
Preliminary Information
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Quartus II Handbook, Volume 2
Design Implementation & Optimization

qii5v2-2.1

http://www.altera.com

Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

Printed on recycled paper

ii Altera Corporation
Preliminary

Altera Corporation iii
Preliminary

Contents

Chapter Revision Dates ... xi

About this Handbook ... xiii
How to Contact Altera .. xiii
Typographic Conventions .. xiii

Section I. Scripting & Constraint Entry
Revision History ... Section I–2

Chapter 1. Assignment Editor
Introduction .. 1–1
Using the Assignment Editor ... 1–1

Effects of Settings Made Outside the Assignment Editor User Interface 1–2
Category, Node Filter, Information, Edit Bars & Spreadsheet .. 1–2
Category Bar ... 1–3
Node Filter Bar .. 1–5
Information Bar .. 1–6
Edit Bar .. 1–7

Assignment Editor Features ... 1–8
Using the Enhanced Spreadsheet Interface .. 1–8
Dynamic Syntax Checking .. 1–9
Node Filter Bar .. 1–10
Using Time Groups .. 1–11
Customizable Columns ... 1–12
Tcl Interface ... 1–13

Exporting and Importing Assignments .. 1–13
Exporting Assignments ... 1–14
Importing Assignments ... 1–16

Conclusion .. 1–18

Chapter 2. Command-Line Scripting
Introduction .. 2–1
The Benefits of Modular Executables ... 2–1
Introductory Example ... 2–2
Design Flow .. 2–3

Text-Based Report Files ... 2–6
Compilation with quartus_sh --flow ... 2–7

Command-Line Scripting Help ... 2–7

iv Altera Corporation
Preliminary

Quartus II Handbook, Volume 2

Command-Line Option Details ... 2–9
Option Precedence ... 2–9

Command-Line Scripting Examples ... 2–11
Check Design File Syntax .. 2–11
Create a Project & Synthesize a Netlist Using Netlist Optimizations 2–12
Attempt to Fit a Design as Quickly as Possible ... 2–13
Fit a Design Using Multiple Seeds ... 2–13
Makefile Implementation .. 2–14
The QFlow Script .. 2–16

More Help with Quartus II Modular Executables .. 2–17
Conclusion .. 2–18

Chapter 3. Tcl Scripting
Introduction .. 3–1
What is Tcl? .. 3–1
Tcl Scripting Basics .. 3–2

Hello World Example .. 3–2
Variables .. 3–3
Nested Commands ... 3–3
Arithmetic .. 3–3
Lists .. 3–4
Control structures ... 3–4
Procedures ... 3–5

Quartus II Tcl API Reference ... 3–6
Quartus II Tcl Packages .. 3–6

Loading Packages ... 3–8
Executables Supporting Tcl .. 3–8

Command-Line Options (-s, -t, etc) ... 3–9
Run a Tcl Script ... 3–9
Interactive Shell Mode ... 3–9
Evaluate as Tcl .. 3–10
Using the Quartus II Tcl Console Window .. 3–10

Examples ... 3–10
Accessing Command-Line Arguments ... 3–11
Using the cmdline Package ... 3–11
PCreating Projects & Making Assignments ... 3–12
Compiling Designs ... 3–13
Extracting Report Data .. 3–14
Using Collection Commands .. 3–15
Timing Analysis .. 3–16
EDA Tool Assignments ... 3–18
Importing LogicLock Functions ... 3–21
Using the Quartus II Tcl Shell in Interactive Mode ... 3–22

Getting Help on Tcl & Quartus II Tcl APIs .. 3–25
Quartus II Legacy Tcl Support ... 3–28
References ... 3–28

Altera Corporation v
Preliminary

Contents

Chapter 4. Quartus II Project Management
Introduction .. 4–1
Using Revisions with Your Design ... 4–1

Creating and Deleting Revisions ... 4–2
Comparing Revisions .. 4–3

Creating Different Versions of Your Design .. 4–4
Archiving Projects .. 4–5

Version-Compatible Databases ... 4–7
Scripting Support ... 4–8

Managing Revisions ... 4–8
Archiving Projects .. 4–9
Restoring Archived Projects ... 4–9
Importing and Exporting Version-Compatible Databases ... 4–10

Conclusion .. 4–10

Section II. Device & Board Utilities
Revision History ... Section II–1

Chapter 5. I/O Assignment Planning & Analysis
Introduction .. 5–1
I/O Assignment Planning & Analysis ... 5–1
I/O Assignment Planning & Analysis Design Flows .. 5–1

Design Flow without Design Files ... 5–2
Design Flow with Complete or Partial Design Files ... 5–4

Inputs Used for I/O Assignment Analysis .. 5–6
Creating I/O Assignments .. 5–6
Reserving Pins .. 5–6
Location Assignments ... 5–7
Assignments with the Floorplan Editor .. 5–8
Generating a Mapped Netlist ... 5–8

Running the I/O Assignment Analysis .. 5–9
Understanding the I/O Assignment Analysis Report .. 5–9
Suggested & Partial Placement .. 5–10
Detailed Error/Status Messages .. 5–11

Scripting Support ... 5–11
Reserving Pins .. 5–11
Location Assignments ... 5–12
Generating a Mapped Netlist ... 5–12
Running the I/O Assignment Analysis .. 5–13

Conclusion .. 5–13

vi Altera Corporation
Preliminary

Quartus II Handbook, Volume 2

Section III.
Area Optimization & Timing Closure

Revision History .. Section III–2

Chapter 6. Design Optimization for Altera Devices
Introduction .. 6–1
Initial Compilation .. 6–2

Device Setting ... 6–2
Timing Requirements Settings ... 6–2
Smart Compilation Setting .. 6–3
Timing Driven Compilation Settings .. 6–3
Fitter Effort Setting ... 6–4
I/O Assignments .. 6–5

Design Analysis ... 6–6
Resource Utilization ... 6–6
I/O Timing (including tPD) ... 6–7
fMAX Timing ... 6–9
Compilation Time .. 6–11

Optimization Techniques for LUT-Based (FPGA and MAX II) Devices 6–12
Optimization Advisors .. 6–12

Resource Utilization Optimization Techniques (LUT-Based Devices) .. 6–13
Use Register Packing ... 6–13
Remove Fitter Constraints .. 6–16
Perform WYSIWYG Resynthesis for Area .. 6–16
Optimize Synthesis for Area ... 6–16
Retarget Memory Blocks ... 6–18
Retarget DSP Blocks ... 6–19
Optimize Source Code ... 6–19
Modify Pin Assignments or Choose a Larger Package ... 6–20
Use a Larger Device ... 6–20
Resolving Resource Utilization Issues Summary .. 6–20

I/O Timing Optimization Techniques (LUT-Based Devices) ... 6–21
Timing-Driven Compilation ... 6–21
Fast Input, Output, & Output Enable Registers .. 6–22
Programmable Delays ... 6–23
Using Fast Regional Clocks in Stratix Devices ... 6–26
Using PLLs to Shift Clock Edges .. 6–26
Improving Setup & Clock-to-Output Times Summary .. 6–27

fMAX Timing Optimization Techniques (LUT-Based Devices) .. 6–27
Synthesis Netlist Optimizations and Physical Synthesis Optimizations 6–28
Seed .. 6–30
Optimize Synthesis for Speed ... 6–30
LogicLock Assignments .. 6–32
Location Assignments & Back Annotation ... 6–35
Optimize Source Code ... 6–39
Improving fMAX Summary .. 6–40

Optimization Techniques for Macrocell-Based (MAX 7000 and MAX 3000) CPLDs 6–41
Resource Utilization Optimization Techniques (Macrocell-based CPLDs) 6–41

Altera Corporation vii
Preliminary

Contents

Use Dedicated Inputs for Global Control Signals ... 6–41
Reserve Device Resources ... 6–42
Pin Assignment Guidelines & Procedures ... 6–42
Resolving Resource Utilization Problems .. 6–45

Timing Optimization Techniques (Macrocell-based CPLDs) ... 6–49
Improving Setup Time ... 6–50
Improving Clock-to-Output Time ... 6–51
Improving Propagation Delay (tPD) ... 6–52
Improving Maximum Frequency (fMAX) .. 6–53
Optimizing Source Code—Pipelining for Complex Register Logic 6–53

Compilation Time Optimization Techniques .. 6–55
Reducing Synthesis and Synthesis Netlist Optimization Time ... 6–55
Reducing Placement Time .. 6–56
Reducing Routing Time .. 6–59

Scripting Support ... 6–59
Initial Compilation Settings .. 6–60
Resource Utilization Optimization Techniques (LUT-Based Devices) 6–60
I/O Timing Optimization Techniques (LUT-Based Devices) .. 6–61
FMAX Timing Optimization Techniques (LUT-Based Devices) ... 6–62

Conclusion .. 6–63

Chapter 7. Timing Closure Floorplan
Introduction .. 7–1
Design Analysis Using the Timing Closure Floorplan .. 7–1

Timing Closure Floorplan Views ... 7–1
Viewing Assignments .. 7–3
Viewing Critical Paths ... 7–5
Physical Timing Estimates .. 7–11
LogicLock Region Connectivity ... 7–12
Viewing Routing Congestion ... 7–15
I/O Timing Analysis Report File ... 7–16
fMAX Timing Analysis Report File .. 7–19

Conclusion .. 7–23

Chapter 8. Netlist Optimizations and Physical Synthesis
Introduction .. 8–1
Synthesis Netlist Optimizations .. 8–2

WYSIWYG Primitive Resynthesis .. 8–2
Gate-Level Register Retiming ... 8–4
Preserving Your Synthesis Netlist Optimization Results ... 8–8

Physical Synthesis Optimizations ... 8–9
Physical Synthesis for Combinational Logic .. 8–10
Physical Synthesis for Registers - Register Duplication ... 8–11
Physical Synthesis for Registers - Register Retiming .. 8–13
Physical Synthesis Report ... 8–13
Preserving Your Physical Synthesis Results .. 8–14

Applying Netlist Optimization Options .. 8–15

viii Altera Corporation
Preliminary

Quartus II Handbook, Volume 2

Scripting Support ... 8–16
Synthesis Netlist Optimizations ... 8–16
Physical Synthesis Optimizations .. 8–17
Back-Annotating Assignments ... 8–18

Conclusion .. 8–18

Chapter 9. Design Space Explorer
Introduction .. 9–1

DSE Concepts .. 9–1
DSE Exploration ... 9–2

DSE General Information ... 9–2
DSE Flow ... 9–4
DSE Support for Altera Device Families .. 9–5

DSE Exploration ... 9–6
DSE Project Settings .. 9–6

DSE Project Settings ... 9–6
Search for Best Area or Performance Options ... 9–7
Advanced Search Option .. 9–7

Performing an Advanced Search in Design Space Explorer ... 9–7
Allow LogicLock Region Restructuring .. 9–8
Exploration Space ... 9–8
Optimization Goal .. 9–12
Search Method .. 9–13

DSE Flow Options ... 9–13
Continue Exploration Even if Base Compile Fails ... 9–13
Run Quartus Assembler During Exploration .. 9–13
Archive All Compiles .. 9–14
Save Exploration Space to File .. 9–14
Stop Flow After Time ... 9–14
Stop Flow After Gain ... 9–14

DSE Advanced Information ... 9–15
Computer Load Sharing in DSE Using Distributed Exploration Searches 9–15
Creating Custom Spaces for DSE ... 9–16

Conclusion .. 9–21

Chapter 10. LogicLock Design Methodology
Introduction .. 10–1

Improving Design Performance ... 10–1
Preserving Module Performance ... 10–2

Designing with the LogicLock Feature ... 10–2
Creating LogicLock Regions ... 10–2
Floorplan Editor View ... 10–9
LogicLock Region Properties .. 10–10
Hierarchical (Parent and/or Child) LogicLock Regions .. 10–11
Assigning LogicLock Region Content ... 10–13
Tcl Scripts .. 10–15
Quartus II Block-Based Design Flow ... 10–16

Altera Corporation ix
Preliminary

Contents

Additional Quartus II LogicLock Design Features ... 10–22
LogicLock Restrictions .. 10–30

Constraint Priority ... 10–30
Placing LogicLock Regions ... 10–30
Placing Memory, Pins & Other Device Features into LogicLock Regions 10–32

Back-Annotating Routing Information ... 10–33
Exporting Back-Annotated Routing in LogicLock Regions ... 10–33
Importing Back-Annotated Routing in LogicLock Regions ... 10–35

Scripting Support ... 10–36
Initializing and Uninitializing a LogicLock Region .. 10–37
Creating or Modifying LogicLock Regions .. 10–37
Obtaining LogicLock Region Properties ... 10–37
Assigning LogicLock Region Content ... 10–37
Prevent Further Netlist Optimization ... 10–38
Save a Node-level Netlist into a Persistent Source File (.vqm) .. 10–38
Exporting LogicLock Regions .. 10–39
Importing LogicLock Regions .. 10–39
Setting LogicLock Assignment Priority .. 10–39
Assigning Virtual Pins ... 10–40
Back-Annotating LogicLock Regions .. 10–40

Conclusion .. 10–40

Chapter 11. Timing Closure in HardCopy Devices
Introduction .. 11–1
Timing Closure .. 11–1

Placement Constraints ... 11–3
Location Constraints ... 11–3

Location Array Block (LAB) Assignments ... 11–3
LogicLock Assignments .. 11–4
Tutorial ... 11–5

