Using Library Modules in Verilog Designs

This tutorial explains how Altera’s library modules can beluded in Verilog-based designs, which are imple-
mented by using the Quarl@%ll software.

Contents:

Example Circuit

Library of Parameterized Modules
Augmented Circuit with an LPM
Results for the Augmented Design

Practical designs often include commonly used circuitkdmstich as adders, subtractors, multipliers, decoders,
counters, and shifters. Altera provides efficient impletagons of such blocks in the form of library modules that
can be instantiated in Verilog designs. The compiler maggaize that a standard function specified in Verilog
code can be realized using a library module, in which casajt automaticallynfer this module. However, many
library modules provide functionality that is too complexite recognized automatically by the compiler. These
modules have to be instantiated in the design explicithheaiser.

Quartu@ Il software includes dibrary of parameterized modul¢sPM). The modules are general in struc-
ture and they are tailored to a specific application by sgewjfthe values of general parameters.

Doing this tutorial, the reader will learn about:
e Library of parameterizes modules (LPMs)
e Configuring an LPM for use in a circuit

¢ Instantiating an LPM in a designed circuit

The detailed examples in the tutorial were obtained usiegQhartus Il version 5.0, but other versions of the
software can also be used.

1 Example Circuit

As an example, we will use the adder/subtractor circuit shawFigure 1. It can add, subtract, and accu-
mulaten-bit numbers using the 2’'s complement number representafitne two primary inputs are nhumbers
A=ap_1an_2--agandB = b, _1b,_o--- by, and the primary output i = z,,_12,_2 - - 20. Another input
is theAddSulzontrol signal which causes = A + B to be performed wheAddSub=0 andZ = A — B when
AddSub= 1. A second control inputSel is used to select the accumulator mode of operatiorself 0, the
operationZ = A + B is performed, but iSel= 1, thenB is added to or subtracted from the current valug of
If the addition or subtraction operations result in arittimeverflow, an output signaDverflow is asserted.

To make it easier to deal with asynchronous input signags; #re loaded into flip-flops on a positive edge of
the clock. Thus, inputgl and B will be loaded into registerAregandBreg, while SelandAddSubwill be loaded
into flip-flops SelRandAddSubRrespectively. The adder/subtractor circuit places thalténto registeZreg

bo AddSub

n-bit register

n-bit register

FIF

Areg =| areg,

° |

L

-1

e o

L]

!

areg,

A

n-bit 2-to-1 MUX

/ SelR

Breg =| breg,_;

AddSubR

L
G=’gn_1) \ go H= hn—l) hO
vV
carryout n-bit adder carryin fe——
M= My_1 m0
A hn—l ‘ LRI]
[] n-bit register Zreg
over_flow Zreg =| zreg,_, zreg,

F/F e

l ,
Overflow Z= Z,_4 z,

Figure 1. The adder/subtractor circuit.

The required circuit is described by the Verilog code in IF@gR. For our example, we use a 16-bit circuit as
specified byn = 16. Implement this circuit as follows:

Create a projecddersubtractor

Include a fileaddersubtractor.ywhich corresponds to Figure 2, in the project. For convasgethis file is
provided in the director{DE2_tutorials,design_fileswhich is included on the CD-ROM that accompanies
the DE2 board and can also be found on Altera’s DE2 web pages.

Choose the Cyclone Il EP2C35F672C6 device, which is the FEI@g\on Altera’s DE2 board.

Compile the design.

Simulate the design by applying some typical inputs.

// Top-level module

module addersubtractor (A, B, Clock, Reset, Sel, AddSub, Z, Oweiflo
parameter n = 16;
input [n—1:0] A, B;
input Clock, Reset, Sel, AddSub;
output [n—1:0] Z;
output Overflow;
reg SelR, AddSubR, Overflow;
reg [n—1:0] Areg, Breg, Zreg;
wire [n—1:0]G, H, M, Z;
wire carryout, over_flow;

I/ Define combinational logic circuit

assign H = Breg” {n{AddSubR}};

mux2tol multiplexer (Areg, Z, SelrR, G);
defparam multiplexer.k = n;

adderk nbit_adder (AddSubR, G, H, M, carryout);
defparam nbit_adder.k = n;

assign over_flow = carryout* G[n—1] " H[n—1] * M[n—-1];

assign Z = Zreg;

