L aboratory Exercise 8

Memory Blocks

In computer systems it is necessary to provide a substantial amount of memory. If a system is implemented
using FPGA technology it is possibleto provide some amount of memory by using the memory resourcesthat exist
in the FPGA device. If additional memory is needed, it has to be implemented by connecting external memory
chipsto the FPGA. In this exercise we will examine the general issues involved in implementing such memory.

A diagram of the random access memory (RAM) module that we will implement is shown in Figure la. It
contains 32 eight-hit words (rows), which are accessed using a five-bit address port, an eight-bit data port, and a
write control input. We will consider two different ways of implementing this memory: using dedicated memory
blocksin an FPGA device, and using a separate memory chip.

The Cyclone Il 2C35 FPGA that is included on the DE2 board provides dedicated memory resources called
M4K blocks. Each M4K block contains 4096 memory bits, which can be configured to implement memories of
various sizes. A common term used to specify the size of amemory is its aspect ratio, which gives the depth in
words and the width in bits (depth x width). Some aspect ratios supported by the M4K block are 4K x 1, 2K x
2, 1K x 4, and 512 x 8. We will utilize the 512 x 8 mode in this exercise, using only the first 32 words in the
memory. We should also mention that many other modes of operation are supported in an M4K block, but we will
not discuss them here.

Address —L>

8
32 x 8 RAM « ° » Data
Write
(a) RAM organization
5 5
Address
>
Datal : : .
ataln > 8
32x 8RAM ———<—» DataOut
>
Write
Clock S

(b) RAM implementation

Figurel. A 32 x 8 RAM module.

There are two important features of the M4K block that have to be mentioned. Firdt, it includes registers that can
be used to synchronize all of the input and output signals to a clock input. Second, the M4K block has separate
ports for data being written to the memory and data being read from the memory. A requirement for using the
M4K block isthat either itsinput ports, output port, or both, have to be synchronized to a clock input. Given these

requirements, we will implement the modified 32 x 8 RAM module shown in Figure 1b. It includes registers for
the address, data input, and write ports, and uses a separate unregistered data output port.

Part |

Commonly used logic structures, such as adders, registers, counters and memories, can be implemented in an
FPGA chip by using LPM modules from the Quartus Il Library of Parameterized Modules. Altera recommends
that a RAM module be implemented by using the altsyncram LPM. In this exercise you are to use this LPM to
implement the memory module in Figure 1b.

1. Create anew Quartus Il project to implement the memory module. Select as the target chip the Cyclonell
EP2C35F672C6, which is the FPGA chip on the Altera DE2 board.

2. You can learn how the MegaWizard Plug-in Manager is used to generate a desired LPM module by reading
the tutorial Using Library Modulesin VHDL Designs. This tutorial is provided in the University Program
section of Altera’'s web site. In the first screen of the MegaWizard Plug-in Manager choose the altsyncram
LPM, which is found under the storage category. Asindicated in Figure 2, select VHDL HDL as the type
of output file to create, and give the file the name ramlpm.vhd. On the next page of the Wizard specify a
memory size of 32 eight-bit words, and select M4K as the type of RAM block. Advance to the subsequent
page and accept the default settings to use a single clock for the RAM’s registers, and then advance again
to the page shown in Figure 3. On this page deselect the setting called Read output port(s) under the
category Which ports should be registered?. This setting creates a RAM module that matches the
structure in Figure 1b, with registered input ports and unregistered output ports. Accept defaults for the
rest of the settings in the Wizard, and then instantiate in your top-level VHDL file the entity generated in
ramlpm.vhd. Include appropriate input and output signalsin your VHDL code for the memory ports given
in Figure 1b.

MegaWizard Plug-In Manager [page 2a] E|

Which megafunction would pou like to customize™? w'hich device family will you be Cyclare |l -

.) uzing?
Select a megafunction fram the list below s

=[] Installed Plug-ns ~ Which type of output file do wou want to create?

Altera SOPC Builder © AHOL

+ arithmetic
- & WHOL

ARM-Based Excalibur _
@ gates " Werilag HOL
& 1/0 . ‘what name dao pou want for the output file? Browse...
+ ﬁ rnemary compiler

: |F:\U ProgramtUP_Digital_Logich\E =ercise8\part1yramlpm
SignalT ap Il Logic &nalyzer

- storane [~ Generate clear bos netlist file instead of a default wrapper file

| ALT3IPRAM [for use with supported ED & spnthesis bools anly)

[Return to this page for another create operation

] ALTSHIFT_TAPS MNate: To compile a project successfully in the Quartusz 1 software,
your design files must be in the project directory, in the global uzer
libraries gpecified in the Options dialog box [T ools menu), or a user
library specified in the Uzer Libraries page of the Settings dialog
bow [Bzsignments menu).

| LPM_FIFD+

i LPM_LATCH
| LPM_FiaM_DP Your current user library directonies are:
| LPM_Rak_DP+

| LPM_RaM_DoO

] LPM_RORM
] LPM_SHIFTREG
+- @ P MegaStore hd

Caticel | < Back | Memt | |

Figure 2. Choosing the altsyncram LPM.