Minimizing Clock Skew .. 11–5
Checking the HardCopy Device Timing .. 11–7

Clock Definitions .. 11–7
Primary Input Pin Timing ... 11–8
Primary Output Pin Timing .. 11–9
Combinatorial Timing ... 11–10
Timing Exceptions .. 11–11

Correcting Timing Violations .. 11–11
Hold-Time Violations .. 11–11
Setup-Time Violations ... 11–16

Timing ECOs .. 11–21
Conclusion .. 11–22

Chapter 12. Synplicity Amplify Physical Synthesis Support
Software Requirements ... 12–1
Amplify Physical Synthesis Concepts .. 12–1
Amplify-to-Quartus II Flow ... 12–2

x Altera Corporation
Preliminary

Quartus II Handbook, Volume 2

Initial Pass: No Physical Constraints ... 12–3
Iterative Passes: Optimizing the Critical Paths .. 12–5

Using the Amplify Physical Optimizer Floorplans .. 12–5
Multiplexers .. 12–7
Independent Paths ... 12–8
Feedback Paths ... 12–9
Starting and Ending Points ... 12–9
Utilization .. 12–11
Detailed Floorplans .. 12–11
Forward Annotating Amplify Physical Optimizer Constraints into the Quartus II Software
12–12
Altera Megafunctions Using the MegaWizard Plug-In Manager with the Amplify Software
12–13

Conclusion .. 12–14

Index

Altera Corporation xi
Preliminary

Chapter Revision Dates

The chapters in this book, Quartus II Handbook, Volume 2, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Assignment Editor
Revised: June 2004
Part number: qii52001-2.0

Chapter 2. Command-Line Scripting
Revised: June 2004
Part number: qii52002-2.0

Chapter 3. Tcl Scripting
Revised: August 2004
Part number: qii52003-2.0

Chapter 4. Quartus II Project Management
Revised: June 2004
Part number: qii52012-1.0

Chapter 5. I/O Assignment Planning & Analysis
Revised: June 2004
Part number: qii52004-2.0

Chapter 6. Design Optimization for Altera Devices
Revised: June 2004
Part number: qii52005-2.0

Chapter 7. Timing Closure Floorplan
Revised: June 2004
Part number: qii52006-2.0

Chapter 8. Netlist Optimizations and Physical Synthesis
Revised: June 2004
Part number: qii52007-2.0

Chapter 9. Design Space Explorer
Revised: June 2004
Part number: qii52008-2.0

xii Altera Corporation
Preliminary

Chapter Revision Dates Quartus II Handbook, Volume 2

Chapter 10. LogicLock Design Methodology
Revised: August 2004
Part number: qii52009-2.1

Chapter 11. Timing Closure in HardCopy Devices
Revised: June 2004
Part number: qii52010-2.0

Chapter 12. Synplicity Amplify Physical Synthesis Support
Revised: February 2004
Part number: qii52011-1.0

Altera Corporation xiii
Preliminary

About this Handbook

This handbook provides comprehensive information about the Altera®
Quartus®II design software, version 4.1.

How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Typographic
Conventions

This document uses the typographic conventions shown below.

Information Type USA & Canada All Other Locations

Technical support www.altera.com/mysupport/ altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m. Pacific Time)

Product literature www.altera.com www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m. Pacific Time)

FTP site ftp.altera.com ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com
http://www.altera.com
http://www.altera.com/mysupport

xiv Altera Corporation
Preliminary

Typographic Conventions Quartus II Handbook, Volume 2

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c
The caution indicates required information that needs special consideration and
understanding and should be read prior to starting or continuing with the
procedure or process.

w The warning indicates information that should be read prior to starting or
continuing the procedure or processes

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

Visual Cue Meaning

Altera Corporation Section I–1
Preliminary

Section I. Scripting &
Constraint Entry

As a result of the increasing complexity of today's FPGA designs and the
demand for higher performance, designers must make a large number of
complex timing and logic constraints to meet their performance
requirements. Once you have created a project and your design, you can
use the the Quartus® II software Assignment Editor and Floorplan Editor
to specify your initial design constraints, such as pin assignments, device
options, logic options, and timing constraints.

This section describes how to take advantage of these components of the
Quartus II software, how to take advantage of Quartus II modular
executables, and how to develop and run tool command language (Tcl)
scripts to perform a wide range of functions.

This section includes the following chapters:

■ Chapter 1, Assignment Editor

■ Chapter 2, Command-Line Scripting

■ Chapter 3, Tcl Scripting

■ Chapter 4, Quartus II Project Management

Section I–2 Altera Corporation
Preliminary

Scripting & Constraint Entry Quartus II Handbook, Volume 2

Revision History The table below shows the revision history for Chapters 1 to 4.

Chapter(s) Date / Version Changes Made

1 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus software

version 4.1.

Feb. 2004 v1.0 Initial release.

2 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus software

version 4.1.

Feb. 2004 v1.0 Initial release.

3 Aug. 2004 v2.1 ● Minor typographical corrections
● Enhancements to example scripts.

June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus software

version 4.1.

Feb. 2004 v1.0 Initial release.

4 June 2004 v1.0 Initial release.

Altera Corporation 1–1
June 2004 Preliminary

1. Assignment Editor

Introduction As a result of the increasing complexity of today’s FPGA designs and the
demand for higher performance, designers must make a larger number of
complex timing and logic constraints to meet their performance
requirements. This complexity is compounded by the increasing density
and associated pin counts of current FPGAs. To successfully implement a
complex design in the latest generation of FPGAs, designers must also
make a large number of pin assignments that include the pin locations
and I/O standards.

To facilitate the process of entering these assignments, Altera® has
developed an intuitive, spreadsheet interface called the Assignment
Editor. The Assignment Editor is designed to make the process of
creating, changing, and managing a large number of assignments as easy
as possible.

This chapter discusses the following topics:

■ Using the Assignment Editor
■ Effects of settings made outside the Assignment Editor user interface
■ Category, node filter, information, edit bars and spreadsheet
■ Integration with other Quartus® II features
■ Enhanced spreadsheet interface
■ Dynamic Syntax checker
■ Node Filter bar
■ Using Time Groups
■ Customizable columns
■ Tcl interface
■ Exporting Assignments
■ Importing Assignments

Using the
Assignment
Editor

You can use the Assignment Editor throughout the design cycle. Before
board layout begins, you can make pin assignments with the Assignment
Editor. Throughout the design cycle, you can use the Assignment Editor
to help achieve your design performance requirements by making timing
assignments. You can also use the Assignment Editor to view, filter, and
sort assignments based on node names or assignment type.

qii52001-2.0

1–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

The Assignment Editor is a resizable and minimizable window. This
scalability makes it easy to view or edit your assignments right next to
your design files. You can launch the Assignment Editor from the
Assignments menu or by clicking on the Assignment Editor icon in the
toolbar.

Effects of Settings Made Outside the Assignment Editor User
Interface

Although the Assignment Editor is the most common method of entering
and modifying assignments, there are other methods you can use to make
and edit assignments. For this reason, the Assignment Editor updates
itself if you add, remove or change an assignment outside the Assignment
Editor.

The Assignment Editor is refreshed each time you click anywhere in the
window. If you make an assignment in the Quartus II software, such as in
the Tcl console or in the Floorplan Editor, the Assignment Editor reloads
the new assignments from memory. If you modify the Quartus II Settings
File (.qsf) outside the Quartus II software and you select the Assignment
Editor window, the Assignment Editor reloads the QSF.

1 If the QSF is being edited while the project is open, Altera
recommends that you perform a Save Project (File menu) to
ensure that you are editing the latest QSF file.

In either case, the Messages window displays the following message:

Info: Assignments reloaded -- assignments updated
outside Assignment Editor

The assignments you make in the Assignment Editor, Floorplan Editor, or
with Tcl are stored in memory. Use one of the following commands to
write these assignments into the QSF:

■ Close Project (File menu)
■ Save Project (File menu)
■ Start Compilation (Processing menu)

Category, Node Filter, Information, Edit Bars & Spreadsheet

The Assignment Editor window is divided into four bars and a
spreadsheet: see Figure 1–1. You can hide all four bars in the View menu
if desired, and you can collapse the Category, Node Filter, and
Information bars. Table 1–1 provides a brief description of each bar.

Altera Corporation 1–3
June 2004 Preliminary

Using the Assignment Editor

Figure 1–1. The Assignment Editor Window

Category Bar

The Category bar lists all assignment categories available for the chosen
device. You can use the Category bar to select a particular assignment
type and to filter out all other assignments. Selecting an assignment
category from the Category list changes the spreadsheet to show only
applicable options and values. To search for a particular type of
assignment, use the Category bar to filter out all other assignments.

Table 1–1. Assignment Editor Bar Descriptions

Bar Name Description

Category Filters the type of available assignments

Node Filter Filters a selection of design nodes to be viewed or assigned

Information Displays a description of the cell currently selected

Edit Allows you to edit the text in the currently selected cell(s)

1–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

To view all tSU assignments in your project, select tsu in the category list.
If you select All in the Category bar, the Assignment Editor displays all
assignments. See Figures 1–2 and 1–3 below.

Figure 1–2. All Selected in the Category List

Figure 1–3. tSU Selected in Category List

Altera Corporation 1–5
June 2004 Preliminary

Using the Assignment Editor

When you collapse the Category bar, four shortcut buttons appear so you
can select between various preset categories (see Figure 1–4).

Figure 1–4. Category Bar

Node Filter Bar

When Show assignments for specific nodes is turned on, the
spreadsheet shows only assignments for nodes matching the selected
node name filters in the Node Filter bar. You can selectively enable
individual node name filters listed in the Node Filter bar. You can create
a new node name filter by selecting a node name with the Node Finder
or typing a new node name filter. The Assignment Editor automatically
inserts a spreadsheet row and prepopulates the To field with the node
name filter. You can easily add an assignment to the matching nodes by
entering it in the new row. Rows with incomplete assignments appear in
dark red. When you choose Save (File menu), all incomplete rows are
removed and a message issued.

In Figure 1–5, when selecting all the bits of the dinput bus, all unrelated
assignments are filtered out.

1–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 1–5. Using the Node Filter in the Assignment Editor

Information Bar

The Information bar provides a brief description of the currently selected
cell. This is a useful way for you to learn how to enter node names and
assignments into the spreadsheet. For example, if the selected cell is a
particular logic option, the Information bar shows a description of that
option.

1 For more information on logic options, see Quartus II Help.

Altera Corporation 1–7
June 2004 Preliminary

Using the Assignment Editor

Edit Bar

The Edit bar is an efficient way to enter a value into one or more
spreadsheet cells.

To change the contents of multiple cells at the same time, select the cells
in the spreadsheet (see Figure 1–6), then type the new value into the Edit
box in the Edit bar (see Figure 1–7) and click the checkmark icon (Accept).

Figure 1–6. Edit Bar Selection

Figure 1–7. Edit Bar Change

1–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Assignment
Editor Features

You can open the Assignment Editor from many locations, including the
Text Editor, the Node Finder, the Timing Closure Floorplan, the
Compilation Report, and the Messages window. For example, you can
highlight a node name in your design file and open the Assignment
Editor to cause your node name to appear in the Assignment Editor.

You can also open other windows from the Assignment Editor. From a
node listed in the Assignment Editor spreadsheet, you can go to the
location of the node in any of the following windows: Timing Closure
Floorplan, Last Compilation Floorplan, Chip Editor, Block Editor, and
Text Editor.

Using the Enhanced Spreadsheet Interface

One of the key features of the Assignment Editor is the spreadsheet
interface. With the spreadsheet interface, you can sort columns, use pull-
down entry boxes, and copy and paste multiple cells in the Assignment
Editor. As you enter an assignment, the font color of the row changes to
indicate the status of the assignment.

1 See the “Dynamic Syntax Checking” on page 1–9 for more
information.

There are many ways to select or enter nodes into the spreadsheet,
including: the Node Finder, the Node Filter bar, the Edit bar, or by
directly typing the node name into the cell in the spreadsheet. A node
type icon appears beside each node name and node name filter to identify
its type. The node type icon identifies the entry as an input, output, or
bidirectional pin, a register, or combinational logic. See Figure 1–8. The
node type icon appears as an asterisk for node names and node name
filters that use a wildcard character (* or ?).

Figure 1–8. Node Type Icon Displayed Beside Each Node Name in the
Spreadsheet

The Assignment Editor supports wildcards in the following types of
assignments:

■ All timing assignments
■ Point-to-point global signal assignments (applicable to Stratix and

Stratix II families)

Altera Corporation 1–9
June 2004 Preliminary

Assignment Editor Features

■ Point-to-point or pad-to-core delay chain assignments
■ LogicLock region assignments

The spreadsheet also supports customizable columns, (see
“Customizable Columns” on page 1–12), allowing you to show, hide, and
arrange the columns.

When making pin location assignments, the background color of the cells
coordinates with the color of the I/O bank also shown in the Floorplan
Editor (see Figure 1–9).

Figure 1–9. Spreadsheet-Like Interface

Auto-fill pin names are supported in the spreadsheet if you have
performed analysis and synthesis. Auto-fill pin locations are also
supported in the spreadsheet if Pin is selected in the Category bar.

Dynamic Syntax Checking

As you enter your assignments, the Assignment Editor performs simple
legality and syntax checks. This checking is not as thorough as the checks
performed during compilation, but it catches general incorrect settings.
For example, the Assignment Editor does not allow assignment of a pin
to a no-connect pin. In this case, the assignment is not accepted and you
must enter a different pin location.