I/ Define flip-flops and registers
always @ (posedge Reset oposedge Clock)
if (Reset==1)
begin
Areg <= 0; Breg<=0; Zreg<=0;
SelR<=0; AddSubR<= 0; Overflow<=0;
end
ese
begin
Areg <= A; Breg <= B; Zreg<= M,
SelR <= Sel; AddSubR<= AddSub; Overflow<= over_flow;
end
endmodule

I k-bit 2-to-1 multiplexer
module mux2tol (V, W, Selm, F);
parameter k = 8;
input [k—21:0]V, W;
input Selm;
output [k—21:0]F;
reg [k—1:0]F;

always @(V or W or Selm)
if (Selm==0) F=V,

ese F=W,
endmodule

... continued in Par

Figure 2. Verilog code for the circuit in Figure 1 (Pajt

I k-bit adder
module adderk (carryin, X, Y, S, carryout);
parameter k = 8;
input [k—21:0]X,Y;
input carryin;
output [k—1:0]S;
output carryout;
reg [k—1:0]S;
reg carryout;

always @ (X or Y or carryin)
{carryout, S} = X + Y + carryin;
endmodule

Figure 2. Verilog code for the circuit in Figure 1 (Pajt

2 Library of Parameterized Modules

The LPMs in the library of parameterized modules are gemesttucture and they can be configured to suit a spe-
cific application by specifying the values of various partere SelecHelp > Megafunctions/LPM to see a list-

ing of the available LPMs. One of them is an adder/subtractmaule calledpm_add_sub megafunctioBelect

this module to see its description. The module has a numhepofs and outputs, some of which may be omitted
in a given application. Several parameters can be defingukitifg a particular mode of operation. For example,
the number of bits in the operands is specified in the pararh@¢l WIDTH. The LPM_REPRESENTATION
parameter specifies whether the operands are to be inedpastsigned or unsigned numbers, and so on. Tem-
plates on how an LPM can be instantiated in a hardware déiserilanguage are given in the description of the
module. Using these templates is somewhat cumbersome, @t software provides a wizard that makes the
instantiation of LPMs easy.

We will use thelpm_add_submodule to simplify our adder/subtractor circuit defined igufes 1 and 2.
The augmented circuit is given in Figure 3. Tlpen_add_sulmodule, instantiated under the namegaddsup
replaces the adder circuit as well as the XOR gates thatgedkie input{ to the adder. Since arithmetic overflow
is one of the outputs that the LPM provides, it is not necgsagenerate this output with a separate XOR gate.

To implement this adder/subtractor circuit, create a neaoddry namedutorial_|Ipm, and then create a project
addersubtractor2 Choose the same Cyclone || EP2C35F672C6 device, to alloireatacomparison of imple-
mented designs.

a,_; agy Sel B=1b,_,; by AddSub
n-bit register FIF n-bit register FIF
[¢]
Areg = | areg,_; areg, Breg =| breg,_, breg,
} e o o ‘ o o 0 ‘
n-bit 2-to-1 MUX LI
SelR
I I
G= gn_l o o o \ go y Y
dataa datab
megaddsub module add_sul]-
overflow result ~AddSubR
M= M, ; My
over_flow .o
A A
FIF n-bit register Zreg
Zreg =| zreg,_; zreg,
‘ ‘ e o o ’
Overflow Z= z,_4 Z,

Figure 3. The augmented adder/subtractor circuit.

The new design will include the desired LPM subcircuit sfiedias a Verilog module that will be instantiated

in the top-level Verilog design module. The Verilog moduwethe LPM subcircuit is generated by using a wizard
as follows:

1. Selecflools > MegaWizard Plug-in Manager, which leads to a sequence of seven pop-up boxes in which
the user can specify the details of the desired LPM.

2. In the box shown in Figure 4 indica@reate a new custom megafunction variation and clickNext.

MegaWlizard Plug-In Manager [page 1]

The MegaWizard Plug-ln Manager helps you create or modify design
files that contain custom wvariations of megafunctions.

YWhich action do you want to perfarm?
& Create a new custom meagafunction varistion
" Edit an existing custom megafunction variation

 Copy an existing custom megafunction variation

Copyright € 1991-2004 Altera Corporation

Cancell <Elack| Iext » I Finish |

Figure 4. Choose to define an LPM.