MegaWizard Plug-In Manager - ALTSYNCRAM [page 7 of 10] g|

‘Wwhich ports should be registered?
3

‘data’, 'wraddress', and ‘wren’

|— .
‘rdaddress’ and 'rden’ More Options ..

™ Read output port{z]
'

datal7 0 ramipm _ [Create one c!ock enable zignal for
a[7.0] —H % o700} each clock signal Mare Options ...
address[4.0 k-l
HRHEZ
WTEN =
HH o
clock ™ Create an ‘aclh' aspnchronous clear More Dpti
Black Type: AUTO for the registered ports are puans ...

Resource Estimate . ™
_ Documentation... Cancel | < Back | Mest > | Finizh |

& hdK

Figure 3. Configuring input and output ports on the altsyncram LPM.

3. Compilethe circuit. Observe in the Compilation Report that the Quartus 11 Compiler uses 256 bits in one of
the M4K memory blocks to implement the RAM circuit.

4. Simulate the behavior of your circuit and ensure that you can read and write datain the memory.

Part 11

Now, we want to realize the memory circuit in the FPGA on the DE2 board, and use toggle switches to load some
datainto the created memory. We also want to display the contents of the RAM on the 7-segment displays.

1. Makeanew Quartus 1 project which will be used to implement the desired circuit on the DE2 board.

2. Create another VHDL file that instantiates the ramlpm module and that includes the required input and
output pins on the DE2 board. Use toggle switches SW;_ to input a byte of data into the RAM location
identified by a 5-bit address specified with toggle switches SW15_11. Use SW;; asthe Write signal and use
KEY, asthe Clock input. Display the value of the Write signal on LEDG(. Show the address value on the
7-segment displays HEX7 and HEX6, show the data being input to the memory on HEX5 and HEX4, and
show the data read out of the memory on HEX1 and HEXO.

3. Test your circuit and make sure that all 32 locations can be loaded properly.

Part I11

Instead of directly instantiating the LPM module, we can implement the required memory by specifying its struc-
ture in the VHDL code. In a VHDL-specified design it is possible to define the memory as a multidimensional
array. A 32 x 8 array, which has 32 words with 8 bits per word, can be declared by the statements

TYPE mem ISARRAY (0 TO 31) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL memory _array : mem;

In the Cyclone Il FPGA, such an array can be implemented either by using the flip-flops that each logic element
contains or, more efficiently, by using the M4K blocks. There are two ways of ensuring that the M4K blocks will
be used. Oneisto use an LPM modulefrom the Library of Parameterized Modules, aswe saw in Part |. The other
is to define the memory requirement by using a suitable style of VHDL code from which the Quartus I compiler
can infer that a memory block should be used. Quartus |1 Help shows how this may be done with examples of
VHDL code (search in the Help for “ Inferred memory”).

Perform the following steps:

1. Create anew project which will be used to implement the desired circuit on the DE2 board.

2. WriteaVHDL file that providesthe necessary functionality, including the ability to load the RAM and read
its contents as donein Part 1.

3. Assign the pins on the FPGA to connect to the switches and the 7-segment displays.
4, Compilethe circuit and download it into the FPGA chip.

5. Test the functionality of your design by applying some inputs and observing the output. Describe any
differences you observe in comparison to the circuit from Part 11.

Part 1V

The DE2 board includes an SRAM chip, called 1S61LV25616AL-10, which is a static RAM having a capacity
of 256K 16-bit words. The SRAM interface consists of an 18-bit address port, A 17_¢, and a 16-bit bidirectiona

dataport, 1/015_o. It also hasseveral control inputs, CE, OF, WE, UB, and LB, which are describedin Table 1.

Name | Purpose

CE | Chip enable—asserted low during all SRAM operations

OFE | Output enable—can be asserted low during only read operations, or during all operations
WE | Write enable—asserted low during a write operation

UB | Upper byte—asserted low to read or write the upper byte of an address

LB | Lower byte—asserted low to read or write the lower byte of an address

Table 1. SRAM control inputs.