The color of the text in each row indicates if the assignment is incomplete,
incorrect, or disabled (see Table 1–2 on page 1–10). You can customize the
colors in the Options dialog box (Tools menu).

1–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

1 For more information, see the Quartus II Help.

Node Filter Bar

The Node Filter bar provides flexibility in how you view and make your
settings. The Node Filter bar contains a list of node filters. To create a new
entry, use the Node Finder or manually type the node name. Double-click
an empty row in the Node Filter list and then click on the arrow to open
the Node Finder (see Figure 1–10).

Figure 1–10. Node Finder Option

In the Node Filter bar, you can turn each filter on or off. To turn off the
Node Filter bar, turn off Show assignments for specific nodes. The
wildcards (* and ?) can be used to filter for a selection of all the design
nodes with one entry in the Node Filter. For example, you can enter
dreg* into the Node Filter list to view all assignments for dreg0, dreg1,
and dreg2 (see Figure 1–11).

Table 1–2. Description of the Text Color in the Spreadsheet

Text Color Description

Green A new assignment can be created

Yellow The assignment contains warnings, such as an unknown node
name

Dark Red The assignment is incomplete

Bright Red The assignment has an error, such as an illegal value

Light Gray The assignment is disabled

Altera Corporation 1–11
June 2004 Preliminary

Assignment Editor Features

Figure 1–11. Using the Node Filter Bar with Wildcards

Using Time Groups

A time group is a collection of design nodes grouped together and
represented as a single unit for the purpose of making timing
assignments to the collection. Using time groups with the Assignment
Editor provides the flexibility required for complex timing assignments
to a large number of nodes.

To create a time group, open the Time Groups dialog box by selecting
Time Groups (Assignments menu). You can add and exclude members of
each time group with wild cards in the Node Finder (See Figure 1–12 on
page 1–12).

There are cases when wild cards are not flexible enough to select a large
number of nodes that have node names that are quite similar. With time
groups you can combine wild cards, which select a large number of
nodes, and use exceptions to remove nodes that you did not intend to
select.

1–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 1–12. Time Groups Dialog Box

Customizable Columns

To provide more control over the display of information in the
spreadsheet, the Assignment Editor supports customizable columns.

You can move columns, sort them in ascending or descending order,
show or hide individual columns, as well as align (left, center, or right)
the content in the column for improved readability.

When the Quartus II software starts for the first time, you see a pre-
selected set of columns. However, you can show or hide any of the
available columns by choosing the Customize Columns command (View
menu). When you restart the Quartus II software, the column settings are
maintained.

For example, the Comments and Enabled columns are hidden when the
Quartus II software is first started.

You can use the Comments column to document the purpose of a pin or
to explain why you applied a timing or logic constraint. You can use the
Enabled column to disable any assignment without deleting it. This
feature is useful when performing multiple compilations with different
timing constraints or logic optimizations.

Altera Corporation 1–13
June 2004 Preliminary

Exporting and Importing Assignments

Tcl Interface

Whether you use the Assignment Editor or another feature to create your
design’s assignments, you can export them all to a Tcl file. You can then
use the Tcl file to re-apply all the settings or to archive your assignments.
Choose Export (File menu) to export your assignments to a Tcl script.

1 You can also choose the Generate Tcl File for Project (Project
menu) to generate a Tcl script file for your project.

In addition, as you use the Assignment Editor to enter assignments, the
equivalent Tcl commands are shown in the system message window. You
can use these Tcl commands to create customized Tcl scripts (see
Figure 1–13). To copy a Tcl command from the Messages window, right-
click the message and choose Copy (right button pop-up menu).

Figure 1–13. Equivalent Tcl Commands Displayed in the Messages Window

f For more information on Tcl scripting with the Quartus II software, see
the Tcl Scripting chapter in Volume 2 of the Quartus II Handbook.

Exporting and
Importing
Assignments

With the Export Assignments and Import Assignments dialog boxes,
you can export your Quartus II assignments to a Quartus II Settings file
(.qsf), and import assignments from a .qsf, a Quartus II Entity Settings
file (.esf), a MAX+PLUS II Assignment and Configuration file (.acf), or a
Comma Separated Value file (.csv).

In addition to the Export Assignments and Import Assignments dialog
boxes, the Export command (File menu) allows you to export your
assignments to a .csv or Tcl script file (.tcl).

1–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

1 The Export command (File menu) exports the contents of the
active window in the Quartus II software to another file format,
when applicable.

You can use these file formats for many different aspects of your project.
For example, you can use a .csv file for documentation purposes or to
transfer pin-related information to board layout tools. The Tcl file makes
it easy to apply assignments in a scripted design flow. And the LogicLock
design flow uses the .qsf file to transfer your LogicLock region settings.

Exporting Assignments

The Export Assignments dialog box is used to export your Quartus II
software assignments into a .qsf file, generate a node-level netlist file, and
export back-annotated routing information as a Routing Constraints File
(.rcf), as shown in Figure 1–14. Choose Export Assignments
(Assignments menu) to open the Export Assignments dialog box. The
LogicLock design flow uses this dialog box to export LogicLock regions.

f For more information on using the Export Assignments dialog box to
export LogicLock regions, see the LogicLock Design Methodology chapter
in Volume 2 of the Quartus II Handbook.

Figure 1–14. Export Assignments Dialog Box

You can use the Export command (File menu) to export all assignments to
a Tcl file or export a set of assignments to a .csv file. When you export
assignments to a Tcl file, only user-created assignments are written to the
Tcl script file, and default assignments are not exported.

Altera Corporation 1–15
June 2004 Preliminary

Exporting and Importing Assignments

When assignments are exported to a .csv file, only the assignments
displayed in the current view of the Assignment Editor are exported. For
example, to export only pin assignments, select Pin from the Category
bar. Then, choose Export (File menu), and select Comma Separated Value
File in the Save as type list.

The first uncommented row of the .csv file is a list of the column headings
displayed in the Assignment Editor separated by commas. Each row
below the header row represents the rows in the spreadsheet of the
Assignment Editor (see Figure 1–15) You can view and make edits to the
.csv file with Excel or other spreadsheet tools.

Figure 1–15. Assignment Editor with Category set to Pin

Here is an example of an exported .csv file from the Assignment Editor.

Note: The column header names should not be changed if you wish to import #
this .csv file into the Quartus II software.
To,Location,I/O Bank,I/O Standard,General Function,Special Function, \

Reserved ,SignalProbe Source
clk,PIN_K5,1,LVTTL,Dedicated Clock,CLK0/LVDSCLK1p,,
button,PIN_W3,4,LVTTL,Column I/O,LVDS128p,,
q[0],PIN_E14,2,LVTTL,Column I/O,LVDS56n,,
q[1],PIN_E13,2,LVTTL,Column I/O,LVDS56p,,
q[2],PIN_C14,2,LVTTL,Column I/O,LVDS55n/DQ0T4,,
q[3],PIN_D14,2,LVTTL,Column I/O,LVDS55p/DQ0T5,,
q[4],PIN_E12,2,LVTTL,Column I/O,LVDS52n,,,

1–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Importing Assignments

The Import Assignments dialog box allows you to import Quartus II
assignments from a .qsf, .esf, .acf or .csv file (see Figure 1–16). To import
assignments from any of the supported assignment files, follow these
steps:

1. Choose Import Assignments (Assignments menu).

2. In the File name text-entry box, enter the file name, or click on the
“...” box (Browse) to navigate to the assignment file.

3. When the Select File dialog box opens, select the file, and click
Open to close the Select File dialog box.

4. Click OK in the Import Assignments dialog box.

1 When you import a .csv file, the first uncommented row of the
file must be in the exact same format as it was when exported.

When using the Logiclock flow methodology to import assignments,
follow these steps:

1. Choose Import Assignments (Assignments menu).

2. Select the Use LogicLock assignments button, and click on the
LL_IMPORT_FILE Assignments... box.

3. When the LogicLock Import File Assignments window opens,
select the LogicLock import file assignments to use for importing,
and click OK to close the window.

f For more information on using the Import Assignments dialog box to
import LogicLock regions, see the LogicLock Design Methodology chapter
in Volume 2 of the Quartus II Handbook.

You can create a copy of your assignments before importing new
assignments by selecting the checkbox for Copy existing assignments
into <revision name>.qsf.bak before importing option.

Altera Corporation 1–17
June 2004 Preliminary

Exporting and Importing Assignments

Figure 1–16. Import Assignments Dialog Box

When importing assignments from a file, you can choose which
assignment categories to import by following these steps:

1. Click Categories in the Import Assignments dialog box.

2. Select the checkbox for each of the Assignment Categories you
want to import, as shown in Figure 1–17.

To select specific types of assignments to import, click Advanced in the
Import Assignments dialog box. The Advanced Import Settings dialog
box appears and you can choose to import instance, entity, or global
assignments, as well as select various assignment types to import.

f For more information on these options, refer to the Quartus II software
Help.

1–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 1–17. Assignment Categories Dialog Box

Conclusion As FPGAs continue to increase in density and pin count, it is essential to
be able to quickly create and view design assignments. The Assignment
Editor provides an intuitive and effective way of making assignments.
With the spreadsheet interface and the Category, Edit, and Node Filter
bars, the Assignment Editor provides an efficient assignment entry
solution for FPGA designers.

f To learn more about efficiently creating pin assignments with the
Assignment Editor, see the I/O Assignment Planning and Analysis chapter
in Volume 2 of the Quartus II Handbook.

Altera Corporation 2–1
June 2004

2. Command-Line Scripting

Introduction FPGA design software that is easy to integrate into a design flow saves
time and improves productivity. The Altera® Quartus® II software
provides designers with modular executables for each step in an FPGA
design flow to make the design process customizable and flexible.

The benefits provided by modular executables include command-line
control over each step of the design flow, easy integration with scripted
design flows including makefiles, reduced memory requirements, and
improved performance. The modular executables are also completely
compatible with the Quartus II graphical user interface (GUI), allowing
you to use the exact combination of tools you prefer.

This chapter describes how to take advantage of Quartus II modular
executables, and provides several examples of their use in certain design
situations.

The Benefits of
Modular
Executables

The Quartus II modular executables reduce the amount of memory
required during any step in the design flow. Because it targets only one
step in the design flow, each executable is relatively compact, both in
terms of file size and the amount of memory used when running. This
memory reduction improves performance for all designers and is
particularly beneficial in design environments with heavily-used
computer networks or mature workstations with low amounts of
memory.

Modular executables also provide command-line control over each step
of the design flow. Each modular executable has options to control
commonly-used software settings. Each modular executable also
provides detailed, built-in help describing its function, available options,
and settings.

Modular executables allow for easy integration with scripted design
flows. It is simple to create scripts in any language with a series of
modular executable commands. These scripts can be batch-processed,
allowing for integration with distributed computing in server farms. The
Quartus II modular executables can also be integrated in makefile-based
design flows. All of these features enhance the ease of integration
between the Quartus II software and other EDA synthesis, simulation,
and verification software.

qii52002-2.0

2–2 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

Modular executables add integration and scripting flexibility for
designers who want it without sacrificing the ease-of-use of the
Quartus II GUI. You can use the Quartus II GUI and modular executables
at different stages in the design flow. As an example, you might use the
Quartus II GUI to edit the floorplan for the design, use the modular
executables to perform place-and-route, and return to the Quartus II GUI
to perform debugging with the Chip Editor.

Introductory
Example

The following introduction to design flow with modular executables
shows how to create a project, fit the design, perform timing analysis, and
generate programming files.

The tutorial design included with the Quartus II software is used to
demonstrate this functionality. If installed, the tutorial design is found in
the <Quartus II directory>/qdesigns/tutorial directory.

Before making changes, copy the tutorial directory and type the following
four commands at a command prompt in the new project directory.

1 The <quartus>/bin directory must be in your PATH environment
variable.

quartus_map filtref --source=filtref.bdf --family=CYCLONE r
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns r
quartus_tan filtref r
quartus_asm filtref r

The quartus_map filtref --source=filtref.bdf
--family=CYCLONE command creates a new Quartus II project called
filtref with the filtref.bdf file as the top-level file. It targets the Cyclone
device family and performs logic synthesis and technology mapping on
the design files.

The quartus_fit filtref --part=EP1C12Q240C6
--fmax=80MHz --tsu=8ns command performs fitting on the filtref
project. The command specifies an EP1C12Q240C6 device and the fitter
attempts to meet a global fMAX requirement of 80 MHz and a global tSU
requirement of 8 ns.

The quartus_tan filtref command performs timing analysis on the
filtref project to determine whether the design meets the timing
requirements that were specified by the quartus_fit command.

The quartus_asm filtref command creates programming files for
the filtref project.

Altera Corporation 2–3
June 2004

Design Flow

These four commands can be stored in a batch file for use on PCs or in a
shell script file for use on UNIX workstations.

Design Flow Figure 2–1 shows a typical design flow.

Figure 2–1. Typical Design Flow

Design Entry (TDF, BDF, VQM,
Verilog HDL, VHDL, EDIF

Netlist files)

Timing Analysis

Assembler

Fitter

Synthesis

Netlist Writers

Programmer

Simulator

VO, VHO files

Quartus II Shell
(quartus_sh)

2–4 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

Modular executables are provided for each stage in the design flow
shown in Figure 2–1. Additional modular executables are provided for
specific tasks. Table 2–1 lists each Quartus II modular executable and
provides a brief description of its function.

