
I . INTRODUCTION

A Parallel Computer
Architecture for Continuous
Simulation

J.O. HAMBLEN, Member, IEEE

C . 0 . ALFORD, Member, IEEE
Georgia Institute of Technology

A parallel computer specifically designed for the solution or
ordinary differential equations is described. The first version of the

machine contains thirty-two processors, running in an asynchronous

Multiple instruction multiple data (MIMD) mode, communicating

with high speed parallel busses. Synchronization is accomplished by

a microprogrammable communication controller. A number of

processors have been designed and built for the machine. The

processor types offer a wide variation in solution speed and

accuracy. To permit easy comparisons with analog and hybrid

systems, performance is measured by finding the highest frequency

since wave which can be integrated in real-time with an accuracy of

0.1 percent or higher. Using this performance measure the

performance limit of the current machine is 2000 Hz. The structure

is capable of solving systems described by differential equations up

to order sixty-four a t these performance limits.

Manuscript received July 9, 1987

IEEE Log No. 24684.

Authors’ address: School of Electrical Engineering, Georgia Institute of
Technology, Atlanta, CA 30332.

0018-9251/88/1100-0719 $1.00 0 1988 IEEE

The simulation of continuous dynamic systems
requires the solution of ordinary differential equations
with initial value conditions. Such systems occur in
aerospace, mechanical, biological, electrical, and
chemical systems. In the past, there have been four
distinct approaches to computational machines for
continuous system simulation; analog computers, hybrid
computers, digital differential analyzers, and digital
computers. A recent approach is to design a parallel
digital structure which unites ideas from all four of these
approaches. Such a system takes full advantage of recent
developments in very large scale integration (VLSI)
technology. This fifth approach is special purpose in the
same sense that an analog computer is special purpose.
The resulting computer is intended to solve those
problems described by ordinary differential equations at
an accuracy level comparable with reliable physical
measurements.

11. PARALLEL COMPUTER ARCHITECTURES

A medium size analog computer is capable of
performing the integration of 40 state variables and the
associated function generation. Using fourth-order Runge-
Kutta integration, a digital computer requires 20,000
integration time steps per second to achieve the
equivalent accuracy and speed. A typical state equation
requires 250 operations per state variable per integration
step. Thus a digital computer requires a sustained
throughput in excess of 200 MFLOPS (millions of
floating point operations per second) to match the
performance of a typical analog computer [I] .

general purpose vector supercomputers, such as the
CRAY X-MP, begin to approach this level of sustained
performance on real simulation problems [2]. Thus
economics provides the major impetus for a special
purpose machine.

A number of commercially available parallel
computers have appeared recently. Many of these general
purpose computers are being used for simulation
applications [3- 1 I] . Special purpose commercial
simulation machines are also available [121. The floating
point performance of these machines is not yet in the
supercomputer class [2] . Utilizing VLSI components,
many of these parallel computers offer price/performance
advantages over vector supercomputers. The
commercially available general purpose parallel
computers typically have a small number of processors
built using a general purpose microprocessor with a math
coprocessor and a limited bandwidth interconnection
network. The performance of these parallel machines
cannot be improved by orders of magnitude without
major modifications to their current architecture or
technology.

Only the most recent models of multimillion dollar

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 24, NO. 6 NOVEMBER 1988 719

I I I. NUM ER I CAL CONS I D ERATlO NS

The classical solution method for ordinary differential
equations with initial value conditions is shown in Fig. 1.
For each integration time step it is necessary to perform
function or derivative evaluations and numerical
integration sequentially for all of the state variables [13-
201. The major differences are in the numerical
integration methods used. Multiple function evaluations
per time step are required by many integration methods.
Many software packages allow the user to choose one of
several common integration routines to obtain the best
performance.

connection paths required. This implies that the
interconnection network must be reconfigurable for high
performance.

initial value conditions is ideally suited for parallel
processing. This class of problems exhibits an extremely
high degree of parallelism. Many computations can be
performed in a processor before it is necessary to
exchange global data. The amount of global data or state
variables that must be shared among processors is small
in relation to local data and program size. These are the
characteristics that must be present for efficient parallel
processing utilizing a large number of processors.

The solution of ordinary differential equations with

FOR i = l TO n

FOR !=Tint TO Tfin STEP h

I FOR i= l TO n I

Function
Evaluation dXi(t)/dt

FOR i = l TO n

Numerical
Xi(t+h) lntegratlon

Fig. 1 . Sequential solution of system equations.