The operation of the |IS61LV25616AL chip is described in its data sheet, which can obtained from the DE2 System
CD that is included with the DE2 board, or by performing an Internet search. The data sheet describes a number
of modes of operation of the memory and lists many timing parameters related to its use. For the purposes of
this exercise a simple operating mode is to always assert (set to 0) the control inputs CE, OF, UB, and LB, and
then to control reading and writing of the memory by using only the I E input. Simplified timing diagrams that
correspond to this mode are given in Figure 4. Part (a) shows a read cycle, which begins when a valid address
appearson A7 and the W E input is not asserted. The memory placesvalid dataonthe I/0 15 port after the
address access delay, t 4 4. When the read cycle ends because of a change in the address value, the output data

remainsvalid for the output holdtime, t o g 4.

t
AR T tona

A17_0 Address in

/047 _¢ Data out

(a) SRAM read cycle timing

< taw g IR FEVN
A7_0 Address in
WE
tsa
11047 _¢ Data in
tsp —m—i 1

(b) SRAM write cycle timing

Figure4. SRAM read and write cycles.

Figure 4b gives the timing for awrite cycle. It beginswhen W E is set to 0, and it ends when TW E is set back to
1. The address has to be valid for the address setup time, ¢ 41/, and the data to be written has to be valid for the
data setup time, ¢ 5 p, before the rising edge of W E. Table 2 lists the minimum and maximum values of all timing
parameters shown in Figure 4.

Value
Parameter | Min Max
taa — 10ns

toHA 3ns -

taw 8ns —
tsp 6ns —
tHa 0 -
tsa 0 -
tap 0 -

Table 2. SRAM timing parameter values.

You are to reglize the 32 x 8 memory in Figure 1a by using the SRAM chip. It is a good approach to include in
your design the registers shown in Figure 16, by implementing these registers in the FPGA chip. Be careful to
implement properly the bidirectional data port that connectsto the memory.

1. Createanew Quartusl!| project for your circuit. WriteaVHDL filethat providesthe necessary functionality,
including the ability to load the memory and read its contents. Use the same switches, LEDs, and 7-segment
displays onthe DE2 board asin Parts |1 and 111, and use the SRAM pin names shown in Table 3 to interface
your circuit to the IS61LV 25616AL chip (the SRAM pin names are also given in the DE2 User Manual).

Note that you will not use al of the address and data ports on the IS61LV25616AL chip for your 32 x 8
memory; connect the unneeded portsto 0 in your VHDL entity.

SRAM port name | DE2 pin name
Ai7_¢ SRAM_ADDR;7_g
|/Oi_0 SRAM_DQ15_0
CFE SRAM_CE_N
OF SRAM_OE N
WE SRAM_WE_N
UB SRAM_UB_N
LB SRAM_LB_N

Table 3. DE2 pin names for the SRAM chip.

2. Compilethe circuit and download it into the FPGA chip.

3. Test the functionality of your design by reading and writing valuesto several different memory locations.

PartV

The SRAM block in Figure 1 has a single port that provides the address for both read and write operations. For
this part you will create a different type of memory module, in which there is one port for supplying the address
for aread operation, and a separate port that gives the address for awrite operation. Perform the following steps.

1. Createanew Quartusl| project for your circuit. To generate the desired memory modul e open the M egawiz-
ard Plug-in Manager and select again the altsyncram LPM in the storage category. On Page 1 of the Wizard
choose the setting With one read port and one write port (simple dual-port mode) in the category called
How will you be using the altsyncram?. Advance through Pages 2 to 5 and make the same choices as
in Part 11. On Page 6 choose the setting | don’t care in the category Mixed Port Read-During-Write for
Single Input Clock RAM. This setting specifies that it does not matter whether the memory outputs the
new data being written, or the old data previously stored, in the case that the write and read addresses are
the same.

Page 7 of the Wizard is displayed in Figure 5. It makes use of a feature that allows the memory module
to be loaded with initial data when the circuit is programmed into the FPGA chip. As shown in the figure,
choose the setting Yes, use this file for the memory content data, and specify the filename raml pm.mif.
To learn about the format of a memory initialization file (MIF), see the Quartus I Help. You will need to
create thisfile and specify some datavaluesto be stored in the memory. Finish the Wizard and then examine
the generated memory module in the file ramlpm.vhd.

MegaWizard Plug-In Manager - ALTSYNCRAM [page 7 of 8] g]

Do you want to specify the initial content of the memary?
" Ma, leave it blank
-
&+ Yes, use thiz file for the memory content data
[Y'ou can uze a Hexadecimal [Intel-format] File [.hex] or a Memory
Initialization File [.mif]]
Browse...
File name: |ramlpm.mif
ramlprn
dlata[7..0 D ,—_|
wvraddress[4..0 Y s
WPEN i3
Hh =
o
rdaddress[4..0] —D' & of7..0].
clock
Blochk Type: hidt
Resource Estimate . ™
| MK Documentation... Cancel | < Back | Mest > | Finizh |

Figure 5. Specifying amemory initiaization file (MIF).