Table 2–1. Quartus II Modular Executables & Descriptions (Part 1 of 3)

Executable Description

Analysis & Synthesis
quartus_map

Quartus II Analysis & Synthesis builds a single project database that
integrates all the design files in a design entity or project hierarchy,
performs logic synthesis to minimize the logic of the design, and
performs technology mapping to implement the design logic using
device resources such as logic elements.

Fitter
quartus_fit

The Quartus II Fitter performs place-and-route by fitting the logic of a
design into a device. The Fitter selects appropriate interconnection
paths, pin assignments, and logic cell assignments.

Quartus II Analysis & Synthesis must be run successfully before
running the Fitter.

Timing Analyzer
quartus_tan

The Quartus II Timing Analyzer computes delays for the given design
and device, and annotates them on the netlist. Then, the Timing
Analyzer performs timing analysis, allowing you to analyze the
performance of all logic in your design. The quartus_tan executable
includes Tcl support.

Quartus II Analysis & Synthesis or the Fitter must be run successfully
before running the Timing Analyzer.

Assembler
quartus_asm

The Quartus II Assembler generates a device programming image, in
the form of one or more Programmer Object Files (.pof), SRAM Object
Files (.sof), Hexadecimal (Intel-Format) Output Files (.hexout),
Tabular Text Files (.ttf), and Raw Binary Files(.rbf), from a successful
fit (that is, place-and-route).

The .pof and .sof files are then processed by the Quartus II
Programmer and downloaded to the device with the MasterBlasterTM or
the ByteBlasterTM II Download Cable, or the Altera Programming Unit
(APU). The .hexout.ttf, TTFs, and RBFs can be used by other
programming hardware manufacturers that provide support for Altera
devices.

The Quartus II Fitter must be run successfully before running the
Assembler.

Altera Corporation 2–5
June 2004

Design Flow

Design Assistant
quartus_drc

The Quartus II Design Assistant checks the reliability of a design based
on a set of design rules. The Design Assistant is especially useful for
checking the reliability of a design before converting the design for
HardCopyTM devices.
The Design Assistant supports designs that target any Altera device
supported by the Quartus II software, except MAX® 3000 and
MAX 7000 devices.

Quartus II Analysis & Synthesis or the Fitter must be run successfully
before running the Design Assistant.

Compiler Database Interface
quartus_cdb

The Quartus II Compiler Database Interface generates incremental
netlists for use with LogicLockTM back-annotation, or back-annotates
device and resource assignments to preserve the fit for future
compilations. The quartus_cdb executable includes Tcl support.

Analysis & Synthesis must be run successfully before running the
Compiler Database Interface.

EDA Netlist Writer
quartus_eda

The Quartus II EDA Netlist Writer generates netlist and other output
files for use with other EDA tools.

Analysis & Synthesis, the Fitter, or Timing Analyzer must be run
successfully before running the EDA Netlist Writer, depending on the
arguments used.

Simulator
quartus_sim

The Quartus II Simulator tests and debugs the logical operation and
internal timing of the design entities in a project. The Simulator can
perform two types of simulation: functional simulation and timing
simulation. The quartus_sim executable includes Tcl support.

Quartus II Analysis & Synthesis must be run successfully before
running a functional simulation.

The Timing Analyzer must be run successfully before running a timing
simulation.

Software Build
quartus_swb

The Quartus II Software Builder performs a software build, which
processes a design for an ARM®-based Excalibur™ device or the Nios®
embedded processor.

Programmer
quartus_pgm

The Quartus II Programmer programs Altera devices. The Programmer
uses one of the valid supported file formats: Programmer Object Files
(.pof), SRAM Object Files (.sof), Jam File (.jam), or Jam Byte-Code
File (.jbc).
Make sure you specify a valid programming mode, programming cable,
and operation for a specified device.

Table 2–1. Quartus II Modular Executables & Descriptions (Part 2 of 3)

Executable Description

2–6 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

Text-Based Report Files

Each modular executable creates a text-format report file when it is run.
These files report success or failure, and contain information on the
processing performed by the modular executable.

Report file names contain the revision names and name of the modular
executable that generated the report file. For example, the report file
name format is <revision name>.<modular executable>.rpt. For example,
using the quartus_fit modular executable to place-and-route a project
with the revision name design_top generates a report file named
design_top.fit.rpt. Likewise, using the quartus_tan modular executable
to perform timing analysis on a project with the revision name fir_filter
generates a report file named fir_filter.tan.rpt.

As an alternative to parsing text-based report files, you can use the Tcl
package called ::quartus::report. For more information on this
package, see “More Help with Quartus II Modular Executables” on
page 2–17.

Convert Programming File
quartus_cpf

The Quartus II Convert Programming File module converts one
programing file format to a different possible format.

Make sure you specify valid options and an input programming file to
generate the new requested programming file format.

Quartus Shell
quartus_sh

The Quartus II Shell acts as a simple Quartus II Tcl interpreter. The
Shell has a smaller memory footprint than the other command-line
executables that support Tcl: quartus_tan, quartus_cdb, and
quartus_sim. The Shell may be started as an interactive Tcl interpreter
(shell), used to run a Tcl script, or used as a quick Tcl command
evaluator, evaluating the remaining command-line arguments as one or
more Tcl commands.

Table 2–1. Quartus II Modular Executables & Descriptions (Part 3 of 3)

Executable Description

Altera Corporation 2–7
June 2004

Command-Line Scripting Help

Compilation with quartus_sh --flow

Use the quartus_sh executable with the --flow option to perform a
complete compilation flow with a single command. (For information on
specialized flows, type quartus_sh --help=flow at a command
prompt.) The --flow option supports the smart recompile feature, and
efficiently sets command-line arguments for each executable in the flow.

1 If you used the quartus_cmd command to perform command-
line compilations in earlier versions of the Quartus II software,
Altera recommends that you use the quartus_sh --flow
option in the Quartus II software version 4.1.

The following example runs compilation, timing analysis, and
programming file generation—with a single command.

quartus_sh --flow compile filtref r

Command-Line
Scripting Help

Complete help information is integrated with each modular executable.
For more information about the modular executable options, use the help
information integrated with the modular executables. Access help for a
modular executable using the -h option. For example, to view help for
the quartus_map modular executable, run the command
quartus_map -h. The following example shows the result of running
quartus_map -h:

C:\>quartus_map -h
Quartus II Analysis & Synthesis
Version 4.1 Internal Build 133 04/07/2004 SJ Full Version
Copyright (C) 1991-2004 Altera Corporation

Usage:

quartus_map [-h | --help[=<option|topic>] | -v]
quartus_map <project name> [<options>]

Description:

Quartus(R) II Analysis & Synthesis builds a single project
database that integrates all the design files in a design
entity or project hierarchy, performs logic synthesis to
minimize the logic of the design, and performs technology
mapping to implement the design logic using device
resources such as logic elements.

Options:

-f <argument file>

2–8 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

 -c <revision name> | --rev=<revision name>
 -l <path> | --lib_path=<path>
 --lower_priority
 --optimize=<area|speed|balanced>
 --family=<device family>
 --part=<device>
 --
state_machine_encoding=<auto|minimal_bits|one_hot|user_enco
 --enable_register_retiming[=on|off]
 --enable_wysiwyg_resynthesis[=on|off]
 --ignore_carry_buffers[=on|off]
 --ignore_cascade_buffers[=on|off]
 --analyze_project
 --analyze_file=<design file>
 --generate_symbol=<design file>
 --generate_inc_file=<design file>
 --convert_bdf_to_verilog=<.bdf file>
 --convert_bdf_to_vhdl=<.bdf file>
 --export_settings_files[=on|off]
 --generate_functional_sim_netlist
 --source=<source file>
 --update_wysiwyg_parameters

Help Topics:

arguments
makefiles

For more information on specific options, use --
help=<option|topic>.

Detailed help about a particular option is also available. For example, to
view detailed help about the --optimize option, run
quartus_map --help=optimize. The following is the result of
running quartus_map --help=optimize:

Option: --optimize=<area|speed|balanced>

Option to optimize the design to achieve maximum speed
performance, minimum area usage, or high speed performance
with miminal area cost during synthesis.

The following table displays available values:

Value Description
-------- --
area Makes the design as small as possible in order
 to minimize resource usage.

speed Chooses a design implementation that has the
 fastest fmax.

balanced Chooses a design implementation that has a
 high-speed performance with minimal logic usage
Note that the current version of the Quartus(R) II software
does not support the "balanced" setting for the following
devices:

Altera Corporation 2–9
June 2004

Command-Line Option Details

 Mercury(TM), MAX(R) 7000B/7000AE/3000A/7000S/7000A,
 FLEX(R) 6000, FLEX 10K(R), FLEX 10KE/10KA, and ACEX 1K.

1 Help on Quartus II modular executables is also available by
typing quartus_sh --qhelp at a command prompt. For more
information, see “More Help with Quartus II Modular
Executables” on page 2–17.

Command-Line
Option Details

Command-line options are provided for making many common global
project settings and performing common tasks. You can use either of two
methods to make assignments to an individual entity. If the project exists,
open the project in the Quartus II GUI, change the assignment, and close
the project. The changed assignment is updated in the Quartus II Settings
file. Any modular executables that are run after this update will use the
updated assignment. See “Option Precedence” on page 2–9 for more
information. You can also make assignments using the Quartus II Tcl
scripting API. If you want to completely script the creation of a Quartus II
project, you should choose this method.

Option Precedence

If you are using the modular executables, you need to be aware of the
precedence of various project assignments and how to control the
precedence. Assignments for a particular project exist in the Quartus II
Settings file (.qsf) for the project. Assignments for a project can also be
made by using command-line options, as described earlier in this
document. Project assignments are reflected in compiler database files
that hold intermediate compilation results and reflect assignments made
in the previous project compilation.

All command-line options override any conflicting assignments found in
the QSF or the compiler database files. There are two command-line
options to specify whether QSF or compiler database files take
precedence for any assignments not specified as command-line options.

1 Any assignment not specified as a command-line option or
found in the QSF or compiler database files will be set to its
default value.

The file precedence command-line options are
--import_settings_files and --export_settings_files. By
default, the --import_settings_files and
--export_settings_files options are turned on. Turning the

2–10 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

--import_settings_files option on causes a modular executable to
read assignments from the Quartus II settings file instead of from the
compiler database files. Turning the --export_settings_files
option on causes a modular executable to update the Quartus II settings
file to reflect any specified options, as happens when closing a project in
the Quartus II GUI.

Table 2–2 lists the precedence for reading assignments depending on the
value of the --import_settings option.

Table 2–3 lists the locations to which assignments are written, depending
on the value of the --export_settings command-line option.

The following example assumes that a project named fir_filter
exists, and that the analysis and synthesis step has been performed (using
the quartus_map command).

quartus_fit fir_filter --fmax=80MHz r
quartus_tan fir_filter r
quartus_tan fir_filter --fmax=100MHz --tao=timing_result-100.tao
--export_settings_files=off r

The first command, quartus_fit fir_filter --fmax=80MHz, runs
the quartus_fit executable and specifies a global fMAX requirement of
80 MHz.

The second command, quartus_tan fir_filter, runs Quartus II
timing analysis for the results of the previous fit.

Table 2–2. Precedence for Reading Assignments

Option Specified Precedence for Reading Assignments

--import_settings_files=on (Default) 1. Command-line options
2. Quartus II Settings File (.qsf)
3. Project database (db directory, if it exists)
4. Quartus II software defaults

--import_settings_files=off 1. Command-line options
2. Project database (db directory, if it exists)
3. Quartus II software defaults

Table 2–3. Location for Writing Assignments

Option Specified Location for Writing Assignments

--export_settings_files=on (Default) Quartus II Settings File (.qsf) and compiler database

--export_settings_files=off Compiler database

Altera Corporation 2–11
June 2004

Command-Line Scripting Examples

The third command reruns Quartus II timing analysis with a global fMAX
requirement of 100 MHz and saves the result in a file called
timing_result-100.tao. By specifying the
--export_settings_files=off option, the modular executable
does not update the Quartus II settings file to reflect the changed fMAX
requirement. The compiler database files reflect the changed fMAX
requirement. If the --export_settings_files=off option is not
specified, the modular executable updates the Quartus II settings file to
reflect the 100-MHz global fMAX requirement.

Use the --import_settings_files=off and
--export_settings_files=off options (where appropriate) to
optimize the way that the Quartus II software reads and updates settings
files. The following example shows how to avoid unnecessary importing
and exporting.

quartus_map filtref --source=filtref --part=ep1s10f780c5 r
quartus_fit filtref --fmax=100MHz --import_settings_files=off r
quartus_tan filtref --import_settings_files = off --export_settings_files
= off r
quartus_asm filtref --import_settings_files=off --export_settings_files
= off r

The quartus_tan and quartus_asm executables do not need to import
or export settings files because they do not change any settings in the
project.

Command-Line
Scripting
Examples

This section of the chapter presents various examples of command-line
executable use.

