L aboratory Exercise 7

Finite State M achines

Thisis an exercise in using finite state machines.
Part |

We wish to implement afinite state machine (FSM) that recognizes two specific sequences of applied input sym-
bols, namely four consecutive 1s or four consecutive 0s. Thereis an input w and an output z. Whenever w = 1 or
w = 0 for four consecutive clock pulses the value of z has to be 1; otherwise, z = 0. Overlapping sequences are
alowed, so that if w = 1 for five consecutive clock pulses the output z will be equal to 1 after the fourth and fifth
pulses. Figure 1 illustrates the required relationship between w and z

Figure 1. Required timing for the output z

A state diagram for this FSM is shown in Figure 2. For this part you are to manually derive an FSM circuit that
implements this state diagram, including the logic expressions that feed each of the state flip-flops. To implement
the FSM use nine state flip-flops called ys, . . . , yo and the one-hot state assignment given in Table 1.

State Code
YsYrYeYsYaYsy2Y1Yo
000000001
000000010
000000100
000001000
000010000
000100000
001000000
010000000
100000000

prd
—IOTMMUOW > g
(0]

Table 1. One-hot codes for the FSM.

Figure 2. A state diagram for the FSM.

Design and implement your circuit on the DE2 board as follows.

1

Create anew Quartus|| project for the FSM circuit. Select asthetarget chip the Cyclonell EP2C35F672C6,
which isthe FPGA chip on the Altera DE2 board.

WriteaVHDL file that instantiates the nine flip-flopsin the circuit and which specifiesthe logic expressions
that drivetheflip-flop input ports. Use only simple assignment statementsin your VHDL codeto specify the
logic feeding the flip-flops. Notethat the one-hot code enables you to derive these expressions by inspection.

Use the toggle switch SW, on the Altera DE2 board as an active-low synchronous reset input for the FSM,
use SW; as the w input, and the pushbutton KEY, as the clock input which is applied manually. Use the
green LED LEDG as the output z, and assign the state flip-flop outputsto thered LEDs LEDRg to LEDR,.

Include the VHDL file in your project, and assign the pins on the FPGA to connect to the switches and the
LEDs, asindicated in the User Manual for the DE2 board. Compile the circuit.

Simulate the behavior of your circuit.

Once you are confident that the circuit works properly as a result of your simulation, download the circuit
into the FPGA chip. Test the functionality of your design by applying the input sequences and observing
the output LEDs. Make sure that the FSM properly transitions between states as displayed on thered LEDs,
and that it produces the correct output values on LEDG .

Finally, consider a modification of the one-hot code given in Table 1. When an FSM is going to be im-
plemented in an FPGA, the circuit can often be simplified if al flip-flop outputs are 0 when the FSM isin
the reset state. This approach is preferable because the FPGA's flip-flops usually include a clear input port,
which can be conveniently used to realize the reset state, but the flip-flops often do not include a set input
port.

Table 2 shows a modified one-hot state assignment in which the reset state, A, uses al 0s. Thisis accom-
plished by inverting the state variable y,. Create a modified version of your VHDL code that implements
this state assignment. Hint: you should need to make very few changes to the logic expressions in your
circuit to implement the modified codes. Compile your new circuit and test it both through simulation and
by downloading it onto the DE2 board.

State Code
Name | ysyryeYsyay3y291%o
000000000
000000011
000000101
000001001
000010001
000100001
001000001
010000001
100000001

>

— IOTMmMUOO®

Table 2. Modified one-hot codes for the FSM.

Part 11

For this part you are to write another style of VHDL code for the FSM in Figure 2. In this version of the code
you should not manually derive the logic expressions needed for each state flip-flop. Instead, describe the state
table for the FSM by using a VHDL CASE statement in a PROCESS block, and use another PROCESS block to
instantiate the state flip-flops. You can use athird PROCESS block or simple assignment statements to specify the
output z.

A suggested skeleton of the VHDL code is given in Figure 3. Observe that the present and next state vectors for
the FSM are defined as an enumerated type with possible values given by the symbols A to 1. The VHDL compiler
determines how many state flip-flopsto use for the circuit, and it automatically chooses the state assignment.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY part21S
PORT (... defineinput and output ports

K
END part2;

ARCHITECTURE Behavior OF part2 IS

... declaresignals

TYPE State typelS(A,B,C,D,E, F, G, H, I);

SIGNALY Q,Y_D: State type; --y_Qispresent state, y_D is next state
BEGIN

PROCESS (w, y_Q) - - statetable
BEGIN
casey QIS
WHEN A IF(w="0") THEN Y_D <=B;
ELSEY D<=F,
END IF,;
... other states
END CASE;
END PROCESS; - - state table

PROCESS (Clock) - - state flip-flops
BEGIN

END PROCESS;

... assignments for output z and the LEDs
END Behavior;

Figure 3. Skeleton VHDL code for the FSM.