MegaWizard Plug-In Manager [page 2a]

‘Which megafunction would you like to customize?

ing?
Select a megafunction from the list below Sl

=1 %] Installed Plug-ns -~
/] Atera SOPC Builder | oaHDL
9 ALTACCUMULATE 9 VHPL
2] ALTFP_ADD_SUB @ Veilog HDL
| ALTFP_MULT
| ALTMEMMULT

‘Which device family will you be

‘what name do you want for the output file?

Cyclone || -

‘Which type of output file do you want to create?

Browse...

o] ALTMULT_ACCUM [MAC)
| ALTMULT_ADD

| ALTSORT

LPH_ARBS

B
LPt_COMPARE

]D Stutorial_lpmmegaddsub.v

[T Generate clear box netlist file instead of a default wrapper file
[for use with supported EDA synthesis tools only)

I Retum ta this page for anather create operation

LPt_COUNTER
LPM_DIVIDE
LPM_MULT
PARALLEL_ADD

& memoary compiler

SignalTap Il Logic Analyzer

& P MegaStore

Mote: To compile a project successfully in the Quartus || software,
your dezign files must be in the project directon, in the global user
libraries specified in the Dptions dialog box [Tools menu), or a uzer
library specified in the Uzer Libraries page of the Settings dialog
bow [Azsignments menu).

*Your current user library directories are:

Cancel | <Back‘ Mewt > | Fin ‘

Figure 5. Choose an LPM from the available library.

3. The box in Figure 5 provides a list of the available LPMs. p&ixd the “arithmetic” sublist and select
LPM_ADD_SUB. ChooseVerilog HDL as the type of output file that should be created. The outpaut fil
must be given a name; choose the namegaddsub.and indicate that the file should be placed in the

directorytutorial_Ipmas shown in the figure. Prel&ext.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 3 of 7]

megaddsub

add_sub

dataa[15.0

X
Cyclone || -

Currently selected device family:

How wide should the 'datas’ and 'datab’ input buses be? |16 = | bits

datab[15.0

" Addition only
" Subtraction only

[1 adds; 0 subtracts)

‘which operating mode do you want for the adder/subtractor?

+ Create an 'add_sub' input port to allov me to do bath

Resource Estimate

T Documentation... |

Cancel | < Back | Mest > | Finizh |

Figure 6. Specify the size of data inputs.

4. In the box in Figure 6 specify that the width of the data tisga 16 bits. Also, specify the operating mode
in which one of the ports allows performing both addition audtraction of the input operand, under the
control of theadd_sulinput. A symbol for the resulting LPM is shown in the top leftrner. Note that if
add_sub= 1 thenresult= A + B; otherwiseresult= A — B. This interpretation of the control input and
the operation performed is different from our original dgsin Figures 1 and 2, which we have to account
for in the modified design. Observe that we have includeddtiémge in the circuitin Figure 3. Clidkext.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 4 of 7] @

megaddsub

add_sub |z the 'dataa’ or 'datab’ input bug value a constant?

dataa[15.0
clatab[15..0

&+ Mo, both values vary

" Yes, dataa =
" “es, datab =

Resource Estimate

T Documentation... | Cancel | < Back | Mest > | Finizh |

Figure 7. Further specification of inputs.

5. In the box in Figure 7, specify that the values of both isputy vary and clickext.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 5 of 7] @

megaddsub

Do you want any optional inputs or outputs?
add_sub

dataa[15.0
clatab[15..0 5

Input:
™ Create a camy/bormaw-out input

Outputs:
™ Create a camy/bormaw-in autput
[v Create an averflow output

Resource Estimate

T Documentation... | Cancel | < Back | Mest > | Finizh |

Figure 8. Specify the Overflow output.

6. The box in Figure 8 allows the designer to indicate optionauts and outputs that may be specified. Since
we need the overflow signal, make tGecate an overflow output choice and pregdext.

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 6 of 7] §|

megaddsub

acd_sub Do you want to pipeline the function’?

etaa(15.0] - . & Mo
resulis, 0, " “es, | want an output latency of Clock cycles
clatab[15..0 5
-
averflow, r
Resource Estimate . ™
Documentation... | Cancel | < Back | Mest > | Finizh |

33 It

Figure 9. Refuse the pipelining option.

