
Laboratory Exercise 2
Numbers and Displays

This is an exercise in designing combinational circuits that can perform binary-to-decimal number conversion
and binary-coded-decimal (BCD) addition.

Part I

We wish to display on the 7-segment displays HEX3 to HEX0 the values set by the switches SW 15−0. Let the
values denoted by SW15−12, SW11−8, SW7−4 and SW3−0 be displayed on HEX3, HEX2, HEX1 and HEX0,
respectively. Your circuit should be able to display the digits from 0 to 9, and should treat the valuations 1010 to
1111 as don’t-cares.

1. Create a new project which will be used to implement the desired circuit on the Altera DE2 board. The
intent of this exercise is to manually derive the logic functions needed for the 7-segment displays. You
should use only simple VHDL assignment statements in your code and specify each logic function as a
Boolean expression.

2. Write a VHDL file that provides the necessary functionality. Include this file in your project and assign the
pins on the FPGA to connect to the switches and 7-segment displays, as indicated in the User Manual for the
DE2 board. The procedure for making pin assignments is described in the tutorial Quartus II Introduction
using VHDL Design, which is available on the DE2 System CD and in the University Program section of
Altera’s web site.

3. Compile the project and download the compiled circuit into the FPGA chip.

4. Test the functionality of your design by toggling the switches and observing the displays.

Part II

You are to design a circuit that converts a four-bit binary number V = v 3v2v1v0 into its two-digit decimal equiv-
alent D = d1d0. Table 1 shows the required output values. A partial design of this circuit is given in Figure 1. It
includes a comparator that checks when the value of V is greater than 9, and uses the output of this comparator
in the control of the 7-segment displays. You are to complete the design of this circuit by creating a VHDL entity
which includes the comparator, multiplexers, and circuit A (do not include circuit B or the 7-segment decoder at
this point). Your VHDL entity should have the four-bit input V , the four-bit output M and the output z. The
intent of this exercise is to use simple VHDL assignment statements to specify the required logic functions using
Boolean expressions. Your VHDL code should not include any IF-ELSE, CASE, or similar statements.

Binary value Decimal digits

0000 0 0
0001 0 1
0010 0 2
.

1001 0 9
1010 1 0
1011 1 1
1100 1 2
1101 1 3
1110 1 4
1111 1 5

Table 1. Binary-to-decimal conversion values.

1

Perform the following steps:

1. Make a Quartus II project for your VHDL entity.

2. Compile the circuit and use functional simulation to verify the correct operation of your comparator, multi-
plexers, and circuit A.

3. Augment your VHDL code to include circuit B in Figure 1 as well as the 7-segment decoder. Change the
inputs and outputs of your code to use switches SW3−0 on the DE2 board to represent the binary number
V , and the displays HEX1 and HEX0 to show the values of decimal digits d 1 and d0. Make sure to include
in your project the required pin assignments for the DE2 board.

4. Recompile the project, and then download the circuit into the FPGA chip.

5. Test your circuit by trying all possible values of V and observing the output displays.

0

1

0

1

v2

0
v3

Circuit B
7

0

1

2

3

4

5 6

7-segment 7

0

1

2

3

4

5 6

0

1

v1

0

1

v0

Circuit A

Comparator

decoder

d1

d0

m2

m3

m1

m0

z

Figure 1. Partial design of the binary-to-decimal conversion circuit.

Part III

Figure 2a shows a circuit for a full adder, which has the inputs a, b, and c i, and produces the outputs s and co.
Parts b and c of the figure show a circuit symbol and truth table for the full adder, which produces the two-bit
binary sum cos = a + b + ci. Figure 2d shows how four instances of this full adder entity can be used to design
a circuit that adds two four-bit numbers. This type of circuit is usually called a ripple-carry adder, because of
the way that the carry signals are passed from one full adder to the next. Write VHDL code that implements this
circuit, as described below.

2

FA
0

1

ci

a) Full adder circuit

a

b
co

s ci

a

b
co

s

b) Full adder symbol

FA

a0b0

s0

FA

c1
a1b1

s1

FA

c2
a2b2

s2

FA

c3
a3b3

s3cout

d) Four-bit ripple-carry adder circuit

cin

0
0

c) Full adder truth table

a cib

0 0
0 1

0
0

1 0
1 1

1 0 0
1
1

0 1
1 0

1 1 1

0
0

sco

0
1

0
1

1
0

0 1
1
1

0
0

1 1

Figure 2. A ripple-carry adder circuit.

1. Create a new Quartus II project for the adder circuit. Write a VHDL entity for the full adder subcircuit and
write a top-level VHDL entity that instantiates four instances of this full adder.

2. Use switches SW7−4 and SW3−0 to represent the inputs A and B, respectively. Use SW8 for the carry-in
cin of the adder. Connect the SW switches to their corresponding red lights LEDR, and connect the outputs
of the adder, cout and S, to the green lights LEDG.

