Figure 8.1 Track Layout with Input Sensors and Output Switches and Output Tracks.
DA1 and DA0 = 0
DB1 and DB0 = 0

Power for Train A
DA1 set
TR1

Power for Train B
DB1 set
TR2

Controls
Power On and Off

Controls Direction

To Track 3

Indicates a joined relay that is controlled by the signal name.

Ties Power A or Power B to each Track

Four Tracks all powered by Power A or Power B
Figure 8.3 Track Power is connected to one of Two Power Sources: A and B.
Figure 8.4 Track Direction if all Switches are Asserted (SW1 = SW2 = SW3 = 1)
Figure 8.5 State Machine I/O Configuration

Sensor (S1, S2, S3, S4, S5) = 1 Train Present
= 0 Train not Present

Switches (SW1, SW2, SW3) = 0 Connected to Outside Track
= 1 Connected to Inside Track

Track (T1, T2, T3, T4) = 0 A Virtual Power on Track n
= 1 B Virtual Power on Track n

Direction (DA1-DA0) and (DB1-DB0) = 00 Stop
= 01 Forward (Counterclockwise)
= 10 Backward (Clockwise)
Description of States in Example State Machine

All States

• T3 Asserted: The B power supply is assigned to track 3.
• All signals that are not "Asserted" are zero and imply a logical result as described.

About: "Trains A and B Outside"

• DA0 Asserted: Train A is on the outside track and moving counterclockwise (forward).
• DB0 Asserted: Train B is on the inner track (not the common track) and also moving forward.
• Note that by NOT Asserting DA1, it is automatically zero -- same for DB1. Hence, the outputs are DA = “01” and DB = “01”.

Ain: "Train A moves to Common Track"

• Sensor 1 has fired either first or at the same time as Sensor 2.
• Either Train A is trying to move towards the common track, or
• Both trains are attempting to move towards the common track.
• Both trains are allowed to enter here; however, state Bstop will stop B if both have entered.
• DA0 Asserted: Train A is on the outside track and moving counterclockwise (forward).
• DB0 Asserted: Train B is on the inner track (not the common track) and also moving forward.
Bstop: "Train B stopped at S2 waiting for Train A to clear common track"
- DA0 Asserted: Train A is moving from the outside track to the common track.
- Train B has arrived at Sensor 2 and is stopped and waits until Sensor 4 fires.
- SW1 and SW2 are NOT Asserted to allow the outside track to connect to common track.
- Note that T2 is not asserted making Track 2 tied to the A Power Supply.

Bin: "Train B has reached Sensor 2 before Train A reaches Sensor 1"
- Train B is allowed to enter the common track. Train A is approaching Sensor 1.
- DA0 Asserted: Train A is on the outside track and moving counterclockwise (forward).
- DB0 Asserted: Train B is on the inner track moving towards the common track.
- SW1 Asserted: Switch 1 is set to let the inner track connect to the common track.
- SW2 Asserted: Switch 2 is set to let the inner track connect to the common track.
- T2 Asserted: The B Power Supply is also assigned to the common track.

Astop: "Train A stopped at S1 waiting for Train B to clear the common track"
- DB0 Asserted: Train B is on the inner track moving towards the common track.
- SW1 and SW2 Asserted: Switches 1 and 2 are set to connect the inner track to the common track.
- T2 Asserted: The B Power Supply is also assigned to the common track.
Figure 8.6 Example Train Controller ASM Chart.
Figure 8.7 Example Train Controller State Diagram.
Figure 8.8 Working diagrams of train positions for each state.
Table 8.1 Outputs corresponding to states.

<table>
<thead>
<tr>
<th>State</th>
<th>ABout</th>
<th>Ain</th>
<th>Astop</th>
<th>Bin</th>
<th>Bstop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sw1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sw2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sw3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DA(1-0)</td>
<td>01</td>
<td>01</td>
<td>00</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>DB(1-0)</td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>01</td>
<td>00</td>
</tr>
</tbody>
</table>
-- Example State machine to control trains-- File: Tcontrol.vhd
-- These libraries are required in all VHDL source files
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

-- This section defines state machine inputs and outputs
-- No modifications should be needed in this section
ENTITY Tcontrol IS
PORT(reset, clock, sensor1, sensor2, sensor3, sensor4, sensor5 : IN STD_LOGIC;
 switch1, switch2, switch3 : OUT STD_LOGIC;
 track1, track2, track3, track4 : OUT STD_LOGIC;
 dirA, dirB : OUT STD_LOGIC_VECTOR(1 DOWNTO 0));
END Tcontrol;