7. In the box in Figure 9 saio to the pipelining option and clicklext.

8. Figure 10 gives a summary which shows the files that therdizdl create. PresEinish to complete the
process.

MegaWlizard Plug-In Manager - LPM_ADD_SUB [page 7 of 7] - Summary

‘When the 'Finish' button is pressed, the MegaWizard Plug-In Manager will
create the checked files in the following list. You may choose to include ar
exclude afile by checking or unchecking its corresponding checkbox,
respectively. The state of checkboxes will be remembered

far the next Megaiizard Plug-n Manager session.

d:itutorial_lpm?y

File Description
B megaddsubw Yariation file

E: @_ The Megaiizard Plug-ln Manager will create these files in the directany:

O megaddsub.inc AHDL Include file

O megaddsub.cmp WHDL Component declaration file
O megaddsub.bsf Cuartus symbol file

O megaddsub_instw Instantiation termplate file

O megaddsub_bbw Yerilog 'Black Box' declaration file

O megaddsub_waveforms html Sample waveforms in summary
L.megaddsub_wave*jpg Sample wavefarm file(s)

Documentation...l Cancell <Elack| [t > | Finish I

Figure 10. Files created by the wizard.

3 Augmented Circuit with an LPM

We will use the filemegaddsub.in our modified design. Figure 11 depicts the Verilog codénin file; note that
we have not shown the comments in order to keep the figure.small

I/l Adder/subtractor module created by the MegaWizard
module megaddsub (

add_sub,

dataa,

datab,

result,

overflow);

input add_sub;

input [15:0] dataa;

input [15:0] datab;

output [15:0] result;

output overflow;

wire sub_wire0;

wire [15:0] sub_wirel;

wire overflow = sub_wire0;

wire [15:0] result = sub_wire1[15:0];

Ipm_add_sub Ipm_add_sub_component (
.dataa (dataa),
.add_sub (add_sub),
.datab (datab),
.overflow (sub_wire0),
.result (sub_wirel));

defparam
Ipm_add_sub_component.lpm_width = 16,
Ipm_add_sub_component.lpm_direction = "UNUSED",
Ipm_add_sub_component.lpm_type ="LPM_ADD_SUB",
I[pm_add_sub_component.lpm_hint="ONE_INPUT_IS_CONNTANO";

endmodule

Figure 11. Verilog code for the ADD_SUB LPM.

The modified Verilog code for the adder/subtractor desigjivisn in Figure 12. Put this code into a filetorial_Ipm\addersubtractor?
For convenience, the required fisgldersubtractor2.vs provided in the directoryDE2_tutorials design_files

which is included on the CD-ROM that accompanies the DE2daad can also be found on Altera’s DE2 web

pages. The differences between this code and Figure 2 are:

e Theassign statements that define tbheger_flowsignal and the XOR gates (along with the signal defined as
wire H) are no longer needed.

e Theadderkinstance of the adder circuit is replacedinggaddsubNote that thedataaanddatabinputs
shown in Figure 6 are driven by th& and Breg vectors, respectively. Also, the inverted version of the
AddSubRsignal is specified to conform with the usage of this contignial in the LPM.

e Theadderkmodule is deleted from the code.

10

/I Top-level module

module addersubtractor2 (A, B, Clock, Reset, Sel, AddSub, Z, Owifl
parameter n = 16;
input [n—1:0] A, B;
input Clock, Reset, Sel, AddSub;
output [n—1:0] Z;
output Overflow;
reg SelR, AddSubR, Overflow;
reg [n—1:0] Areg, Breg, Zreg;
wire [n—1:0]1G, M, Z;
wire over_flow;

/I Define combinational logic circuit
mux2tol multiplexer (Areg, Z, SelrR, G);
defparam multiplexer.k = n;
megaddsub nbit_adderfAddSubR, G, Breg, M, over_flow);
assign Z = Zreg;

/I Define flip-flops and registers
always @ (posedge Reset oposedge Clock)
if (Reset==1)
begin
Areg <=0; Breg<=0; Zreg<=0;
SelR<=0; AddSubR<=0; Overflow<=0;
end
else
begin
Areg<=A; Breg<=B,; Zreg<=M,;
SelR<= Sel; AddSubR<= AddSub; Overflow<= over_flow;
end
endmodule

/I k-bit 2-to-1 multiplexer
module mux2tol (V, W, Selm, F);
parameter k = 8;
input [k—21:0]V, W;
input Selm;
output [k—1:0] F;
reg [k—1:0]F;

always @(V or W or Selm)
if (Selm==0) F=V,
else F=W,
endmodule

Figure 12. Verilog code for the circuit in Figure 3.

