F/F

areg0aregn 1–

n-bit register

z0zn 1–

g0gn 1–

n-bit 2-to-1 MUX

A =

G =

M =

Z =

Areg = breg0bregn 1–Breg =

SelR

b0bn 1–B =Sel AddSub

F/F

Overflow

~AddSubR

Zreg

megaddsub module
dataa datab

resultoverflow

over_flow

add_sub

zreg0zregn 1–Zreg =

Figure 3. The augmented adder/subtractor circuit.

6

The new design will include the desired LPM subcircuit specified as a VHDL component that will be instanti-
ated in the top-level VHDL design entity. The VHDL componentfor the LPM subcircuit is generated by using a
wizard as follows:

1. SelectTools > MegaWizard Plug-in Manager, which leads to a sequence of seven pop-up boxes in which
the user can specify the details of the desired LPM.

2. In the box shown in Figure 4 indicateCreate a new custom megafunction variation and clickNext.

Figure 4. Choose to define an LPM.

Figure 5. Choose an LPM from the available library.

3. The box in Figure 5 provides a list of the available LPMs. Expand the “arithmetic” sublist and select
LPM_ADD_SUB. ChooseVHDL as the type of output file that should be created. The output file must be

7

given a name; choose the namemegaddsub.vhdand indicate that the file should be placed in the directory
tutorial_lpmas shown in the figure. PressNext.

4. In the box in Figure 6 specify that the width of the data inputs is 16 bits. Also, specify the operating mode
in which one of the ports allows performing both addition andsubtraction of the input operand, under the
control of theadd_subinput. A symbol for the resulting LPM is shown in the top left corner. Note that if
add_sub= 1 thenresult= A+ B; otherwise,result= A−B. This interpretation of the control input and the
operation performed is different from our original design in Figures 1 and 2, which we have to account for
in the modified design. Observe that we have included this change in the circuit in Figure 3. ClickNext.

Figure 6. Specify the size of data inputs.

5. In the box in Figure 7, specify that the values of both inputs may vary and clickNext.

Figure 7. Further specification of inputs.

6. The box in Figure 8 allows the designer to indicate optional inputs and outputs that may be specified. Since
we need the overflow signal, make theCreate an overflow output choice and pressNext.

8

Figure 8. Specify the Overflow output.

7. In the box in Figure 9 sayNo to the pipelining option and clickNext.

Figure 9. Refuse the pipelining option.

8. Figure 10 gives a summary which shows the files that the wizard will create. PressFinish to complete the
process.

Figure 10. Files created by the wizard.

9

3 Augmented Circuit with an LPM

We will use the filemegaddsub.vhdin our modified design. Figure 11 depicts the VHDL code in thisfile; note that
we have not shown the comments in order to keep the figure small.

// Adder/subtractor module created by the MegaWizard
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY lpm;
USE lpm.lpm_components.all;

ENTITY megaddsub IS
PORT (add_sub : IN STD_LOGIC ;

dataa : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC);

END megaddsub;
ARCHITECTURE SYN OF megaddsub IS

SIGNAL sub_wire0 : STD_LOGIC ;
SIGNAL sub_wire1 : STD_LOGIC_VECTOR (15 DOWNTO 0);

COMPONENT lpm_add_sub
GENERIC (lpm_width : NATURAL;

lpm_direction : STRING;
lpm_type : STRING;
lpm_hint : STRING);

PORT (dataa : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
add_sub : IN STD_LOGIC ;
datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC ;
result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

END COMPONENT;

BEGIN
overflow <= sub_wire0;
result <= sub_wire1(15 DOWNTO 0);
lpm_add_sub_component : lpm_add_sub
GENERIC MAP (lpm_width => 16,

lpm_direction => "UNUSED",
lpm_type => "LPM_ADD_SUB",
lpm_hint => "ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO")

PORT MAP (dataa => dataa,
add_sub => add_sub,
datab => datab,
overflow => sub_wire0,
result => sub_wire1);

END SYN;

Figure 11. VHDL code for the ADD_SUB LPM.

10

The modified VHDL code for the adder/subtractor design is given in Figure 12. It incorporates the code in Figure
11 as a component. Put the code in Figure 12 into a filetutorial_lpm\addersubtractor2.vhd. For convenience, the
required fileaddersubtractor2.vhdis provided in the directoryDE2_tutorials\design_files, which is included on
the CD-ROM that accompanies the DE2 board and can also be found on Altera’s DE2 web pages.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

−− Top-level entity
ENTITY addersubtractor2 IS

GENERIC (n : INTEGER := 16) ;
PORT (A, B : IN STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;

Clock, Reset, Sel, AddSub : IN STD_LOGIC ;
Z : BUFFER STD_LOGIC_VECTOR(n−1 DOWNTO 0) ;
Overflow : OUT STD_LOGIC) ;

END addersubtractor2 ;

ARCHITECTURE Behavior OF addersubtractor2 IS
SIGNAL G, M, Areg, Breg, Zreg, : STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
SIGNAL SelR, AddSubR, over_flow : STD_LOGIC ;
COMPONENT mux2to1

GENERIC (k : INTEGER := 8) ;
PORT (V, W : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;