Check Design File Syntax

This shell script example assumes that the Quartus II software tutorial
project called fir_filter exists in the current directory. (This project exists
in the <Quartus II directory>/qdesigns/fir_filter directory unless the
Quartus II software tutorial files are not installed.) The
--analyze_file option specifies each file on which to perform a
syntax check. The script checks the exit code of the quartus_map
executable to determine whether there was an error during the syntax
check. Files with syntax errors are added to the FILES_WITH_ERRORS
variable, and when all files have been checked for syntax, the script prints
a message indicating whether there were any syntax errors. Any options
that are not specified use the values from the project database. If not
specified there, then the executable uses the Quartus II software default
values. For example, the fir_filter project is set to target the Cyclone
device family, so it is not necessary to specify the --family option.

2–12 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

This shell script is specifically designed for use on UNIX systems employing
the sh shell.

#!/bin/sh
FILES_WITH_ERRORS=""
Iterate over each file with a .bdf or .v extension
for filename in `ls *.bdf *.v`
do
 # Perform a syntax check on the specified file

quartus_map fir_filter --analyze_file=$filename
If the exit code is non-zero, the file has a syntax error
if [$? -ne 0]
then

FILES_WITH_ERRORS="$FILES_WITH_ERRORS $filename"
fi

done

if [-z "$FILES_WITH_ERRORS"]
then

echo "All files passed the syntax check"
exit 0

else
echo "There were syntax errors in the following file(s)"
echo $FILES_WITH_ERRORS
exit 1

fi

Create a Project & Synthesize a Netlist Using Netlist Optimizations

This example creates a new Quartus II project with a file top.edf as the top-
level entity. The --enable_register_retiming=on and
--enable_wysiwyg_resynthesis=on options allow the technology
mapper to optimize the design using gate-level register retiming and
technology remapping.

f For more details about register retiming, technology remapping, and other
netlist optimization options, consult the Quartus II Help.

The --part option tells the technology mapper to target an
EP20K600EBC652-1X device. To create the project and synthesize it using the
netlist optimizations described above, type the following command at a
command prompt:

quartus_map top --source=top.edf --enable_register_retiming=on
--enable_wysiwyg_resynthesis=on --part=EP20K600EBC652-1Xr

Altera Corporation 2–13
June 2004

Command-Line Scripting Examples

Attempt to Fit a Design as Quickly as Possible

This example assumes that a project called top exists in the current
directory, and that the name of the top-level entity is top. The
--effort=fast option forces the Fitter to use the fast fit algorithm to
increase compilation speed, possibly at the expense of reduced fMAX
performance. The --one_fit_attempt=on option restricts the Fitter to
only one fitting attempt for the design.

To attempt to fit the project called top as quickly as possible, type the
following command at a command prompt:

quartus_fit top --effort=fast --one_fit_attempt=on r

Fit a Design Using Multiple Seeds

This shell script example assumes that the Quartus II software tutorial
project called fir_filter exists in the current directory (defined in a file
called fir_filter.qpf). If the tutorial files are installed on your system, this
project exists in the <Quartus II directory>/qdesigns/fir_filter directory.
Because the top-level entity in the project does not have the same name as
the project, you must specify the revision name for the top-level entity
with the --rev option. The --seed option specifies the seeds to use for
fitting.

A seed is a parameter that affects the random initial placement of the
Quartus II Fitter. Varying the seed can result in better performance for
some designs.

After each fitting attempt, the script creates new directories for the results
of each fitting attempt and copies the complete project to the new
directory so that the results are available for viewing and debugging after
the script has completed.

This shell script is specifically designed for use on UNIX systems
employing the sh shell.

#!/bin/sh
ERROR_SEEDS=""
quartus_map fir_filter --rev=filtref
Iterate over a number of seeds
for seed in 1 2 3 4 5
do
echo "Starting fit with seed=$seed"
Perform a fitting attempt with the specified seed
 quartus_fit fir_filter --seed=$seed --rev=filtref
If the exit-code is non-zero, the fitting attempt was
successful, so copy the project to a new directory
 if [$? -eq 0]
 then

2–14 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

mkdir ../fir_filter-seed_$seed
mkdir ../fir_filter-seed_$seed/db
cp * ../fir_filter-seed_$seed
cp db/* ../fir_filter-seed_$seed/db

 else
ERROR_SEEDS="$ERROR_SEEDS $seed"

 fi
done
if [-z "$ERROR_SEEDS"]
then
 echo "Seed sweeping was successful"
 exit 0
else
 echo "There were errors with the following seed(s)"
 echo $ERROR_SEEDS
 exit 1
fi

1 Use the Design Space Explorer included with the Quartus II
software (DSE) script (by typing quartus_sh --dse r at a
command prompt) to improve design performance by
performing automated seed sweeping.

f For more information on the DSE, type quartus_sh --help=dse r at
the command prompt, or see the Design Space Explorer chapter in
Volume 2 of the Quartus II Handbook.

Makefile Implementation

You can also use the Quartus II modular executables in conjunction with
the make utility to automatically update files when other files they
depend on change. The file dependencies and commands used to update
files are specified in a text file called a makefile. The following example is
one way of implementing a makefile with modular executables.

##
Project Configuration:

Specify the name of the design (project) and the list of source
files used.
##

PROJECT = chiptrip
SOURCE_FILES = auto_max.v chiptrip.v speed_ch.v tick_cnt.v
time_cnt.v
ASSIGNMENT_FILES = chiptrip.qpf chiptrip.qsf

##
Main Targets
#
all: build everything
clean: remove output files and database
clean_all: removes settings files as well as clean.
##

Altera Corporation 2–15
June 2004

Command-Line Scripting Examples

all: smart.log $(PROJECT).asm.rpt $(PROJECT).tan.rpt

clean:
rm -rf *.rpt *.chg smart.log *.htm *.eqn *.pin *.sof *.pof db

rm-rf*.summary
clean_all: clean

rm -rf *.qpf*.qsf *.qws

map: smart.log $(PROJECT).map.rpt
fit: smart.log $(PROJECT).fit.rpt
asm: smart.log $(PROJECT).asm.rpt
tan: smart.log $(PROJECT).tan.rpt
smart: smart.log

##
Executable Configuration
##

MAP_ARGS = --family=Stratix
FIT_ARGS = --part=EP1S20F484C6
ASM_ARGS =
TAN_ARGS =

##
Target implementations
##

STAMP = echo done >

$(PROJECT).map.rpt: map.chg $(SOURCE_FILES)
quartus_map $(MAP_ARGS) $(PROJECT)
$(STAMP) fit.chg

$(PROJECT).fit.rpt: fit.chg $(PROJECT).map.rpt
quartus_fit $(FIT_ARGS) $(PROJECT)
$(STAMP) asm.chg
$(STAMP) tan.chg

$(PROJECT).asm.rpt: asm.chg $(PROJECT).fit.rpt
quartus_asm $(ASM_ARGS) $(PROJECT)

$(PROJECT).tan.rpt: tan.chg $(PROJECT).fit.rpt
quartus_tan $(TAN_ARGS) $(PROJECT)

smart.log: $(ASSIGNMENT_FILES)
quartus_sh --determine_smart_action $(PROJECT) > smart.log

##
Project initialization
##

$(ASSIGNMENT_FILES):
quartus_sh --prepare $(PROJECT)

map.chg:
$(STAMP) map.chg

fit.chg:

2–16 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

$(STAMP) fit.chg
tan.chg:

$(STAMP) tan.chg
asm.chg:

$(STAMP) asm.chg

A Tcl script is provided with the Quartus II software to create or modify
files which can be specified as dependencies in the make rules, assisting
you in makefile development. Complete information about this Tcl script
and how to integrate it with makefiles is available by running the
command quartus_sh --help=determine_smart_action.

The QFlow Script

A Tcl/Tk-based graphical interface called QFlow is included with the
modular executables. Designers can use the QFlow interface to open
projects, launch some of the modular executables, view report files, and
make some global project assignments. The QFlow interface can run the
following modular executables:

■ quartus_map (Analysis & Synthesis)
■ quartus_fit (Fitter)
■ quartus_tan (Timing Analysis)
■ quartus_asm (Assembler)
■ quartus_eda (EDA Netlist Writer)

To view floorplans or perform other GUI-intensive tasks, launch the
Quartus II GUI.

Start QFlow by typing the following command at a command prompt:
quartus_sh -g r. Figure 2–2 shows the QFlow interface.

Figure 2–2. QFlow Interface

Altera Corporation 2–17
June 2004

More Help with Quartus II Modular Executables

1 The QFlow script is located in the <Quartus II
directory>/bin/tcl_scripts/qflow/ directory.

More Help with
Quartus II
Modular
Executables

More information on modular executable use and the Quartus II Tcl API
is available by typing quartus_sh --qhelp at a command prompt.
This command starts the Quartus II Command Line and Tcl API Help
browser, a viewer for information on the Quartus II modular executables
and Tcl API (Figure 2–3).

Figure 2–3. Quartus II Command Line & Tcl API Help Browser

Click items under Help Topics to get more information on the topics
listed.

2–18 Altera Corporation
 June 2004

Quartus II Handbook, Volume 2

Conclusion Command-line scripting in Quartus II software provides important
benefits to designers, including increased flexibility and easy integration
with other EDA software in FPGA design flows. Scripts reduce memory
usage, improve performance, and bring true command-line control to all
stages of FPGA design.

Altera Corporation 3–1
August 2004 Preliminary

3. Tcl Scripting

Introduction Developing and running tool command language (Tcl) scripts to control
the Altera® Quartus® II software allows you to perform a wide range of
functions, such as compiling a design or writing procedures to automate
common tasks.

You can automate your Quartus II assignments using Tcl scripts so that
you do not have to create them individually. Tcl scripts also facilitate
project or assignment migration. For example, when using the same
prototype or development board for different projects, you can automate
reassignment of pin locations in each new project. The Quartus II
software can also generate a Tcl script based on all the current
assignments in the project, which aids in migrating assignments to
another project. You can use Tcl scripts to manage a Quartus II project,
make assignments, define design constraints, make device assignments,
run compilations, perform timing analysis, import LogicLock™ region
assignments, use the Quartus II Chip Editor, and access reports.

The Quartus II software Tcl commands follow the electronic design
automation (EDA) industry Tcl application programming interface (API)
standards for using command-line options to specify arguments. This
simplifies learning and using Tcl commands. If you encounter an error
using a command argument, the Tcl interpreter gives help information
showing correct usage.

This chapter includes sample Tcl scripts for the Quartus II software. You
can modify these example scripts for use with your own designs.

What is Tcl? Tcl (pronounced tickle) is a popular scripting language that is similar to
many shell scripting and high-level programming languages. It provides
support for control structures, variables, network socket access, and APIs.
Tcl is the EDA industry-standard scripting language used by Synopsys,
Mentor Graphics®, Synplicity, and Altera software. It allows you to create
custom commands and works seamlessly across most development
platforms. For a list of recommended literature on Tcl, see “References”
on page 3–28.

qii52003-2.1

3–2 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

You can create your own procedures by writing scripts containing basic
Tcl commands, user-defined procedures, and Quartus II API functions.
You can then automate your design flow, run the Quartus II software in
batch mode, or execute the individual Tcl commands interactively in the
Quartus II Tcl interactive shell.

The Quartus II software version 4.1 supports Tcl/Tk version 8.4, supplied
by the Tcl DeveloperXchange at http://tcl.activestate.com.

Tcl Scripting
Basics

This section is a brief introduction to Tcl, an interpreted scripting
language. The core commands support variables, control structures, and
procedures. Additionally, there are commands for accessing the file
system and network sockets, and running other programs. You can create
platform-independent graphical interfaces with the Tk widget set. There
are many more Tcl commands and features not covered in this brief
introduction.

f For more information about Tcl scripting, consult any of the
“References” on page 3–28.

Hello World Example

This example shows the basic “Hello world” in Tcl.

puts "Hello world"

Use double quotation marks to group the words hello and world as one
argument. Double quotation marks allow substitutions to occur in the
group. Substitutions can be simple variable substitutions, or the result of
running a nested command, described later in this section. Use curly
braces ({}) for grouping when you want to prevent substitutions.

Altera Corporation 3–3
August 2004 Preliminary

Tcl Scripting Basics

Variables

Use the set command to assign a value to a variable. You do not have to
declare a variable before using it. Tcl variable names are case-sensitive.
This example assigns the value 1 to the variable named a.

set a 1

To access the contents of a variable, use a dollar sign before the variable
name. This example also prints "Hello world".

set a Hello
set b world
puts "$a $b"

Nested Commands

Use square brackets to evaluate nested commands. The Tcl interpreter
evaluates nested commands, starting with the innermost nested
command, and commands nested at the same level from left to right. Each
nested command result is substituted in the outer command. This
example sets a to the length of the string foo.

set a [string length foo]

There are many other operations the string command can perform. Refer
to the references at the end of this chapter for more information.

Arithmetic

Use the expr command to perform arithmetic calculations. Using curly
braces to group the arguments of this command makes arithmetic
calculations more efficient and preserves numeric precision. This
example sets a to the sum of 1 and the square root of 2.

set a [expr { 1 + sqrt(2) }]

Tcl also supports boolean operators such as & (AND), | (OR), ! (NOT),
and comparison operators such as < (less than), > (greater than), and
== (equal to).

f For a complete list of supported operators, refer to “References” on
page 3–28.