2. WriteaVHDL file that instantiates your dual-port memory. To see the RAM contents, add to your design a
capability to display the content of each byte (in hexadecimal format) on the 7-segment displays HEX1 and
HEXO. Scroll through the memory locations by displaying each byte for about one second. As each byte
is being displayed, show its address (in hex format) on the 7-segment displays HEX3 and HEX2. Use the
50 MHz clock, CLOCK_50, on the DE2 board, and use KEY as a reset input. For the write address and
corresponding data use the same switches, LEDs, and 7-segment displays as in the previous parts of this
exercise. Make sure that you properly synchronize the toggle switch inputs to the 50 MHz clock signal.

3. Test your circuit and verify that the initial contents of the memory match your ramlpm.mif file. Make sure
that you can independently write data to any address by using the toggle switches.

Part VI

The dual-port memory created in Part V allows simultaneous read and write operations to occur, because it has
two address ports. In this part of the exercise you should create a similar capability, but using a single-port RAM.
Since there will be only one address port you will need to use multiplexing to select either aread or write address
at any specific time. Perform the following steps.

1. Create anew Quartus 1l project for your circuit, and use the MegaWizard Plug-in Manager to again create
a single-port version of the altsyncram LPM. For Pages 1 to 6 of the Wizard use the same settings as in
Part I. On Page 7, shown in Figure 6, specify the ramlpm.mif file as you did in Part V, but also make the
setting Allow In-System Memory Content Editor to capture and update content independently of the
system clock. This option allows you to use a feature of the Quartus || CAD system called the In-System
Memory Content Editor to view and manipulate the contents of the created RAM module. When using this
tool you can optionally specify a four-character ‘Instance ID’ that serves as a name for the memory; in
Figure 7 we gave the RAM module the name 32x8. Complete the final stepsin the Wizard.

X

MegaWizard Plug-In Manager - ALTSYNCRAM [page 7 of 8]

Do you want to specify the initial content of the memary?
" Ma, leave it blank
-

&+ Yes, use thiz file for the memory content data

[Y'ou can uze a Hexadecimal [Intel-format] File [.hex] or a Memory
Initialization File [.mif]]

File name: |ramlpm.mif
ramlprn ,—_|
data[7.0] — 7.0
addrezs[4.0 T %" 3
wren 1 £ ¥ Allow In-System Memory Content Editar ta capture and update content
HH o independently of the system clock
The 'Instance 10" of this RAM is: 328

Resource Estimate

1 st Documentation... Cancel | < Back | Mest > | Finizh |
1 =ld_mod_ram_rom

Figure 6. Configuring altsyncramfor use with the In-System Memory Content Editor.

2. Write a VHDL file that instantiates your memory module. Include in your design the ability to scroll
through the memory locations as in Part V. Use the same switches, LEDs, and 7-segment displays as you
did previoudly.

3. Before you can use the In-System Memory Content Editor tool, one additional setting has to be made. In
the Quartus Il software select Assignments > Settings to open the window in Figure 7, and then open the
item called Default Parameters under Analysis and Synthesis Settings. As shown in the figure, type
the parameter name CYCLONEII_SAFE_WRITE and assign the value RESTRUCTURE. This parameter
allows the Quartus |1 synthesis toolsto modify the single-port RAM as needed to allow reading and writing
of the memory by the In-System Memory Content Editor tool. Click OK to exit from the Settings window.

Settings - part6 E]

e

¥

User Libraries [Curent Project]
Device
Timing Requirements & Options
EDA Tool Settings
Compilation Process Settings
Analysiz & Spnthesis Settings
YHOL Input
Werlag HOL Input

Category:
General Default Parameters
Files

Specify the default settings for the parameters uged in your project. Assignments in design filez ar
assighments made in the Assignment Editar will cveride these defaults.

Parameter

Change
Delete

Mame: |CYCLDNEILSAFE7WHITE

|RESTRUCTURE

Default setting

Default Parameters

Synthesis Netlist Optimizations
=I- Fitter Settings

Physical Spnthesis Optimizations

Timing &nalyzer
Design Assistant
SignalT ap Il Logic Analpzer
SignalProbe S ettings
Sirmulator
PowerPlay Power Analyzer Settings
Software Build Settings
HardCopy Settings

Existing parameter zettings:

Narne:
CYCLOMEI_SAFE_'...