11

To include themegaddsub.file in the project, selecProject > Add/Remove Files in Project to reach
the window in Figure 13. The filaddersubtractor2.should already be listed as being included in the project.
Browse for the other files by clicking the buttéile name: ... to reach the window in Figure 14. Select the file
megaddsub.and clickOpen, which returns to the window in Figure 13. Cli&dd to include the file and then
click OK. Now, the modified design can be compiled and simulated i@l way.

Settings - addersubtractor2 [x]
Category:
~Genea
Files
~User Libraries Selectthe design files you wantto include in the project. Click Add All to add all design files in the project
- Device directony o the project

Timing Reguirements & Options
- EDA Tool Setings

Design Entry/Synthesis File name: J A

Simulation

Timing Analysis File name Type Add All

Board-Lewel addersubtractor2.y Werilog HOL File

o
- Faormal Verification Femove
Physical Synthesis
- Compilation Process Settings Up
Early Timing Estimate

-Analysis & Synthesis Setings [5mr

Fitter Setiings
Physical Synthesis Optimizations Prapeties

- Timing Analyzer
Design Assistant

- SignalTap Il Logic Analyzer
SignalProbe Settings

- Simulator

- PowerPlay Power Analyzer Settings

(- Software Build Settings

- HardCopy Settings

—
m

m

TE

0K I Cancel

Figure 13. Inclusion of the new file in the project.

Select File %]

Lookin: | 3 tutorial_lpm] -mcEr

db
adder:

sUbtractor2.v

File name: Imegaddsub.v
Files of type: IDesign Files (*.tdf;*.vhd;*.vhdl;*.v;*.vlg;*.vh;*.verilcj Cancel |
A

Figure 14. Specify thenegaddsub.file.

12

4 Resultsfor the Augmented Design

Compile the design and look at the summary, which is depict&dgure 15. Observe that the modified design is
implemented in 51 logic elements, rather than 52 obtaineglwising the code in Figure 2. The reduction in the
number of logic elements is small because our example isratmple. In more complex designs the advantage
of using LPMs is likely to be more pronounced. The reasonas tifie LPMs implement the required logic more
efficiently than what the compiler can do from simple Veritmgge, such as the code in Figure 2. The user should
consider using an LPM whenever a suitable one exists.

< Compilation Report - Flow Summary

Flow Summary

Sucecessful - Fri Sep 02 17:56:45 2005
5.0 Buid 168 06/22/2005 SP 1 5J Full Yersion
addersubltractor2

Compilation Report
& B Legal Notice
&HE3 Flow Summary
B8 Flow Settings
&EE Flow Elapsed Time

Flow Status
Guartus || Version
Revizion Mame

é Flow Log Top-.level Entity Mame addersublractor?
+- &G0 snalysis & Synthesis Famfly Eyelane |l
+ é[:l Fitter Device EP2C35F672C6
Timing Models Preliminary

+- &0 sssembler
+-¢&0 Timing Analyzer

ket timing requirements
Total logic elements

e
B /33216 (<1 %)

Total registers (il
Tatal ping 3747511 %)
Total witual ping 0

Total memary bits 0/483840(0 %)
Embedded Multiplier 3-bit elements 0/ 70 [0 %)
Total PLLg 0/4[0%)

Figure 15. Compilation Results for the Augmented Circuit.

Copyright(©?2005 Altera Corporation. All rights reserved. Altera, Th®grammable Solutions Company, the
stylized Altera logo, specific device designations, anatider words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, thentrartks and service marks of Altera Corporation in the
U.S. and other countries. All other product or service naaregshe property of their respective holders. Altera
products are protected under numerous U.S. and foreigntsatad pending applications, mask work rights, and
copyrights. Altera warrants performance of its semicomoluproducts to current specifications in accordance
with Altera’s standard warranty, but reserves the right aikenchanges to any products and services at any time
without notice. Altera assumes no responsibility or lipiarising out of the application or use of any informa-
tion, product, or service described herein except as esiyragreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of depieeifications before relying on any published infor-
mation and before placing orders for products or services.

This document is being provided on an “as-is” basis and ageonamodation and therefore all warranties, rep-

resentations or guarantees of any kind (whether expregdignor statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitnessd particular purpose, are specifically disclaimed.

13