3–4 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Lists

A Tcl list is a series of values. Supported list operations include creating
lists, appending lists, extracting elements, computing the length of a list,
sorting a list, and more. This example sets a to a list with three numbers
in it.

set a { 1 2 3 }

This example prints the 0th element of the list stored in a.

puts [lindex $a 0]

This example sets b to the length of the list stored in a.

set b [llength $a]

Control structures

Tcl supports common control structures, including if-then-else
conditions and for, foreach, and while loops. Positioning curly braces
as shown in the following examples ensures the control structure
commands are executed efficiently and correctly. This example prints
whether the value of variable a is positive, negative, or zero.

if { $a > 0 } {
puts "The value is positive"

} elseif { $a < 0 } {
puts "The value is negative"

} else {
puts "The value is zero"

}

This example uses a for loop to print each element in a list.

set a { 1 2 3 }
for { set i 0 } { $i < [llength $a] } { incr i } {

puts "The list element at index $i is [lindex $a
$i]"
}

This example uses a foreach loop to print each element in a list

set a { 1 2 3 }
foreach element $a {

puts "The list element is $element"
}

Altera Corporation 3–5
August 2004 Preliminary

Tcl Scripting Basics

This example uses a while loop to print each element in a list

set a { 1 2 3 } {
set i 0
while { $i < [llength $a] } {

puts "The list element at index $i is [lindex $a $i]"
incr i

}

You do not need to use the expr command in boolean expressions in
control structure commands because they invoke the expr command
automatically.

Procedures

Use the proc command to define a Tcl procedure (known as a subroutine
or function in other scripting and programming languages). The scope of
variables in a procedure is local to the procedure. If the procedure returns
a value, use the return command to return the value from the procedure.
This example defines a procedure that multiplies two numbers and
returns the result

proc multiply { x y } {
set product [expr { $x * $y }]
return $product

}

This example shows how to use the multiply procedure in your code.
You must define a procedure before your script calls it, as shown in this
example.

proc multiply { x y } {
set product [expr { $x * $y }]
return $product

}
set a 1
set b 2
puts [multiply $a $b]

3–6 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Altera recommends defining procedures near the beginning of a script. If
you want to access global variables in a procedure, use the global
command in each procedure that uses a global variable. This example
defines a procedure that prints an element in a global list of numbers,
then calls the procedure.

proc print_global_list_element { i } {
global my_data
puts "The list element at index $i is [lindex $my_data $i]"

}
set my_data { 1 2 3}
print_global_list_element 0

Quartus II Tcl
API Reference

Access the Quartus II Tcl API Help reference by typing the following
command at a command prompt:

quartus_sh --qhelp

This command runs the Quartus II Command-Line and the Tcl API Help
browser, which documents all commands and options in the Quartus II
Tcl API. It includes detailed descriptions and examples for each
command.

Quartus II Tcl
Packages

The Quartus II Tcl commands are grouped in packages by function.
Table 3–1 describes each Tcl package.

Table 3–1. Tcl Commands Grouped in Packages, by Function (Part 1 of 2)

Package Name Package Description

project Create and manage projects and revisions, make any
project assignments including timing assignments.

flow Compile a project, run command-line executables and
other common flows

report Get information from report tables, create custom
reports

timing Annotate timing netlist with delay information, compute
and report timing paths

timing_report List timing paths

advanced_timing Traverse the timing netlist and get information about
timing nodes

device Get device and family information from the device
database

backannotate Back annotate assignments

logiclock Create and manage LogicLock regions

Altera Corporation 3–7
August 2004 Preliminary

Quartus II Tcl Packages

By default, only the minimum number of packages are loaded
automatically with each Quartus II executable. This keeps the memory
requirement for each executable as low as possible. Because the minimum
number of packages are automatically loaded, you must load other
packages before you can run commands in those packages, or get help on
those packages.

Table 3–2 lists the Quartus II Tcl packages available with Quartus II
executables and indicates whether a package is loaded by default or is
available to be loaded as necessary. A blank space means the package is
not available in that executable.

chip_editor Identify and modify resource usage and routing with the
Chip Editor

simulator Configure and perform simulations

stp Run the SignalTap II logic analyzer

database_manager Manage version-compatible database files

misc Perform miscellaneous tasks

Table 3–1. Tcl Commands Grouped in Packages, by Function (Part 2 of 2)

Package Name Package Description

Table 3–2. Tcl Package Availability by Quartus II Executable

Packages
Quartus II Executable

Quartus_sh Quartus_tan Quartus_cdb Quartus_sim Tcl Console

advanced_timing Not Loaded

backannotate Not Loaded Not Loaded

chip_editor Not Loaded

device Loaded Not Loaded Loaded Loaded Not Loaded

flow Not Loaded Not Loaded Not Loaded Not Loaded Not Loaded

logiclock Not Loaded Not Loaded Not Loaded

misc Loaded Loaded Loaded Loaded Loaded

project Loaded Loaded Loaded Loaded Loaded

report Not Loaded Not Loaded Not Loaded Loaded Not Loaded

simulator Loaded

timing Loaded

timing_report Not Loaded Loaded

old_api Loaded

3–8 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Loading Packages

To load a Quartus II Tcl package, use the following Tcl command:

load_package [-version <version number>] <package name>.

This command is similar to the package require Tcl command, but
you can easily alternate between different versions of a Quartus II Tcl
package with the load_package command.

f For additional information on these and other Quartus II command-line
executables, see the Command-Line Scripting chapter in Volume 2 of the
Quartus II Handbook.

Executables
Supporting Tcl

Some of the Quartus II command-line executables support Tcl scripting.
They are listed in Table 3–3. Each executable supports different sets of Tcl
packages. Refer to the following table to determine the appropriate
executable to run your script.

The quartus_tan and quartus_cdb executables support supersets of
the packages supported by the quartus_sh executable. You should use
the quartus_sh executable if you run Tcl scripts with only project
management and assignment commands, or need a Quartus II command-
line executable with a small memory footprint.

f For more information about these command-line executables, refer to the
Command-Line Scripting chapter in Volume 2 of the Quartus II Handbook.

Table 3–3. Command-line Executables Supporting Tcl Scripting

Executable Name Executable Description

quartus_sh The Quartus II Shell is a simple Tcl scripting shell, useful
for making assignments, general reporting, and
compiling.

quartus_tan Use the Quartus II Timing Analyzer to perform simple
timing reporting and advanced timing analysis.

quartus_cdb The Quartus II Compiler Database supports back
annotation, LogicLock region operations, and chip editor
functions

quartus_sim Use the Quartus II Simulator to simulate designs with Tcl
testbenches.

Altera Corporation 3–9
August 2004 Preliminary

Executables Supporting Tcl

Command-Line Options (-s, -t, etc)

Table 3–4 lists three command-line options you can use with executables
that support Tcl.

Run a Tcl Script

Running an executable with the -t option runs the specified Tcl script.
You can also specify arguments to the script. Access the arguments
through the argv variable, or use a package such as cmdline, which
supports arguments of the following form:

-<argument name> <argument value>

The cmdline package is included in the <Quartus II directory>/
bin/tcl_packages/tcllib-1.4/cmdline directory.

1 The Quartus II software version 4.0 and earlier does not support
the argv variable. In those versions of the software, script
arguments are in the quartus(args) global variable.

Interactive Shell Mode

Running an executable with the -s option starts an interactive Tcl shell
session that displays a tcl> prompt. Everything you type in the Tcl shell
is immediately interpreted by the shell. You can run a Tcl script within the
interactive shell with the following command:

source <script name> [<script arguments>] r

If a command is not recognized by the shell, it is assumed to be an
external command and executed with the exec command.

Table 3–4. Command-Line Options Supporting Tcl Scripting

Command-Line
Option Description

-t <script file>
[<script args>]

Run the specified Tcl script with optional arguments

-s Open the executable in the interactive Tcl shell mode

--tcl_eval
<tcl command>

Evaluate the remaining command-line arguments as Tcl
commands. For example, the following command displays
help for the project package: quartus_sh --tcl_eval
help -pkg project

3–10 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Evaluate as Tcl

Running an executable with the --tcl_eval option causes the
executable to immediately evaluate the remaining command-line
arguments as Tcl commands. This can be useful if you want to run simple
Tcl commands from other scripting languages.

Using the Quartus II Tcl Console Window

You can run Tcl commands directly in the Quartus II Tcl Console window.
To open the window, choose Utility Windows > Tcl Console (View
menu). By default, the Tcl Console is docked in the bottom-right corner of
Quartus II graphical user interface (GUI). Everything typed in the Tcl
Console is interpreted by the Quartus II Tcl shell.

1 The Quartus II Tcl Console window supports the Tcl API, used
in the Quartus II software version 3.0 and earlier, for backward
compatibility with older designs and EDA tools.

Tcl messages appear in the System tab (Messages window). Errors and
messages written to stdout and stderr also appear in the Quartus II
Tcl Console window.

Examples Most chapters in the Quartus II Handbook include information about
scripting support. They include feature-specific examples and script
information. For scripting help on a specific feature, refer to the
corresponding chapter in the handbook.

If you are an advanced Tcl scripting user, you can refer to some Tcl scripts
included with the Quartus II software and modify them to suit your
needs. The Design Space Explorer (DSE), Quartus II Command-Line and
Tcl API reference, and QFlow are written with Tcl and Tk. Files for those
scripts are located in the <Quartus II installation>/bin/tcl_scripts
directory.

Altera Corporation 3–11
August 2004 Preliminary

Examples

Accessing Command-Line Arguments

Virtually all Tcl scripts must accept command-line arguments, such as the
name of a project or revision. The global variable quartus(args) is a
list of the arguments typed on the command-line following the name of
the Tcl script. Here is a code example that prints all the arguments in the
quartus(args) variable:

set i 0
foreach arg $quartus(args) {

puts "The value at index $i is $arg"
incr i

}

If you save these commands in a Tcl script file called print_args.tcl, you
see the following output when you type this command:

quartus_sh -t print_args.tcl my_project 100MHzr

The value at index 0 is my_project

The value at index 1 is 100MHz

Using the cmdline Package

You can use the cmdline package included with the Quartus II software
for more robust and self-documenting command-line argument passing.
The cmdline package supports command-line arguments with the form
- <option> <value>. The following code example uses the cmdline
package:

package require cmdline
variable ::argv0 $::quartus(args)
set options {\
 { "project.arg" "" "Project name" } \
 { "frequency.arg" "" "Frequency" } \
}
set usage "You need to specify options and values"
array set optshash [::cmdline::getoptions ::argv $options $usage]
puts "The project name is $optshash(project)"
puts "The frequency is $optshash(frequency)"

If you save those commands in a Tcl script called print_cmd_args.tcl you
will see the following output when you type this command:

quartus_sh -t print_cmd_args.tcl -project my_project -frequency 100MHzr

The project name is my_project
The frequency is 100MHz

3–12 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

f For more information on the cmdline package, refer to the
documentation for the package at <Quartus II installation directory>/
bin/tcl_packages/tcllib-1.4/doc/cmdline.html

PCreating Projects & Making Assignments

One benefit of the Tcl scripting API is that it is easy to create a script that
makes all the assignments for an existing project. You can use the script at
any time to restore your project settings to a known state. Choose
Generate Tcl File for Project (Project menu) to generate a Tcl file with all
of your assignments automatically. You can source this file to recreate
your project, and you can edit the file to add other commands, such as
compiling the design. The file is a good starting point to learn about
project management commands and assignment commands.

The following example script is a compilation script for the finite impulse
response (FIR) filter example project used in the Quartus II Tutorial. It
shows how to set global, location, and instance assignments for a project
followed by a complete project compilation using the
::quartus::flow package.

This Tcl file works with quartus_sh.exe
This Tcl file will compile the Quartus II tutorial fir_filter
design
set the project_name to fir_filter
set revision to filtref
set project_name fir_filter
set revision_name filtref

Create a new project and open it
Project_name is project name
No need to explicitly require the ::quartus::project package,
because it's automatically loaded by quartus_sh
if {![project_exists $project_name]} {

project_new -revision $revision_name $project_name;
} else {
project_open -revision $revision_name $project_name;
}

#------ Make global assignments ------#

add design files to project
When the revision name is the same as the project name
adding design files can be skipped
#set_global_assignment -name "BDF_FILE" "filtref.bdf"
#set_global_assignment -name "VERILOG_FILE" "acc.v"
#set_global_assignment -name "VERILOG_FILE" "accum.v"
#set_global_assignment -name "VERILOG_FILE" "hvalues.v"
#set_global_assignment -name "VERILOG_FILE" "mult.v"

Altera Corporation 3–13
August 2004 Preliminary

Examples

#set_global_assignment -name "VERILOG_FILE" "state_m.v"
#set_global_assignment -name "VERILOG_FILE" "taps.v"

set_global_assignment -name FAMILY Cyclone

#------ project compilation ------#

The project is compiled here to see ESB placement following
what is done in the tutorial
load_package flow
execute_flow -compile

project_close

1 The assignments created or modified while a project is openare
not committed to the Quartus II settings files unless you
explicitly call export_assignments or project_close
(unless -dont_export_assignments is specified). In some
cases, such as when running execute_flow, the Quartus II
software automatically commits the changes.

Compiling Designs

You can run the Quartus II command-line executables from Tcl scripts
either with the included ::quartus::flow package to run various
Quartus II compilation flows, or by running each executable directly.

The ::quartus::flow Package

The ::quartus::flow package includes two commands for running
Quartus II command-line executables, either individually or together in
standard compilation sequence. The execute_module command
allows you to run an individual Quartus II command-line executable. The
execute_flow command allows you to run some or all of the modules
in commonly-used combinations.

Altera recommends using the ::quartus::flow package instead of
using system calls to run compiler executables.

