
Processor

Memory Input/Ouput

Data Bus

Address Bus

PC IR

AC

MDR

MAR

ALU

Control
Unit

Figure 9.1 Architecture of a Simple Computer System.

O p c o d e A d d r e s s

1 5 8 7 0

Figure 9.2 Simple µP 3 Computer Instruction Format.

Instruction Mnemonic Operation Preformed Opcode Value
ADD address AC <= AC + contents of memory address 00
STORE address contents of memory address <= AC 01
LOAD address AC <= contents of memory address 02
JUMP address PC <= address 03
JNEG address If AC < 0 Then PC <= address 04

Figure 9.3 Basic µP 3 Computer Instructions.

Assembly Language MachineLanguage
LOAD B 0211
ADD C 0012
STORE A 0110

Figure 9.4 Example Computer Program for A = B + C.

Fetch Next
Instruction

Decode
Instruction

Execute
Instruction

Figure 9.5 Processor Fetch, Decode and Execute Cycle.

EXECUTE

MAR=PC
IR=MDR

PC=PC+1
Read Memory

MDR=AC
Write Memory AC=MDR AC=AC+MDR

MAR=IR
Read

Memory

FETCH

DECODE

Opcode=ADD Opcode=LOAD Opcode=STORE

...

Figure 9.6 Detailed View of Fetch, Decode, and Execute for the µP 3 Computer Design.

00: 02 11
01: 00 12
02: 01 10
03: 03 03

IR

register_AC

PC

MAR

Memory

MDR

ALU

MW = ‘0’

00 00

00

00

00 00

02 11

10: 00 00
11: 00 04
12: 00 03

16 8 16
+1

Figure 9.7 Datapath used for the µP 3 Computer Design. Values shown after applying reset.

00: 02 11
01: 00 12
02: 01 10
03: 03 03

+1

IR

register_AC

PC

MAR

Memory

MDR

ALU

02 11

01

01

00 04

00 12

10: 00 00
11: 00 04
12: 00 03

16

Figure 9.8 Register transfers in the ADD instruction’s Fetch State.

00: 02 11
01: 00 12
02: 01 10
03: 03 03

IR

register_AC

PC

MAR

Memory

MDR

ALU

00 12

02

01

00 04

00 12

10: 00 00
11: 00 04
12: 00 03

812

12

Figure 9.9 Register transfers in the ADD instruction’s Decode State.

10: 00 00
11: 00 04
12: 00 03

00: 02 11
01: 00 12
02: 01 10
03: 03 03

IR

register_AC

PC

MAR

Memory

MDR

ALU

00 12

02

12

00 04

00 03

16 8 16

00 07

02

00 0400 03

Figure 9.10 Register transfers in the ADD instruction’s Execute State.

-- Simple Computer Model Scomp.vhd
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
LIBRARY altera_mf;
USE altera_mf.altera_mf_components.ALL;
ENTITY SCOMP IS
PORT(clock, reset : IN STD_LOGIC;

program_counter_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
register_AC_out : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);

memory_data_register_out : OUT STD_LOGIC_VECTOR(15 DOWNTO 0));
memory_address_register_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
memory_write_out : OUT STD_LOGIC);

END SCOMP;
ARCHITECTURE a OF scomp IS
TYPE STATE_TYPE IS (reset_pc, fetch, decode, execute_add, execute_load, execute_store,

execute_store2, execute_jump);
SIGNAL state: STATE_TYPE;
SIGNAL instruction_register, memory_data_register : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL register_AC : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL program_counter : STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL memory_address_register : STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL memory_write : STD_LOGIC;
BEGIN

-- Use Altsyncram function for computer's memory (256 16-bit words)
memory: altsyncram

GENERIC MAP (
operation_mode => "SINGLE_PORT",
width_a => 16,
widthad_a => 8,
lpm_type => "altsyncram",
outdata_reg_a => "UNREGISTERED",

-- Reads in mif file for initial program and data values
init_file => "program.mif",
intended_device_family => "Cyclone")