An equivalent parallel digital solution method
analogous to the operation of an analog computer, or a
digital differential anayzer, is shown in Fig. 2 [21-261. A
theoretical linea speedup by a factor of n, the order of the
system, is possible if n processors are used. Additional

I FOR !=Tint TO T f i n STEP h I
Function
Evaluation

Numerical
Integration

Fig. 2. Parallel solution of system equations.

parallelism can be found in the numerical integration
methods; however, this parallelism, a factor of two to
four, is small compared with n [22, 27, 281. New parallel
solution methods have also been suggested [29-331.
Using classical methods, coupling in the system of
equations means that data must be exchanged among
processors every time a function evaluation is performed.
This requires that an interprocessor connection network
be provided. The time required for the transfer of data
will reduce the speedup to a value less than n. For
maximum speedup the processors must be connected by a
high bandwidth interconnection network. The functional
dependence of the differential equations determines the

IV. SYSTEM ARCHITECTURE

Based on an analysis of these numerical
considerations, the architecture shown in Fig. 3 was
developed (231. A number of asynchronous processors,
each with local program and data memory, are connected

I
I

Fig. 3. Parallel computer architecture

to a high speed interconnection network controlled by a
microprogrammable communication controller. The
communication controller is responsible for synchronizing
the system and controlling the switch points in the
interconnection network.

To demonstrate the utility of this architecture, an
experimental prototype capable of supporting 32
processors was designed and built. The experimental
prototype is intended to be used as a research tool. The
prototype was used to obtain accurate performance data
and to gain additional insight into implementation
problems and limitations.

Each processor performs function evaluation and
numerical integration on a subset, typically one or two,
of the system state variables. Programs and data are
maintained in the local processor memory. Every time a
function evaluation is performed the new values of the
state variables are transferred on the interconnection
network. This is the minimum amount of information that
must be exchanged among processors. Decomposition of
the problem in this manner maintains fast interprocessor
communication times. Further decomposition increases
the parallelism at the expense of increased communication
with a resulting decrease in performance. Processors with
high speed analog-to-digital (AID) and digital-to-analog
(DIA) channels are used for analog inputs and outputs.

720 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 24, NO. 6 NOVEMBER 1988

V. NETWORK ARCHITECTURE

The interconnection network must be capable of
parallel high speed data transfers among arbitrary
processors. Clearly, a network which allows all
processors to communicate directly to any other
processors in parallel is desirable if it is economically
viable. Networks, such as hypercubes, which require
processor forwarding of data to support an arbitrary
transfer are too slow to meet performance goals. Crossbar
and Banyan networks are possible candidates for the
interconnection network. These networks grow in
complexity by an O (n 2) when switch points,
interconnection wiring, and control circuitry are taken
into account [34]. Crossbar switching networks are
nonblocking, require only one level of switching, and
have a higher degree of symmetry making fabrication less
difficult. A crossbar switching network was selected for
use in the experimental prototype.

is prohibitive. Tri-state bidirectional data busses are used
to reduce the size of the network by a factor of four.
Thus a combination of space and time switching is
required to transfer data. High speed microcode memory
is used to enable and control the direction of each switch
point in the network. This allows multiple destinations for
a single packet of input data and use of different routing
strategies. Typically, simulation problems require four or
more time slots on the network for a complete data
transfer.

experimental prototype. Each switch point uses two
74LS245 octal bus transceivers. A four by four switch
matrix is implemented on a circuit board. Sixteen boards
are required for the thirty-two processor prototype. Daisy
chained ribbon cables run horizontally and vertically
through the network to provide the large number of
interconnections required.

The communication controller contains a high speed
microprogrammable state machine as shown in Fig. 4.
Each microinstruction controls a time slot on the network.
Fields in the microcode specify the processors requiring
input, the processors providing output data, and the
switch configurations required in the network. The
processor microcode fields control maskable comparators
that signal when the selected processors are ready to
transfer data. The controller hardware tests and sets four
handshake lines on all processors in parallel. Pipelining is
used to configure the switch points prior to the transfer of
data. The data path through the network contains a single
gate delay of 8 ns. The major communication path delay
is a 100 ns signal rise time in the ribbon cable
connections. The rise time results from the capacitance
between signal and ground wires in the data cable.
Custom VLSI circuits could be used to reduce the
physical size of the network and increase the
performance.