Setting
RESTRUCTURE

T

e

Figure 7. Setting the CYCLONEII _SAFE_WRITE parameter.

4. Compile your code and download the circuit onto the DE2 board. Test the circuit’s operation and ensure
that read and write operations work properly. Describe any differences you observe from the behavior of
thecircuit in Part V.

5. Select Tools > In-System Memory Content Editor, which opens the window in Figure 8. To specify the
connection to your DE2 board click on the Setup button on the right side of the screen. In the window in
Figure 9 select the USB-Blaster hardware, and then close the Hardware Setup dialog.

CEX

= In-System Memory Content Editor

Ihztance Manager: |F\eadytnacquire @ X | JTAG Chain Configuration: |JTAG ready @ X

Index | Instance |0 | Status ‘ “Width | Depth | Type | Mode |

[l 240 Natrming BB BAMEONFieadiwi | | Hedware: |USB-Blaste [U58-0 | sew.
Device: |@1:EF‘2C35[DHU2UB4DDD] j Scan Chain
File: | E

w0 3268

LU B T O O A A A A A A O N N A N A A i

ooonile A i i DRIPIRITT

Instance 0: 32x8 Word: 0000000 |Bik: 0x000007

Figure 8. The In-System Memory Content Editor window.

X)

Hardware Setup
Hardware Settings 1 JTAG Settings]

Select a programming hardware setup to use when programming devices. This programming
hardware setup applies only to the current programmer windows,

Currertly selected hardware: |USE-BIasler [USE-0] j
Available hardware iterns:
Hardware | Server | Part | Add Hardware. ..
ByteBlaster Local LPT1

LISE-Blaster Local Use-0

Cloze

Figure 9. The Hardware Setup window.

Instructions for using the In-System Memory Content Editor tool can be found in the Quartus Il Help.
A simple operation is to right-click on the 32x8 memory module, as indicated in Figure 10, and select
Read Data from In-System Memory. This action causes the contents of the memory to be displayed
in the bottom part of the window. You can then edit any of the displayed values by typing over them. To
actually write the new value to the RAM, right click again on the 32x8 memory module and select Write
All Modified Words to In-System Memory.

Experiment by changing some memory values and observing that the datais properly displayed both on the
7-segment displays on the DE2 board and in the In-System Memory Content Editor window.

Instance Manager. | =T % =l |F|eady to acquire @ X | JTAG Chain Configuration: |[JTAG 1
Index | Instance ID | Status ‘width | Depth | Tupe Mode
Nolurring B 32 FAM/FOM Feadiwiic Ikl Ik e
5 [0x0208
Read Data from In-System Memary F5
Continuously Read Data from In-System Memory Fé&
Write Data to In-Systern Memary F7

a0 3248

D00000 77 27 27 27 27 27 77 7 _

000016 77 27 27 27 727 77 77 7| [ImportDatefromFie..,
Expart Data to File. ..

T

Instance Status Help

Figure 10. Using the In-System Memory Content Editor tool.

Part VII

For this part you are to modify your circuit from Part VI (and Part V) to use the 1IS61LV 25616AL SRAM chip
instead of an M4K block. Create a Quartus Il project for the new design, compile it, download it onto the DE2
boards, and test the circuit.

In Part VI you used a memory initiaization file to specify the initial contents of the 32 x 8 RAM block, and
you used the In-System Memory Content Editor tool to read and modify this data. This approach can be used
only for the memory resourcesinside the FPGA chip. To perform equivalent operations using the external SRAM
chip you can use a specia capability of the DE2 board called the DE2 Control Panel. Chapter 3 of the DE2 User
Manual shows how to use this tool. The procedure involves programming the FPGA with a special circuit that
communicates with the Control Panel software application, which isillustrated in Figure 11, and using this setup

10

to load datainto the SRAM chip. Subsequently, you can reprogram the FPGA with your own circuit, which will
then have access to the data stored in the SRAM chip (reprogramming the FPGA has no effect on the external
memory). Experiment with this capability and ensure that the results of read and write operations to the SRAM
chip can be observed both in the your circuit and in the DE2 Control Panel software.

DE2 Control Panel
Open Help About

P52 & 7-SEG | LED & LCD | TOOLS |

FLASH SRAM | vea |
SDRAM

Fandom Access

Address ,g— WDATA:IW rDATA ’W

Sequential Write

Address: g Length : |D [~ File Length

Sequential Read
Address: g Length: | I™ Entire Sdram

Figure 11. The DE2 Control Panel software.

Copyright (©2006 Altera Corporation.

11