Implement your circuit as follows.
1. Create anew project for the FSM. Select as the target chip the Cyclone |1 EP2C35F672C6.

2. Includein the project your VHDL file that uses the style of codein Figure 3. Use the toggle switch SW on
the Altera DE2 board as an active-low synchronous reset input for the FSM, use SW; asthe w input, and the
pushbutton KEY,, as the clock input which is applied manually. Use the green LED LEDG, as the output z,
and use ninered LEDs, LEDRg to LEDR,, to indicate the present state of the FSM. Assign the pins on the
FPGA to connect to the switches and the LEDs, as indicated in the User Manual for the DE2 board.

3. Before compiling your code it is possible to tell the Synthesis tool in Quartus Il what style of state as-
signment it should use. Choose Assignments > Settings in Quartus II, and then click on the Analysis
and Synthesis item on the left side of the window. Asindicated in Figure 4, change the parameter State
Machine Processing to the setting Minimal Bits.

4. To examine the circuit produced by Quartus Il open the RTL Viewer tool. Double-click on the box shown
in the circuit that represents the finite state machine, and determine whether the state diagram that it shows
properly correspondsto the onein Figure 2. To seethe state codes used for your FSM, open the Compilation
Report, select the Analysis and Synthesis section of the report, and click on State Machines.

5. Simulate the behavior of your circuit.

6. Once you are confident that the circuit works properly as aresult of your simulation, download the circuit
into the FPGA chip. Test the functionality of your design by applying the input sequences and observing
the output LEDs. Make sure that the FSM properly transitions between states as displayed on thered LEDs,
and that it produces the correct output values on LEDG .

7. In step 3 you instructed the Quartus Il Synthesis tool to use the state assignment given in your VHDL
code. To see the result of changing this setting, open again the Quartus Il settings window by choosing
Assignments > Settings, and click on the Analysis and Synthesis item. Change the setting for State
Machine Processing from Minimal Bits to One-Hot. Recompile the circuit and then open the report file,
select the Analysis and Synthesis section of the report, and click on State Machines. Compare the state
codes shown to those given in Table 2, and discuss any differencesthat you observe.

Settings - part2 @

Category:
Gereral
Files
Uszer Libraries [Current Project) Specify options for analysis & synthesis. These option: control Quartus 1| Integrated Synthesis and
Device do not affect VR or EDIF netlists unless WhYSIWYG primitive resynthesis is enabled.
Timing Requirements & Options
+- EDA Tool Settings Optimization Technique Auta Global Options [Ma Devices Only)
+ 'Eon]pilfatiso‘r;Pm:es.s gett?ngs " Speed |—
=~ Analysis & Synthesiz Settings &
VHDL Input * Balanced I
Yerilog HOL Input " Area I
Default Parameters .
Syrithesis Metlist Optimizations [~ Create debugging nodes for IP cores
+- Fitter Settings I [v Auto Open-Drain Pins
?;sgmljgl:er | v Auto ROM Replacement W
iming Analyzer ; }
Design Assistant Iv Auto Rak Replacement Iv &uto Shift Register Replacement
SignalT ap Il Logic Analyzer v v Fower-Up Don't Care
Logic Analyzer Interface . ’—_l
: A
SigralProbe Settings DSF Block Balancing: uta -
+- Simulator S ettings State Machine Processing:

+- PowerPlay Power Analyzer Settings :
+- Software Build Settings Restructure Multiplexers: Auto -
HardCopy Settings PowerPlay power optimization: ’W
HOL Message Level: Lewvel2 -
More Settings...
Drescription:

Specifies the processing style used ta compile a state machine. 'Y'ou can uze your own
User-Encoded' style, or select 'One-Hat', 'Minimal Bits', or ‘Auta’ [Compiler-selected) encoding.

(] 8 | Cancel

Figure 4. Specifying the state assignment method in Quartus 1.
Part Il

For this part you are to implement the sequence-detector FSM by using shift registers, instead of using the more
formal approach described above. Create VHDL code that instantiates two 4-bit shift registers; oneis for recog-
nizing a sequence of four 0s, and the other for four 1s. Include the appropriate logic expressionsin your design to
produce the output z. Make a Quartus |1 project for your design and implement the circuit on the DE2 board. Use
the switches and LEDs on the board in asimilar way as you did for Parts | and |1 and observe the behavior of your
shift registers and the output z. Answer the following question: could you use just one 4-bit shift register, rather
than two? Explain your answer.