The physical size of a fully parallel switching network

Data is transferred on 16-bit busses in the

Communication Sequencer ‘d
Microprogram Memory

High Speed Siatic RAM

~~

Microinstruciion Pipeline Register

I Network

Compare Compare

Processor Handshake Lines

Fig. 4. Microprogrammable communication controller

Processor programs must output and input data in an
ordered sequence that coincides with the communication
controller microprogram. The arrival of data via the
network is used to synchronize the processors. The
number and order of input and output variables is
problem dependent and will vary from processor to
processor. The network interface is buffered to allow
processors to perform other operations while transfers are
occurring.

VI. PROCESSOR ARCHITECTURE

The system architecture is capable of supporting many
types of processor modules. All that is required is a
compatible interface to the switching network and an
IEEE Standard 796 card format [35, 361. The standard
interface to the network is a 16-bit parallel transistor-
transistor logic (TTL) bidirectional port with four
handshake lines. Five processor modules have been
developed for the prototype computer. They include a
general purpose microprocessor with a numeric
coprocessor, a processor with high speed AID and D/A
converters, a high speed microprogrammed fixed point
processor, and two high speed microprogrammed floating
point processors.

The microprocessor based design,uses an Intel SBC
86/12 processor with an 8087 numeric coprocessor. When
this processor was selected it was anticipated that the next
generation of VLSI floating point units would approach
the performance goals for the machine. These processors
served to provide floating point capability in the interim.

processor architecture is shown in Fig. 5. With current
VLSI technology it is necessary to use several speedup
techniques to attain the data rates required. These include
microcoding of programs, separate program and data
memories, and pipelining of both instructions and data.

The high speed microprogrammed fixed point

HAMBLEN & ALFORD: CONTINUOUS SIMULATION PARALLEL COMPUTER ARCHITECTURE 7 2 1

Microprogrom Memory

High Speed Stotic RAM

Microinstruction Pipeline Register

RAM A
(Constonts) (Variables)

L

1 ALU /

Network lnterfoce

Fig. 5. '+ Microprogrammable processor architecture

Only microprogramming allows efficient control of all
parallel operations supported by the hardware. Pipelining
allows the overlapping of fetch and execute cycles.
Separate program and data memories allow instruction
and operand fetch operations to occur simultaneously. For
high performnce, a high speed adder and hardware
multiplier are required.

The fixed point processor performs two operand
fetches, a multiply, a double precision addition, and a
store in 250 ns. Implementation of the module requires
1 13 integrated circuits. Programmable logic arrays were
used where appropriate. A TRW lOlOJ provides the
multiply and accumulate operation and an AMD 2910
was used for the microprogram sequencer. Processor
memory uses 50 ns static RAMS.

Two microprogrammed floating point processors have
recently been designed and built. These processors use an
architecture that is virtually identical to the fixed point
unit. Data is maintained in IEEE Standard 754 32-bit
floating point format [37]. Both processors use an AMD
29 10 microprogram sequencer and have separate data and
microprogram memories. The first design uses the Weitek
1032 floating point multiplier and 1033 floating point
adder [38, 391. The Weitek floating point ALU contains a
six stage data pipeline. Filling and flushing of the internal
pipeline slows down the processor and this demands
special care when programming.

floating point ALU and the AMD 29334 register file.
After evaluating a prototype of both units, the AMD
29325 processor design has been selected for
incorporation in the next version of the machine. The
peak performance of a single AMD 29325 based
processor is 10 MFLOPS [38]. New processor designs
containing four to eight T800 floating point transputers

The second processor design uses the AMD 29325

[40] or the bipolar integrated technology 2 1 1012 I20
floating point ALUs [38] are being investigated.

VI I. BENCHMARKS

As part of the experimental program several simple
continuous system simulation benchmarks have been
implemented on the prototype machine described in this
paper. Results obtained using the prototype were
compared with traditional serial results to verify correct
operation and to validate the parallel solution method.

To program these benchmarks on the prototype a
number of software tools were developed. In the
prototype all processor and control memories can be
downloaded by a general purpose host computer. The
host can also start, stop, reset, single step, and examine
memory contents in all processors and the communication
controller. These features are useful in multirun
simulations. A compiler was written to generate the
microcode for the communication sequencer. The input to
this compiler is a simple language which describes the
data transfers required between processors.