Selm : IN STD_LOGIC ;
F : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0)) ;

END COMPONENT ;
COMPONENT megaddsub

PORT (add_sub : IN STD_LOGIC ;
dataa, datab : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;
result : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ;
overflow : OUT STD_LOGIC) ;

END COMPONENT ;

BEGIN
−− Define flip-flops and registers

PROCESS (Reset, Clock)
BEGIN

IF Reset = ’1’ THEN
Areg<= (OTHERS => ’0’); Breg <= (OTHERS => ’0’);
Zreg<= (OTHERS => ’0’); SelR <= ’0’; AddSubR<= ’0’; Overflow <= ’0’;

ELSIF Clock’EVENT AND Clock = ’1’ THEN
Areg<= A; Breg<= B; Zreg<= M;
SelR<= Sel; AddSubR<= AddSub; Overflow<= over_flow;

END IF ;
END PROCESS ;

. . . continued in Partb

Figure 12. VHDL code for the circuit in Figure 3 (Parta).

11

−− Define combinational circuit
nbit_addsub: megaddsub

PORT MAP (AddSubR, G, Breg, M, over_flow) ;
multiplexer: mux2to1

GENERIC MAP (k => n)
PORT MAP (Areg, Z, SelR, G) ;

Z <= Zreg ;
END Behavior;

−− k-bit 2-to-1 multiplexer
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux2to1 IS
GENERIC (k : INTEGER := 8) ;
PORT (V, W : IN STD_LOGIC_VECTOR(k−1 DOWNTO 0) ;

Selm : IN STD_LOGIC ;
F : OUT STD_LOGIC_VECTOR(k−1 DOWNTO 0)) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

PROCESS (V, W, Selm)
BEGIN

IF Selm = ’0’ THEN
F <= V ;

ELSE
F <= W ;

END IF ;
END PROCESS ;

END Behavior ;

−− 16-bit adder/subtractor LPM created by the MegaWizard
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY lpm;
USE lpm.lpm_components.all;

ENTITY megaddsub IS
PORT (add_sub : IN STD_LOGIC ;

dataa : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC);

END megaddsub;
ARCHITECTURE SYN OF megaddsub IS

SIGNAL sub_wire0 : STD_LOGIC ;
SIGNAL sub_wire1 : STD_LOGIC_VECTOR (15 DOWNTO 0);

. . . continued in Partc

Figure 12. VHDL code for the circuit in Figure 3 (Partb).

12

COMPONENT lpm_add_sub
GENERIC (lpm_width : NATURAL;

lpm_direction : STRING;
lpm_type : STRING;
lpm_hint : STRING);

PORT (dataa : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
add_sub : IN STD_LOGIC ;
datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC ;
result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

END COMPONENT;

BEGIN
overflow <= sub_wire0;
result <= sub_wire1(15 DOWNTO 0);

lpm_add_sub_component : lpm_add_sub
GENERIC MAP (lpm_width => 16,

lpm_direction => "UNUSED",
lpm_type => "LPM_ADD_SUB",
lpm_hint => "ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO")

PORT MAP (dataa => dataa,
add_sub => add_sub,
datab => datab,
overflow => sub_wire0,
result => sub_wire1);

END SYN;

Figure 12. VHDL code for the circuit in Figure 3 (Partc).

The key differences between this code and Figure 2 are:

• The statements that define theover_flowsignal and the XOR gates (along with the signal H) are no longer
needed.

• Theadderkentity, which specifies the adder circuit, is replaced bymegaddsubentity. Note that thedataa
anddatabinputs shown in Figure 6 are driven by theG andBregvectors, respectively.

• AddSubRsignal is specified to be the inverted version of theAddSubsignal to conform with the usage of
this control signal in the LPM.

If you copied the fileaddersubtractor2.vhdfrom theqdesignsdirectory, you have to include this file in the
project. To do so, selectProject > Add/Remove Files in Project to reach the window in Figure 13. Browse
for the available files by clicking the buttonFile name: ... to reach the window in Figure 14. Select the file
addersubtractor2.vhdand clickOpen, which returns to the window in Figure 13. ClickAdd to include the file
and then clickOK. Now, the modified design can be compiled and simulated in theusual way.

13

Figure 13. Inclusion of the new file in the project.

Figure 14. Specify theaddersubtractor.vhdfile.

14

4 Results for the Augmented Design

Compile the design and look at the summary, which is depictedin Figure 15. Observe that the modified design is
implemented in 52 logic elements, which is the same as when using the code in Figure 2. In very small circuits,
which is the case with our example, it is unlikely that using LPMs will result in a significant advantage. However,
in more complex designs the advantage of using LPMs is likelyto be significant. The reason is that the LPMs
implement the required logic more efficiently than what the compiler can do from simple VHDL code, such as the
code in Figure 2. The user should consider using an LPM whenever a suitable one exists.

Figure 15. Compilation Results for the Augmented Circuit.

Copyright c©2005 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and allother words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service namesare the property of their respective holders. Altera
products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and
copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time
without notice. Altera assumes no responsibility or liability arising out of the application or use of any informa-
tion, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of devicespecifications before relying on any published infor-
mation and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

15