Another way to run a Quartus II command-line executable from the Tcl
environment is by using the qexec Tcl command, a Quartus II
implementation of Tcl's exec command. For example, to run the Quartus
II technology mapper on a given project, type:

qexec "quartus_map <project_name>" r

3–14 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

When you use the qexec command to compile a design, assignments
made in the Tcl script (or from the Tcl shell) are not exported to the project
database and settings file before compilation. Use the
export_assignments command or compile the project with
commands in the ::quartus::flow package to ensure assignments are
exported to the project database and settings file.

1 You can also use the Tcl exec command to perform command-
line system calls. However, Altera recommends using the
qexec command to avoid limitations with Tcl version 8.3.
Whether using exec or qexec, use caution when making
system calls.

You can also run executables directly in a Tcl shell, using the same syntax
as at the system command prompt. For example, to run the Quartus II
technology mapper on a given project, type the following at the Tcl shell
prompt:

quartus_map <project_name> r

Extracting Report Data

Once a compilation finishes, you may need to extract information from
the report to evaluate the results. For example, you may need to know
how many device resources the design uses, or whether it meets your
performance requirements. The Quartus II Tcl API provides easy access
to report data so you don't have to write scripts to parse the text report
files.

You can use commands that access report data one row at a time, or a cell
at a time. If you know the exact cell or cells you want to access, use the
get_report_panel_data command and specify the row and column
names (or x and y coordinates) and the name of the appropriate report
panel. At times you may need to search for data in a report panel. To do
this, use a loop that reads the report one row at a time with the
get_report_panel_row command.

Report panels are arranged hierarchically, and each level of hierarchy is
denoted by the string “||“ in the panel name. For example, the name of
the Fitter Settings report panel is “Fitter||Fitter Settings” because it is in
the Fitter folder. Panels at the highest hierarchy level do not use the “||”
string. For example, the Flow Settings report panel is named “Flow
Settings.”

The following example prints the number of failing paths in each clock
domain in your design. It uses a loop to access each row of the Timing
Analyzer Summary report panel. Clock domains are listed in the column

Altera Corporation 3–15
August 2004 Preliminary

Examples

named Type with the format Clock Setup:'<clock name>'. Other
summary information is listed in the Type column as well. If the Type
column matches the pattern "Clock Setup*”, the script prints the
number of failing paths listed in the column named Failed Paths.

load_report
set report_panel_name "Timing Analyzer||Timing Analyzer Summary"
set num_rows [get_number_of_rows -name $report_panel_name]
set type_column [get_report_panel_column_index -name $report_panel_name \
 "Type"]
set failed_paths_column [get_report_panel_column_index -name \

$report_panel_name "Failed Paths"]
for {set i 1} {$i < $num_rows} {incr i} {

set report_row [get_report_panel_row -name $report_panel_name -row $i]
set row_type [lindex $report_row $type_column]
set failed_paths [lindex $report_row $failed_paths_column]
if { [string match "Clock Setup*" $row_type] } {

puts "$row_type has $failed_paths failing paths"
}

}
unload_report

Using Collection Commands

Some Quartus II Tcl functions can return very large sets of data which
would be inefficient as Tcl lists. These data structures are referred to as
collections and the Quartus II Tcl API uses a collection ID to access the
collection. There are two Quartus II Tcl commands for working with
collection, foreach_in_collection and get_collection_size.
Use the set command to assign a collection ID to a variable.

f For information about which Quartus II Tcl commands return collection
IDs, refer to help for the foreach_in_collection command.

The foreach_in_collection command

The foreach_in_collection command is similar to the foreach Tcl
command. Use it to iterate through all elements in a collection. The
following example prints all instance assignments in an open project.

set all_instance_assignments [get_all_instance_assignments -name *]
foreach_in_collection asgn $all_instance_assignments {

set to [lindex $asgn 2]
set name [lindex $asgn 3]
set value [lindex $asgn 4]
puts "Assignment to $to: $name = $value"

}

3–16 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

The get_collection_size command

Use the get_collection_size command to get the number of
elements in a collection. The following example prints the quantity of
global assignments in an open project:

set all_global_assignments [get_all_global_assignments -name *]
set num_global_assignments [get_collection_size $all_global_assignments]
puts "There are $num_global_assignments global assignments in your project"

Timing Analysis

The following example script uses the quartus_tan executable to perform
a timing analysis on the fir_filter tutorial design.

The fir_filter design is a two-clock design that requires a base clock
and a relative clock relationship for timing analysis. This script first does
an analysis of the two-clock relationship and checks for tSU slack between
clk and clkx2. The first pass of the timing analysis discovers a negative
slack for one of the clocks. The second part of the script adds a multicycle
assignment from clk to clkx2 and re-analyzes the design as a multi-
clock, multicycle design.

The script does not recompile the design with the new timing
assignments, and timing-driven compilation is not used in the synthesis
and placement of this design. New timing assignments are added only for
the timing analyzer to analyze the design by using the
create_timing_netlist and report_timing Tcl commands.

1 You must compile the project before running the script example
below.

This Tcl file is to be used with quartus_tan.exe
This Tcl file will do the Quartus II tutorial fir_filter design
timing analysis portion by making a global timing assignment and
creating multi-clock assignments and run timing analysis
for a multi-clock, multi-cycle design

set the project_name to fir_filter
set the revision_name to filtref
set project_name fir_filter
set revision_name filtref

open the project
project_name is the project name
project_open -revision $revision_name $project_name;

Doing TAN tutorial steps this section re-runs the timing
analysis module with multi-clock and multi-cycle settings

Altera Corporation 3–17
August 2004 Preliminary

Examples

#------ Make timing assignments ------#

#Specifying a global FMAX requirement (tan tutorial)
set_global_assignment -name FMAX_REQUIREMENT 45.0MHz
set_global_assignment -name CUT_OFF_IO_PIN_FEEDBACK ON

create a base reference clock "clocka" and specifies the
following:
BASED_ON_CLOCK_SETTINGS = clocka;
INCLUDE_EXTERNAL_PIN_DELAYS_IN_FMAX_CALCULATIONS = OFF;
FMAX_REQUIREMENT = 50MHZ;
DUTY_CYCLE = 50;
Assigns the reference clocka to the pin "clk"
create_base_clock -fmax 50MHZ -duty_cycle 50 clocka -target clk

creates a relative clock "clockb" based on reference clock
"clocka" with the following settings:
BASED_ON_CLOCK_SETTINGS = clocka;
MULTIPLY_BASE_CLOCK_PERIOD_BY = 1;
DIVIDE_BASE_CLOCK_PERIOD_BY = 2;clock period is half the base clk
DUTY_CYCLE = 50;
OFFSET_FROM_BASE_CLOCK = 500ps;The offset is .5 ns (or 500 ps)
INVERT_BASE_CLOCK = OFF;
Assigns the reference clock to pin "clkx2"
create_relative_clock -base_clock clocka -duty_cycle 50\
-divide 2 -offset 500ps -target clkx2 clockb

create new timing netlist based on new timing settings
create_timing_netlist

does an analysis for clkx2
Limits path listing to 1 path
Does clock setup analysis for clkx2
report_timing -npaths 1 -clock_setup -file setup_multiclock.tao

The output file will show a negative slack for clkx2 when only
specifying a multi-clock design. The negative slack was created
by the 500 ps offset from the base clock

removes old timing netlist to allow for creation of a new timing
netlist for analysis by report_timing
delete_timing_netlist

adding a multi-cycle setting corrects the negative slack by # adding a
multicycle assignment to clkx2 to allow for more
set-up time
set_multicycle_assignment 2 -from clk -to clkx2

create a new timing netlist based on additional timing
assignments create_timing_netlist

outputs the result to a file for clkx2 only

3–18 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

report_timing -npaths 1 -clock_setup -clock_filter clkx2 \
 -file clkx2_setup_multicycle.tao
The new output file will show a positive slack for the clkx2
project_close

EDA Tool Assignments

You can target EDA tools for a project in the Quartus II software in Tcl by
using the set_global_assignment Tcl command. To use the default
tool settings for each EDA tool, you need only specify the EDA tool to be
used. The EDA interfaces available for the Quartus II software cover
design entry, simulation, timing analysis and board design tools. More
advanced EDA tools such as those for formal verification and resynthesis
are supported by their own global assignment.

The global options used for interface to EDA tools in the Quartus II
software are shown below:

■ EDA_DESIGN_ENTRY_SYNTHESIS_TOOL
■ EDA_SIMULATION_TOOL
■ EDA_TIMING_ANALYSIS_TOOL
■ EDA_BOARD_DESIGN_TOOL
■ EDA_FORMAL_VERIFICATION_TOOL
■ EDA_RESYNTHESIS_TOOL

Altera Corporation 3–19
August 2004 Preliminary

Examples

By default, these project options are set to <none>. Table 3–5 lists the
EDA interface options available in the Quartus II software. Enclose
interface assignment options that contain spaces in quotation marks.

Table 3–5. EDA Interface Options

Option Acceptable Values

Design Entry
(EDA_DESIGN_ENTRY_SYNTHESIS_TOOL)

Design Architect
Design Compiler
FPGA Compiler
FPGA Compiler II
FPGA Compiler II Altera Edition
FPGA Express
LeonardoSpectrum
LeonardoSpectrum-Altera (Level 1)
Synplify
Synplify Pro
ViewDraw
Precision Synthesis
Custom

Simulation
(EDA_SIMULATION_TOOL)

ModelSim (VHDL output from the Quartus II software)
ModelSim (Verilog HDL output from the Quartus II software)
ModelSim-Altera (VHDL output from the Quartus II
software)
ModelSim-Altera (Verilog HDL output from the Quartus II
software)
SpeedWave
VCS
Verilog-XL
VSS
NC-Verilog (Verilog HDL output from the Quartus II
software)
NC-VHDL (VHDL output from the Quartus II software)
Scirocco (VHDL output from the Quartus II software)
Custom Verilog HDL
Custom VHDL

Timing Analysis
(EDA_TIMING_ANALYSIS_TOOL)

Prime Time (VHDL output from the Quartus II software)
Prime Time (Verilog HDL output from the Quartus II
software)
Stamp (board model)
Custom Verilog HDL
Custom VHDL

Board level tools
(EDA_BOARD_DESIGN_TOOL)

Signal Integrity (IBIS)
Symbol Generation (ViewDraw)

Formal Verification
(EDA_FORMAL_VERIFICATION_TOOL)

Conformal LEC

Resynthesis
(EDA_RESYNTHESIS_TOOL)

PALACE
Amplify

3–20 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

For example, to generate NC-Sim Verilog simulation output,
EDA_SIMULATION_TOOL should be set to target NC-Sim Verilog as the
desired output, as shown below:

set_global_assignment -name eda_simulation_tool\
"NcSim (Verilog HDL output from Quartus II)"

The following example shows compilation of the fir_filter design
files, generating a VHO file output for NC-Sim Verilog simulation:

This script works with the quartus_sh executable
Set the project name to filtref
set project_name filtref

Open the Project. If it does not already exist, create it
if [catch {project_open $project_name}] {project_new \
$project_name}

Set Family
set_global_assignment -name family APEX 20KE

Set Device
set_global_assignment -name device ep20k100eqc208-1

Optimize for speed
set_global_assignment -name optimization_technique speed

Turn-on Fastfit fitter option to reduce compile times
set_global_assignment -name fast_fit_compilation on

Generate a NC-Sim Verilog simulation Netlist
set_global_assignment -name eda_simulation_tool "NcSim\
(Verilog HDL output from Quartus II)"

Create an FMAX=50MHz assignment called clk1 to pin clk
create_base_clock -fmax 50MHz -target clk clk1

Create a pin assignment on pin clk
set_location -to clk Pin_134

Compilation option 1
Always write the assignments to the constraint files before
doing a system call. Else, stand-alone files will not pick up
the assignments
#export_assignments
#qexec quartus_map <project_name>
#qexec quartus_fit <project_name>
#qexec quartus_asm <project_name>
#qexec quartus_tan <project_name>
#qexec quartus_eda <project_name>

Compilation option 2 (better)
Using the ::quartus::flow package, and execute_flow command will
export_assignments automatically and be equivalent to the steps
outlined in compilation option 1
load_package flow

Altera Corporation 3–21
August 2004 Preliminary

Examples

execute_flow -compile

Close Project
project_close

There are custom options available to target other EDA tools. For custom
EDA configurations, you can change the individual EDA interface
options by making additional assignments.

f For a complete list of each EDA setting line available, see “EDA Tool
Setting Section (Settings and Configuration Files)” in Quartus II Help.

Importing LogicLock Functions

The following Tcl script shows how a LogicLock function can be imported
into a project. This example is based on the LogicLock tutorial design
topmult. The script assumes that the Verilog Quartus Mapping file
(.vqm) named pipemult.vqm and the Quartus II Setting File named
pipemult.qsf have been generated already and placed in the topmult
project directory. To import LogicLock regions into a project, the
quartus_cdb executable must be used.

Tcl file created for quartus_cdb to import LogicLock
pipemult.vqm and pipemult.qsf into the topmult project
This Tcl script assumes that pipemult.vqm and pipemult.qsf
have been generated in the lockmult project.