Additionally, the program in local memory of each
processor must be developed. For the microprocessor
based processor a compiler was used. High speed
processor benchmark programs were written in
microcode. Ultimately, a compiler for a continuous
system simulation language could be developed for the
machine which would generate all of the required code
modules [23, 4 I , 421.

The benchmarks selected were a second-order linear
system, the pilot ejection problem, PHYSBE, and a linear
single axis autopilot [16, 231. Speedups demonstrated on
the prototype using the 8086/8087 microprocessor are

122 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 24, NO. 6 NOVEMBER 1988

shown in Fig. 6. On any parallel computer, linear
speedup cannot be obtained unless processor
communication time is zero. Based on program execution
times, a more realistic model for the machine assumes a
ten percent overhead from processor communication. This
speedup, 0.9N can be obtained on systems of ODES that
produce equal processor computational loads.

:: f
10

Lineor Speeup

Speedup wiih 10%
Communicaiion
Overhead

Benchrnork Problems

’ 0 4 1 . Second Order Lineor
2. Pilot Ejeciion
3. PHYSBE
4. Single Axis Autopilot U 5

P 4 //
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Number of Processors

Fig. 6 . Speedup obtained on benchmarks.

Performance below this level is due to unequal processor
computational loads. Unbalanced processor execution
times will arise in nonlinear ODE systems because of
different function or derivative evaluation times.

evaluated by finding the highest frequency sine wave
which can be integrated in real-time with an accuracy of
0.1 percent. Using this benchmark the performance limit
of the prototype machine is in excess of 2000 Hz.

High speed microprogrammed processors were also

VIII. CONCLUSIONS

Using current technology, the prototype machine is
capable of solving 64th-order ordinary differential
equations at a solution bandwidth in excess of 1000 Hz.
A special purpose machine built using parallel VLSI
circuits offers the potential of mainframe performance
levels at a hardware cost reduction of an order of
magnitude or more. The architecture presented is capable
of solving ordinary differential equations at speeds
comparable with modem analog computers. Such a
machine can serve as a replacement for hybrid systems
and supercomputers in large real-time simulations.

Additional work is needed in the development of
VLSI chips designed to support parallel architectures, the
development of parallel compilers for continuous system
simulation languages, and new integration methods
designed for parallel computers.

ACKNOWLEDGMENTS

The authors wish to acknowledge the contributions of
R. Nabow, F. Rohling, L. McMillan, W. Tan, and other
numerous students, in the design and construction of the
prototype machine.

REFERENCES

Korn, G.A. and Vichnevetsky, R. (1976)
Analogihybrid computation and digital simulation.
IEEE Transactions on Computers, C-25, 12 (Dec. 1976),
13 12-1 320.

Performance of various computers using standard linear
equations software in a FORTRAN environment.
Simulation. 49, 2 (Aug. 1987). 51-62.

Parallelism and pipelining: the road to more cost-effective
scientific computing.
In Multiprocessors and Array Processors: Proceedings of the
Third Coiference, 1987, San Diego CA, SCSI, pp. 1-13.

McBryan, O.A., and Van de Velde, E. (1986)
Hypercube algorithms and implementations.
SIAM Journal of Scientific & Statistical Comnputatious. 8. 2
(Mar. 1987), 5227-87.

Rattner, J . and Wojcik, A.S. (1985)
Concurrent scientific computing.
In Proceedings of the American Federation of Irforinution
Processing Societies 1985 Nutional Coinputer Conjivwlce,
1985, Chicago IL. pp. 157-161.

Dongarra, J.J. (1987)

Karplus, W.J. (1986)

Test, J.A.. Myszewski, M., Swift, R.C., and Karplus, W.J.
(1986)

The alliant FXiseries: automatic parallelism in a
multiprocessor mini-supercomputer.
In Multiprocessors and Array Processors; Proceedings of the
Third Conference. 1987, San Diego CA, SCSI. pp. 35-44.

The encore continuum; a complete distributed work station-
multiprocessor computing environment.
In Proceedings of American Federation (f Information
Processing Societies I985 National Computer Conference,
1985, Chicago IL, pp. 147-155.

A fast backplane cluster heralds a 1000-MIPS computer.
Electronic Design, 35, 16 (July 1987), 81-86.