3. Include the necessary pin assignments for the DE2 board, compile the circuit, and download it into the
FPGA chip.

4. Test your circuit by trying different values for numbers A, B, and c in.

Part IV

In part II we discussed the conversion of binary numbers into decimal digits. It is sometimes useful to build
circuits that use this method of representing decimal numbers, in which each decimal digit is represented using
four bits. This scheme is known as the binary coded decimal (BCD) representation. As an example, the decimal
value 59 is encoded in BCD form as 0101 1001.

You are to design a circuit that adds two BCD digits. The inputs to the circuit are BCD numbers A and B,
plus a carry-in, cin. The output should be a two-digit BCD sum S1S0. Note that the largest sum that needs to be
handled by this circuit is S1S0 = 9 + 9 + 1 = 19. Perform the steps given below.

1. Create a new Quartus II project for your BCD adder. You should use the four-bit adder circuit from part III
to produce a four-bit sum and carry-out for the operation A + B. A circuit that converts this five-bit result,
which has the maximum value 19, into two BCD digits S1S0 can be designed in a very similar way as the
binary-to-decimal converter from part II. Write your VHDL code using simple assignment statements to
specify the required logic functions–do not use other types of VHDL statements such as IF-ELSE or CASE
statements for this part of the exercise.

3

2. Use switches SW7−4 and SW3−0 for the inputs A and B, respectively, and use SW8 for the carry-in.
Connect the SW switches to their corresponding red lights LEDR, and connect the four-bit sum and carry-
out produced by the operation A + B to the green lights LEDG. Display the BCD values of A and B on the
7-segment displays HEX6 and HEX4, and display the result S 1S0 on HEX1 and HEX0.

3. Since your circuit handles only BCD digits, check for the cases when the input A or B is greater than nine.
If this occurs, indicate an error by turning on the green light LEDG 8.

4. Include the necessary pin assignments for the DE2 board, compile the circuit, and download it into the
FPGA chip.

5. Test your circuit by trying different values for numbers A, B, and c in.

Part V

Design a circuit that can add two 2-digit BCD numbers, A1A0 and B1B0 to produce the three-digit BCD sum
S2S1S0. Use two instances of your circuit from part IV to build this two-digit BCD adder. Perform the steps
below:

1. Use switches SW15−8 and SW7−0 to represent 2-digit BCD numbers A1A0 and B1B0, respectively. The
value of A1A0 should be displayed on the 7-segment displays HEX7 and HEX6, while B 1B0 should be on
HEX5 and HEX4. Display the BCD sum, S2S1S0, on the 7-segment displays HEX2, HEX1 and HEX0.

2. Make the necessary pin assignments and compile the circuit.

3. Download the circuit into the FPGA chip, and test its operation.

Part VI

In part V you created VHDL code for a two-digit BCD adder by using two instances of the VHDL code for a
one-digit BCD adder from part IV. A different approach for describing the two-digit BCD adder in VHDL code is
to specify an algorithm like the one represented by the following pseudo-code:

1 T0 = A0 + B0

2 if (T0 > 9) then
3 Z0 = 10;
4 c1 = 1;
5 else
6 Z0 = 0;
7 c1 = 0;
8 end if
9 S0 = T0 − Z0

10 T1 = A1 + B1 + c1

11 if (T1 > 9) then
12 Z1 = 10;
13 c2 = 1;
14 else
15 Z1 = 0;
16 c2 = 0;
17 end if
18 S1 = T1 − Z1

19 S2 = c2

4

It is reasonably straightforward to see what circuit could be used to implement this pseudo-code. Lines 1, 9, 10,
and 18 represent adders, lines 2-8 and 11-17 correspond to multiplexers, and testing for the conditions T 0 > 9
and T1 > 9 requires comparators. You are to write VHDL code that corresponds to this pseudo-code. Note that
you can perform addition operations in your VHDL code instead of the subtractions shown in lines 9 and 18. The
intent of this part of the exercise is to examine the effects of relying more on the VHDL compiler to design the
circuit by using IF-ELSE statements along with the VHDL > and + operators. Perform the following steps:

1. Create a new Quartus II project for your VHDL code. Use the same switches, lights, and displays as in
part V. Compile your circuit.

2. Use the Quartus II RTL Viewer tool to examine the circuit produced by compiling your VHDL code. Com-
pare the circuit to the one you designed in Part V.

3. Download your circuit onto the DE2 board and test it by trying different values for numbers A 1A0 and
B1B0.

Part VII

Design a combinational circuit that converts a 6-bit binary number into a 2-digit decimal number represented in
the BCD form. Use switches SW5−0 to input the binary number and 7-segment displays HEX1 and HEX0 to
display the decimal number. Implement your circuit on the DE2 board and demonstrate its functionality.

Copyright c©2006 Altera Corporation.

5