-- This code describes how the state machine operates
-- This section will need changes for a different state machine
ARCHITECTURE a OF Tcontrol IS

 -- Define local signals (i.e. non input or output signals) here
 TYPE STATE_TYPE IS (ABout, Ain, Bin, Astop, Bstop);
 SIGNAL state: STATE_TYPE;
 SIGNAL sensor12, sensor13, sensor24 : STD_LOGIC_VECTOR(1 DOWNTO 0);

BEGIN

-- This section describes how the state machine behaves
-- This process runs once every time reset or the clock changes

PROCESS (reset, clock)
BEGIN

-- Reset to this state (i.e. asynchronous reset)

IF reset = '1' THEN
 state <= ABout;
ELSIF clock'EVENT AND clock = '1' THEN

-- clock'EVENT means value of clock just changed
-- This section will execute once on each positive clock edge
-- Signal assignments in this section will generate D flip-flops
-- Case statement to determine next state
CASE state IS
 WHEN AOut =>
 -- This Case checks both sensor1 and sensor2 bits
 CASE Sensor12 IS
 WHEN "00" => state <= AOut;
 WHEN "01" => state <= Bin;
 WHEN "10" => state <= Ain;
 WHEN "11" => state <= Ain;
 -- Default case is always required
 WHEN OTHERS => state <= AOut;
 END CASE;
 WHEN Ain =>
 CASE Sensor24 IS
 WHEN "00" => state <= Ain;
 WHEN "01" => state <= AOut;
 WHEN "10" => state <= Bstop;
 WHEN "11" => state <= AOut;
 WHEN OTHERS => state <= AOut;
 END CASE;
 WHEN Bin =>
 CASE Sensor13 IS
 WHEN "00" => state <= Bin;
 WHEN "01" => state <= AOut;
 WHEN "10" => state <= Astop;
 WHEN "11" => state <= AOut;
 WHEN OTHERS => state <= AOut;
 END CASE;
 WHEN Astop =>
 IF Sensor3 = '1' THEN
 state <= Ain;
 ELSE
 state <= Astop;
 END IF;
 WHEN Bstop =
 IF Sensor4 = '1' THEN
 state <= Bin;
 ELSE
 state <= Bstop;
 END IF;
END CASE;
END IF;
END PROCESS;
-- combine sensor bits for case statements above
-- "&" operator combines bits
sensor12 <= sensor1 & sensor2;
sensor13 <= sensor1 & sensor3;
sensor24 <= sensor2 & sensor4;

-- These outputs do not depend on the state
Track1 <= '0';
Track4 <= '0';
Switch3 <= '0';

-- Outputs that depend on state, use state to select value
-- Be sure to specify every output for every state
-- values will not default to zero!

WITH state SELECT
 Track3 <= '1' WHEN About,
 '1' WHEN Ain,
 '1' WHEN Bin,
 '1' WHEN Astop,
 '1' WHEN Bstop;

WITH state SELECT
 Track2 <= '0' WHEN About,
 '0' WHEN Ain,
 '1' WHEN Bin,
 '1' WHEN Astop,
 '0' WHEN Bstop;

WITH state SELECT
 Switch1 <= '0' WHEN About,
 '0' WHEN Ain,
 '1' WHEN Bin,
 '1' WHEN Astop,
 '0' WHEN Bstop;

WITH state SELECT
 Switch2 <= '0' WHEN About,
 '0' WHEN Ain,
 '1' WHEN Bin,
 '1' WHEN Astop,
 '0' WHEN Bstop;

WITH state SELECT
 DirA <= "01" WHEN About,
 "01" WHEN Ain,
 "01" WHEN Bin,
 "00" WHEN Astop,
 "01" WHEN Bstop;

WITH state SELECT
 DirB <= "01" WHEN About,
 "01" WHEN Ain,
 "01" WHEN Bin,
 "01" WHEN Astop,
 "00" WHEN Bstop;

END a;
Figure 8.9 Tcontrol.vwf vector waveform file for simulation.
Figure 8.10 Simulation of Tcontrol.vhd using Tcontrol.vec vector file.
Figure 8.11 Video Image from Train System Simulation.