The FLEXi32 multicomputer.
In Proceedings of the 12th Annual Internutionul Symposium
on Coinputer Architecture. 1985, Boston MA, IEEE. pp.
209-2 13.

The architecture and implementation of the FLEX/32
multicomputer.
In Proceedings of the Americun Federation of Infbrmotion
Processing Societies I985 Nutionul Coinputer Corference ,
1985, Chicago IL, pp. 139-145.

Karplus, W.J.. and Fenner, P.R. (1986)
The Flexi32 for real-time multicoinputer simulation.
In Multiprocessors and Arruy Processors: Proc.eeding.s (f the
Third Conference, 1987, San Diego CA, SCSI. 127-133.

The System 100: an efficient hardwareisoftware architecture
for real-time and time-critical simulation.
In Proceedings of the 2nd European Si~nu/ution Congre.s.>.
1986, Antwerp, Belgium, SCSI, pp. 413-19.

A review of numerical methods for digital himulation.
Simulation, 11, 5 (Nov. 1968). 219-237.

Discrete Vtrriable Methods in Ordinar\ Differential
Eyltution.s
New York: Wiley, 1962.

Numericul Solution cf Df&reiilru/ Eyrrrrtron.~
New York: Dover, 1970.

Bell, C.G. , et al. (1986)

Billig. R.R., Corbin. S.S., and Moore, R.L. (1986)

Matelan, N . (1986)

Matelan, N., and Wojcik, A.S (1986)

Geril, H.M., Van Schieveen, P., et al. (1986)

Benyon, P.R. (1968)

Henrici. P. (1962)

Milne, W.E. (1970)

HAMBLEN & ALFORD: CONTINUOUS SIMULATION PARALLEL COMPUTER ARCHITECTURE 123

Gear, C.W. (1971)
Numerical Initial Value Problems in Ordinay Drfferential
Equations.
Englewood Cliffs, N.J.: Prentice Hall, 1971.

Digital Continuous System Simulation.
Englewood Cliffs, N.J.: Prentice-Hall, 1978.

Approximations fo r Digital Computers.
Princeton, N.J.: Princeton University Press, 1955.

Carnahan, B., Luther, H.A., and Wilkes, J.O. (1969)
Applied Numerical Analysis.
New York: McGraw-Hill, 1969.

Phillips, G.M. , and Taylor, P.J. (1973)
Theory and Applications of Numerical Analjsis.
New York: Academic Press, 1973.

Back to parallel computation: proposal for a completely new
on-line simulation system using standard microcomputer for
low-cost multiprocessing.
Simulation, 19, 2 (Aug. 1972), 37-45.

Parallel solution of ordinary differential equations.
IEEE Transactions on Computers, 27, 5 (May 1978), 413-
420.

The design and performance of a parallel computer
architecture for simulation.
Ph.D. dissertation, School of Electrical Engineering, Georgia
Institute of Technology, Atlanta, 1984.

Parallel methods for the numerical integration of ordinary
differential equations.
Mathematics of Computation, 21 (1967), 303-320.

Parallel block predictor-corrector methods for ODE’S.
IEEE Transactions on Computers, C-36, 3 (Mar. 1987),
299-3 I 1 .

Korn, G.A., and Wait, J.V. (1978)

Hastings, C. (1955)

Korn, G.A. (1972)

Franklin. M.A. (1978)

Hamblen, J.O. (1984)

Miranker. W.L., and Liniger, W. (1967)

Birta, L.G., and Abou-Rabia, 0. (1987)

Worland, P.B. (1976)
Parallel methods for the numerical solution of ordinary
differential equations.
IEEE Transactions on Computers. C-2.5 (Oct. 1987i, 1045-
1048.

Gear, C.W. (1986)
Potential for parallelism in ordinary differential equations.
Report UIUCDCS-R-86- 1246, University of Illinois, Urbana-
Champaign, Ill.. 1986.

Parallel algorithms for ordinary differential equations: an
introductory review.
In Proceedings of the 1986 Summer Computer Simulation
Conference, 1986, Reno NV, SCSI, pp. 947-952.

Crosbie, E.J.H., Kerckhoffs, R . , and Luker, P. (1986)

Sips, H.J., et al. (1986)
A domain decomposition method for the solution of ODES.
In Proceedings of the 2nd European Simulation Congress,
1986, Antwerp, Belgium, SCSI, pp. 226-232.