Part 1V

We want to design a modulo-10 counter-like circuit that behaves as follows. It is reset to O by the Reset input. It
has two inputs, w; and wq, which control its counting operation. If wiwy = 00, the count remains the same. If
wiwg = 01, the count is incremented by 1. If wywy = 10, the count is incremented by 2. If wywy = 11, the
count is decremented by 1. All changes take place on the active edge of a Clock input. Use toggle switches SW,
and SW; for inputsw; and wg. Usetoggle switch SW, as an active-low synchronous reset, and use the pushbutton
KEY, asamanual clock. Display the decimal contents of the counter on the 7-segment display HEXO.

1. Create anew project which will be used to implement the circuit on the DE2 board.
2. WriteaVHDL file that defines the circuit. Use the style of code indicated in Figure 3 for your FSM.
. Includethe VHDL filein your project and compile the circuit.

. Simulate the behavior of your circuit.

3
4
5. Assign the pins on the FPGA to connect to the switches and the 7-segment display.
6. Recompile the circuit and download it into the FPGA chip.

7

. Test the functionality of your design by applying some inputs and observing the output display.

Part V

For this part you are to design acircuit for the DE2 board that scrolls the word "HELL O" in ticker-tape fashion on
the eight 7-segment displays HEX7 — 0. The letters should move from right to left each time you apply a manual
clock pulse to the circuit. After the word "HELLO" scrolls off the left side of the displays it then starts again on
theright side.

Design your circuit by using eight 7-bit registers connected in a queue-like fashion, such that the outputs of the
first register feed the inputs of the second, the second feeds the third, and so on. This type of connection between
registersis often called a pipeline. Each register’s outputs should directly drive the seven segments of one display.
You are to design afinite state machine that controlsthe pipelinein two ways:

1. Forthefirst eight clock pulses after the system isreset, the FSM insertsthe correct characters(H,E,L,L,0,,,)
into the first of the 7-bit registersin the pipeline.

2. After step 1 is complete, the FSM configures the pipeline into a loop that connects the last register back to
thefirst one, so that the letters continue to scroll indefinitely.

Write VHDL codefor the ticker-tape circuit and create a Quartus |1 project for your design. Use KEY o onthe DE2
board to clock the FSM and pipeline registers and use SW, as a synchronous active-low reset input. Write VHDL
code in the style shown in Figure 3 for your finite state machine.

Compile your VHDL code, download it onto the DE2 board and test the circuit.

Part VI

For this part you are to modify your circuit from Part V so that it no longer requires manually-applied clock pulses.
Your circuit should scroll theword "HELLO" such that the letters move from right to | eft in intervals of about one
second. Scrolling should continue indefinitely; after the word "HELL O" scrolls off the |eft side of the displays it
should start again on theright side.
Write VHDL codefor theticker-tape circuit and create a Quartus || project for your design. Use the 50-MHz clock
signal, CLOCK_50, on the DE2 board to clock the FSM and pipeline registers and use KEY, as a synchronous
active-low reset input. Write VHDL code in the style shown in Figure 3 for your finite state machine, and ensure
that al flip-flopsin your circuit are clocked directly by the CLOCK _50 input. Do not derive or use any other clock
signalsin your circuit.

Compile your VHDL code, download it onto the DE2 board and test the circuit.

Part VII

Augment your design from Part VI so that under the control of pushbuttons KEY , and KEY; the rate at which the
letters move from right to left can be changed. If KEY is pressed, the letters should move twice as fast. If KEY;
is pressed, the rate has to be reduced by afactor of 2.

Note that the KEY; and KEY; switches are debounced and will produce exactly one low pulse when pressed.
However, there is no way of knowing how long a switch may remain depressed, which means that the pulse
duration can be arbitrarily long. A good approach for designing this circuit is to include a second FSM in your
VHDL code that properly responds to the pressed keys. The outputs of this FSM can change appropriately when
akey is pressed, and the FSM can wait for each key press to end before continuing. The outputs produced by this
second FSM can be used as part of the scheme for creating avariabletimeinterval in your circuit. Note that KEY o
and KEY; are asynchronousinputs to your circuit, so be sure to synchronize them to the clock signal before using
these signals as inputs to your finite state machine.

The ticker tape should operate as follows. When the circuit is reset, scrolling occurs at about one second
intervals. Pressing KEY; repeatedly causes the scrolling speed to double to a maximum of four letters per second.
Pressing KEY; repeatedly causes the scrolling speed to slow down to a minimum of one letter every four seconds.

Implement your circuit on the DE2 board and demonstrate that it works properly.

Copyright (©2006 Altera Corporation.

