Laboratory Exercise 4

Counters

This is an exercise in using counters.

Part I

Consider the circuit in Figure 1. It is a 4-bit synchronous counter which uses four T-type flip-flops. The counter increments its count on each positive edge of the clock if the Enable signal is asserted. The counter is reset to 0 by using the Reset signal. You are to implement a 16-bit counter of this type.

Figure 1. A 4-bit counter.

- 1. Write a VHDL file that defines a 16-bit counter by using the structure depicted in Figure 8, and compile the circuit. How many logic elements (LEs) are used to implement your circuit? What is the maximum frequency, *Fmax*, at which your circuit can be operated?
- 2. Simulate your circuit to verify its correctness.
- 3. Augment your VHDL file to use the pushbutton KEY_0 as the *Clock* input, switches SW_1 and SW_0 as *Enable* and *Reset* inputs, and 7-segment displays *HEX3-0* to display the hexadecimal count as your circuit operates. Make the necessary pin assignments and compile the circuit.
- 4. Implement your circuit on the DE2 board and test its functionality by operating the implemented switches.
- 5. Implement a 4-bit version of your circuit and use the Quartus II RTL Viewer to see how Quartus II software synthesized your circuit. What are the differences in comparison with Figure 8?

Part II

Simplify your VHDL code so that the counter specification is based on the VHDL statement

 $Q \le Q + 1;$

Compile a 16-bit version of this counter and compare the number of LEs needed and the *Fmax* that is attainable. Use the RTL Viewer to see the structure of this implementation and comment on the differences with the design from Part I.

Part III

Use an LPM from the Library of Parameterized modules to implement a 16-bit counter. Choose the LPM options to be consistent with the above design, i.e. with enable and synchronous clear. How does this version compare with the previous designs?

Part IV

Design and implement a circuit that successively flashes digits 0 through 9 on the 7-segment display HEX0. Each digit should be displayed for about one second. Use a counter to determine the one-second intervals. The counter should be incremented by the 50-MHz clock signal provided on the DE2 board. Do not derive any other clock signals in your design–make sure that all flip-flops in your circuit are clocked directly by the 50 MHz clock signal.

Part V

Design and implement a circuit that displays the word HELLO, in ticker tape fashion, on the eight 7-segment displays HEX7 - 0. Make the letters move from right to left in intervals of about one second. The patterns that should be displayed in successive clock intervals are given in Table 1.

Clock cycle	Displayed pattern							
0				Н	Е	L	L	0
1			Н	Е	L	L	0	
2		Η	Е	L	L	0		
3	Н	Е	L	L	0			
4	Е	L	L	0				Η
5	L	L	0				Η	Е
6	L	0				Η	Е	L
7	0				Η	Е	L	L
8				Η	Е	L	L	0
	and so on							

Table 1. Scrolling the word HELLO in ticker-tape fashion.

Copyright ©2006 Altera Corporation.