Asynchronous relaxations for the numerical solution of
differential equations by parallel processors.
SIAM Journal of Scientific & Stutistical Computations, 8 , 1
(Jan. 1987). S43-58.

An algorithm of parallel processing for integration of
ordinary differential equations.
Transactions on Institute of Electronic Informution and
Communication Eng. E . 1570, 1 (Jan. 1987), 49-55.

Clustering technique for rearrangmg ODE systems, parallel
processing techniques for simulation.
In Proceedings of the First European Workshop on Parullel
Processing Techniques for Simulation, 1986, Manchester
UK, pp. 31-43.

Evans, D.J. (1987)
Construction of extrapolation tables by systolic arrays for
solving ordinary differential equations.
Parallel Computing, 4 , 1 (1987), 33-48.

VLSI performance comparison of Banyan and Crossbar
communication networks.
IEEE Transactions on Computers. C-30, 4 (Apr. 1981),
283-291.

Microcomputer System Bus.
Washington, D.C.: IEEE Computer Society Press, 1983.

iSBX bus specifcation.
Intel Corporation, Santa Clara, Calif., June 1981.

IEEE Standard 754 (1985)
IEEE Standurd for Binary Floating-Point Arithmetic.
Washington, D.C.: IEEE Computer Society Press, 1985.

Math chips: how they work.
IEEE Spectrum, 24, 7 (July 1987), 25-30.

The versatility of digital signal processing chips.
IEEE Spectrum, 24, 6 (June 1987). 40-45.

Parallel Continuous System Simulation Using The
Transputer.
Simulation, 49 , 6 (Dec. 1987). 249-253.

Makoui, A. (1986)
Software interface for multiprocessor simulation.
Ph.D. dissertation, Computer Science Department,
University of California, Los Angeles. 1986.

ALI: A CSSLimultiprocessor software interface.
Simulation. 49 , 6 (Aug. 1987), 63-61,

Mitra, D. (1986)

Horiguchi, S . , Kawazoe, Y., and Nara, H. (1986)

Lei, S . , et al. (1986)

Franklin, M.A. (1981)

IEEE Standard 796 (1983)

Intel Corporation (1981)

Rauch, K. (1987)

Aliphas, A. , and Feldman, J.A. (1987)

Hamblen, J .O. (1987)

Makoui, A. , and Karplus, W.J. (1987)

724 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 24, NO. 6 NOVEMBER 1988

James 0. Hamblen (S’74-M’77) was born in Lafayette, Indiana on August 15,
1954. He received the B.S. degree from Georgia Institute of Technology, Atlanta, in
1974, the M.S. degree from Purdue University, Lafayette, Ind., in 1976 and the Ph.D.
degree from Georgia Institute of Technology in 1984, all in electrical engineering.

Dr. Hamblen is an Assistant Professor of Electrical Engineering at Georgia
Institute of Technology. From 1979 to 1984, he was a Graduate Research Assistant at
Georgia Institute of Technology. From 1977-1978, he was a Senior Engineer at
Martin Marietta Aerospace, Denver, and from 1976 to 1977, he was a Systems
Analyst at Texas Instruments, Austin. His research interests include parallel computer
architectures, VLSI design and continuous system simulation.

Dr. Hamblen is a member of Eta Kappa Nu, Tau Beta Pi, and Phi Kappa Phi.

Cecil 0. Alford (M’64) was born in Gay, Georgia. He received the B.S. and M.S.
degrees from Georgia Institute of Technology, Atlanta, in 1956 and 1960, and the
Ph.D. degree from Mississippi State University, Greenwood, in 1966, all in electrical
engineering.

Dr. Alford is a Professor of Electrical Engineering at Georgia Institute of
Technology. From 1963 to 1966, he was an Assistant Professor of Electrical
Engineering at Mississippi State University and from 1966- 1968, he was an Associate
Professor of Electrical Engineering at Tennessee Technological University, Cookeville.
His research interests include computer architectures and robotics.

Dr. Alford is a member of Eta Kappa Nu, Tau Beta Pi, Phi Kappa Phi, and Sigma
Xi.

HAMBLEN & ALFORD: CONTINUOUS SIMULATION PARALLEL COMPUTER ARCHITECTURE 125