PORT MAP (wren_a => memory_write, clock0 => clock,
address_a =>memory_address_register, data_a => Register_AC,
q_a => memory_data_register);

-- Output major signals for simulation
program_counter_out <= program_counter;
register_AC_out <= register_AC;
memory_data_register_out <= memory_data_register;
memory_address_register_out <= memory_address_register;

PROCESS (CLOCK, RESET)
BEGIN
IF reset = '1' THEN

state <= reset_pc;
ELSIF clock'EVENT AND clock = '1' THEN

CASE state IS
-- reset the computer, need to clear some registers

WHEN reset_pc =>
program_counter <= "00000000";
register_AC <= "0000000000000000";
state <= fetch;

-- Fetch instruction from memory and add 1 to PC
WHEN fetch =>

instruction_register <= memory_data_register;
program_counter <= program_counter + 1;
state <= decode;

-- Decode instruction and send out address of any data operands
WHEN decode =>

CASE instruction_register(15 DOWNTO 8) IS
WHEN "00000000" =>

state <= execute_add;
WHEN "00000001" =>

state <= execute_store;
WHEN "00000010" =>

state <= execute_load;
WHEN "00000011" =>

state <= execute_jump;
WHEN OTHERS =>

state <= fetch;
END CASE;

-- Execute the ADD instruction
WHEN execute_add =>

register_ac <= register_ac + memory_data_register;
state <= fetch;

-- Execute the STORE instruction
-- (needs two clock cycles for memory write and fetch mem setup)

WHEN execute_store =>
-- write register_A to memory, enable memory write
-- load memory address and data registers for memory write

state <= execute_store2;
--finish memory write operation and load memory registers
--for next fetch memory read operation

WHEN execute_store2 =>
state <= fetch;

-- Execute the LOAD instruction
WHEN execute_load =>

register_ac <= memory_data_register;
state <= fetch;

-- Execute the JUMP instruction
WHEN execute_jump =>

program_counter <= instruction_register(7 DOWNTO 0);
state <= fetch;

WHEN OTHERS =>
state <= fetch;

END CASE;
END IF;
END PROCESS;

-- memory address register is already inside synchronous memory unit
-- need to load its value based on current state
-- (no second register is used - not inside a process here)

WITH state SELECT
memory_address_register <= "00000000" WHEN reset_pc,

program_counter WHEN fetch,
instruction_register(7 DOWNTO 0) WHEN decode,
program_counter WHEN execute_add,
instruction_register(7 DOWNTO 0) WHEN execute_store,
program_counter WHEN execute_store2,
program_counter WHEN execute_load,
instruction_register(7 DOWNTO 0) WHEN execute_jump;

WITH state SELECT
memory_write <= '1' WHEN execute_store,

'0' WHEN Others;
END a;

DEPTH = 256; % Memory depth and width are required %
WIDTH = 16; % Enter a decimal number %
ADDRESS_RADIX = HEX; % Address and value radixes are optional %
DATA_RADIX = HEX; % Enter BIN, DEC, HEX, or OCT; unless %

% otherwise specified, radixes = HEX %
-- Specify values for addresses, which can be single address or range

CONTENT
BEGIN

[00..FF] : 0000; % Range--Every address from 00 to FF = 0000 (Default) %
00 : 0210; % LOAD AC with MEM(10) %
01 : 0011; % ADD MEM(11) to AC %
02 : 0112; % STORE AC in MEM(12) %
03 : 0212; % LOAD AC with MEM(12) check for new value of FFFF %
04 : 0304; % JUMP to 04 (loop forever) %
10 : AAAA;% Data Value of B %
11 : 5555; % Data Value of C%
12 : 0000; % Data Value of A - should be FFFF after running program %

END ;

Figure 9.12 MIF file containg µP Computer Program.

Figure 9.13 Simulation of the Simple µP Computer Program.

Figure 9.14 Simulation display of µP 3 Computer Memory
showing result stored in memory

	
	Figure 9.14 Simulation display of mP 3 Computer Memory showing result stored in memory