Since ::quartus::flow is not pre-loaded
by quartus_cdb, load this package now
before using the flow Tcl API
Type "help -pkg flow" to view information
about the package
load_package flow

set required_fmax 150.00MHz

set project_name topmult

$project_name contains the project
name, in this case fir_filter
Require package ::quartus::project
load_package project

project_open $project_name

#------ Make global assignments ------#

remove bdf file from project
set_global_assignment -name "BDF_FILE" "pipemult.bdf" -remove
add VQM file to project
set_global_assignment -name "VQM_FILE" "pipemult.vqm"

analyze design with VQM file
execute_module -tool map

3–22 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

import LogicLock constraints
load_package logiclock
initialize_logiclock

imports the pipemult.qsf file to the project topmult.qsf
logiclock_import -no_pins

uninitialize_logiclock

compile entire design
execute_flow -compile

#------ Report Fmax from report ------#
load_package report
load_report
set actual_fmax [get_timing_analysis_summary_results -\
clock_setup clk -actual]
puts ""
puts "---"
puts "Required Fmax: $required_fmax Actual Fmax: $actual_fmax"
puts "---"

project_close

f For additional information on the LogicLock design methodology, see
the LogicLock Design Methodology chapter in Volume 2 of the
Quartus II Handbook.

Using the Quartus II Tcl Shell in Interactive Mode

This section presents an example of using the quartus_sh interactive shell
to make some project assignments and compile the FIR filter tutorial
project. This example assumes that you already have the FIR filter tutorial
design files in a project directory.

To begin, run the interactive Tcl shell. The command and initial output are
shown below:

C:\>quartus_sh -s
Info:**
Info: Running Quartus II Shell
Info: Version 4.0 Internal Build 131 10/06/2003 SJ Full Version
Info: Copyright (C) 1991-2003 Altera Corporation. All rights reserved.
Info: Quartus is a registered trademark of Altera Corporation in the
Info: US and other countries. Portions of the Quartus II software
Info: code, and other portions of the code included in this download
Info: or on this CD, are licensed to Altera Corporation and are the
Info: copyrighted property of third parties who may include, without
Info: limitation, Sun Microsystems, The Regents of the University of
Info: California, Softel vdm., and Verific Design Automation Inc.
Info: Warning: This computer program is protected by copyright law
Info: and international treaties. Unauthorized reproduction or
Info: distribution of this program, or any portion of it, may result

Altera Corporation 3–23
August 2004 Preliminary

Examples

Info: in severe civil and criminal penalties, and will be prosecuted
Info: to the maximum extent possible under the law.
Info: Processing started: Thu Nov 20 19:54:12 2003
Info:***
Info: The Quartus II Shell supports all TCL commands in addition
Info: to Quartus II Tcl commands. All unrecognized commands are
Info: assumed to be external and are run using Tcl's "exec"
Info: command.
Info: - Type "exit" to exit.
Info: - Type "help" to view a list of Quartus II Tcl packages.
Info: - Type "help -pkg <package name>" to view a list of Tcl commands
Info: available for the specified Quartus II Tcl package.
Info: - Type "help -tcl" to get an overview on Quartus II Tcl usages.
Info: **
tcl>

At the Tcl prompt, create a new project called fir_filter with a revision
name called filtref by typing the following command:

tcl> project_new -revision filtref fir_filter r

1 If the project file and project name are the same, the Quartus II
software gives the revision the same name as the project.

Since the revision named filtref matches the top-level file, all design files
are picked up from the hierarchy tree automatically.

Next, set a global assignment for the device with the following command:

tcl> set_global_assignment -name family Cycloner

f To learn more about assignment names that can be used with the -name
option, see “Settings and Configuration Files Introduction” in Quartus II
Help.

1 For assignment values that contain spaces, the value should be
enclosed in quotation marks.

To quickly compile a design, use the ::quartus::flow package, which
properly exports the new project assignments and compiles the design
using the proper sequence of the command-line executables. First load
the package:

tcl> load_package flow r
1.0

For additional help on the ::quartus::flow package, view the
command-line help at the Tcl prompt by typing:

tcl> help -pkg ::quartus::flow r

3–24 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

This sample shows an alternative command and the resulting output:

tcl> help -pkg flow
--

Tcl Package and Version:

 ::quartus::flow 1.0

Description:

 This package contains the set of Tcl functions
 for running flows or command-line executables.

Tcl Commands:

 execute_flow
 execute_module

--

tcl>

This help display gives information on the ::quartus::flow package
and the commands that are available with the package. To read help on
the execute_flow Tcl command, short help displays the options:

tcl> execute_flow -h r

Long help displays additional information and example usage:

tcl> execute_flow -long_help r

or

tcl> help -cmd execute_flow r

To perform a full compilation of the FIR filter design, use the
execute_flow command with the -compile option, as shown in the
following example:

tcl> execute_flow -compile r
Info:***
Info: Running Quartus II Analysis & Synthesis
Info: Version 4.0 SJ Full Version
Info: Processing started: Mon Nov 18 09:30:47 2003
Info: Command: quartus_map --import_settings_files=on --
export_settings_files=of fir_filter -c filtref

Altera Corporation 3–25
August 2004 Preliminary

Getting Help on Tcl & Quartus II Tcl APIs

.

.

.
Info: Writing report file filtref.tan.rpt
tcl>

This script compiles the FIR filter tutorial project, exporting the project
assignments and running quartus_map, quartus_fit, quartus_asm and
quartus_tan. This sequence of events is the same as happens when
choosing Start Compilation (Processing menu) in the Quartus II GUI.

When you are finished with a project, close it using the project_close
command:

tcl> project_close r
tcl>

Then to exit the interactive Tcl shell, type exit.

tcl> exit r

Getting Help on
Tcl & Quartus II
Tcl APIs

Quartus II Tcl help allows easy access to information on the Quartus II Tcl
commands. To access the help information, type help at a command
prompt, as shown below (with sample output):

tcl> help

Available Quartus II Tcl Packages:

Loaded Not Loaded
------------------ --------------------------
::quartus::device ::quartus::flow
::quartus::misc ::quartus::report
::quartus::project

* Type "help -tcl"
 to get an overview on Quartus II Tcl usages.

tcl>

Using the -tcl option with help displays an introduction to the
Quartus II Tcl API that focuses on how to get help for Tcl commands
(short help and long help) and Tcl packages.

3–26 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Table 3–6 summarizes the help options available in the Tcl environment.

Table 3–6. Help Options Available in the Quartus II Tcl Environment (Part 1 of 2)

Help Command Description

help To view a list of available Quartus II Tcl packages, loaded and not
loaded.

help -tcl To view a list of commands used to load Tcl packages and access
command-line help.

help -pkg <package_name>
[-version <version number>]

To view help for a specified Quartus II package thatincludes the list
of available Tcl commands. For convenience, you can omit the
::quartus:: package prefix, and type help -pkg
<package name> r.
If you do not specify the -version option, help for the currently
loaded package is displayed by default. If the package for which
you want help is not loaded, help for the latest version of the
package is displayed by default.

Examples:
help -pkg ::quartus::p r
help -pkg ::quartus::project r
help -pkg project rhelp -pkg project -version
1.0 r

<command_name> -h
or
<command_name> -help

To view short help for a Quartus II Tcl command for which the
package is loaded.

Examples:
project_open -h r
project_open -help r

package require
::quartus::<package name>
[<version>]

To load a Quartus II Tcl package with the specified version. If
<version> is not specified, the latest version of the package is
loaded by default.

Example:
package require ::quartus::project 1.0 r

This command is similar to the load_package command.
The advantage of using load_package is that you can alternate
freely between different versions of the same package.
Type <package name> [-version <version number>] r to
load a Quartus II Tcl package with the specified version. If the
-version option is not specified, the latest version of the
package is loaded by default.

Example:
load_package ::quartus::project -version 1.0 r

Altera Corporation 3–27
August 2004 Preliminary

Getting Help on Tcl & Quartus II Tcl APIs

There are two types of help for Tcl commands:

■ For information on the usage and a brief description of a Tcl
command type, use the -help option. (The -h command-line option
may be used instead of -help, if preferred.) If the Tcl command is
part of a Tcl package that is not loaded, using the -help option
returns “invalid command name" as an error message.

■ For more detailed help on a given Tcl command, use the
-long_help option or type help -cmd <Tcl command name>. If the
Tcl command is part of a Tcl package that is not loaded, typing
<command name> -long_help returns the error message
“invalid command name.”

1 Using the -cmd option does not require that the specific Tcl
command be loaded. Only the -long_help option requires
that the relevant Tcl package be loaded.

help -cmd <command name>
[-version <version number>]
or
<command name> -long_help

To view long help for a Quartus II Tcl command. Only
<command name> -long_help"requires that the associated Tcl
package is loaded.
If you do not specify the -version option, help for the currently
loaded package is displayed by default.
If the package for which you want help is not loaded,help for the
latest version of the package is displayedby default.

Examples:
project_open -long_help r
help -cmd project_open r
help -cmd project_open -version 1.0 r

help -examples To view examples of Quartus II Tcl usage.

help -quartus To view help on the predefined global Tcl array that can be
accessed to view information about the Quartus II executable that
is currently running.

quartus_sh --qhelp To launch the Tk viewer for Quartus II command-line help and
display help for the command-line executables and Tcl API
packages. See “The Tcl/Tk GUI Help Interface” on page 3–28 for
more information.

Table 3–6. Help Options Available in the Quartus II Tcl Environment (Part 2 of 2)

Help Command Description

3–28 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

The Tcl/Tk GUI Help Interface

For a complete list of package and commands available with the
Quartus II software, open the help browser that lists all Quartus II
command-line executables and Tcl API packages and their respective
commands. To open the help browser, type the following command at a
system command prompt:

C:\> quartus_sh --qhelp

This runs a Tcl/Tk script that provides help for Quartus II Command-line
executables and Tcl API packages and commands.

f For more information on this utility, see the Command-Line Scripting
chapter in Volume 2 of the Quartus II Handbook.

Quartus II
Legacy Tcl
Support

The Quartus II software version 3.0 and later command-line executables
do not support the Tcl commands used in previous versions of the
Quartus II software. These commands are supported in the GUI by using
the Quartus II Tcl console or by using the quartus_cmd executable at the
command prompt. If you source Tcl scripts developed for an earlier
version of the Quartus II software using either of these methods, the
project assignments are ported to the project database and settings file.
You can then use the command-line executables to process the resulting
project. This may be necessary if you create a Tcl file using a third-party
EDA tool that does not generate Tcl scripts for the most recent version of
the Quartus II software.

Altera recommends creating all new projects and Tcl scripts with the
latest version of the Quartus II Tcl API.

References For more information on using Tcl, see the following sources:

■ Practical Programming in Tcl and Tk, Brent B. Welch
■ Tcl and the TK Toolkit, John Ousterhout
■ Effective Tcl/TK Programming, Michael McLennan and Mark Harrison
■ Tcl Developer Xchange at http://tcl.activestate.com

Altera Corporation 4–1
June 2004

4. Quartus II Project
Management

Introduction FPGA designs once required just one or two engineers, but today’s larger
and more sophisticated FPGA designs are often developed by several
engineers and are constantly changing throughout the project. To ensure
efficient design coordination, designers are required to keep track of their
changes to the project. To help designers manage their FPGA designs, the
Quartus® II software provides the Revisions, Copy Project, and
Version-Compatible Database features.

In the Quartus II software, a revision is one set of assignments and
settings. A project can have multiple revisions, each with their own set of
assignments and settings. Creating multiple revisions allows you to
change assignments and settings while preserving previous results.

A version is a Quartus II project that includes one set of design files and
one or more revisions (assignments and settings for your project).
Creating multiple versions with the Copy Project feature allows you to
edit a copy of your design files while preserving the original functionality
of your design.

The Version-Compatible Database feature allows databases to be
compatible across different versions of the Quartus II software, thus
avoiding unnecessary recompilations.

Using Revisions
with Your Design

The Revisions feature allows you to create a new set of assignments and
settings for your design without losing your previous assignments and
settings. This ability allows you to explore different assignments and
settings for your design and then compare the results.

There are several ways to use the revisions feature. The first method is to
create a new revision of your design that is not based on any previous
revision. For example, early in your design you may want to create a
revision containing assignments that target area optimization and
another revision containing assignments that target fMAX optimization.

The second method is to create a new revision based on an existing
revision and then try new settings and assignments in the new revision.
Your new revision will already include all the assignments and settings
made in the previous revision. Working on a revision based on another
revision allows you to revert to the original revision if you are not
satisfied with the results from the new revision.

qii52012-1.0

4–2 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

The third method is to compare different compilation results from
different revisions, select the revision that best meets your design
requirements, create a new revision based on the best revision, and
perform further optimizations until the design meets all design
requirements.

Creating and Deleting Revisions

All Quartus II assignments and settings are stored in the Quartus Settings
File (QSF). Each time you create a new revision the Quartus II software
creates a new QSF and adds the name of the new revision to the list of
revisions in the Quartus Project File (QPF). Revisions are managed with
the Revisions dialog box, allowing you to set the current revision, create,
delete, and compare revisions in a project.

To create a revision:

1. If you have not already done so, create a new project or open an
existing project.

2. Choose Revisions (Project menu).

3. If you want to base the new revision on an existing revision for the
current design, select the existing revision in the Revisions list.

4. Click Create.

5. In the Create Revision dialog box, type the name of the new
revision in the Revision name box.

6. If you want to base the new revision on an existing revision for the
current design, and you did not select the revision in Step 3, then
select the revision in the Based on revision list.

or

If you do not want to base the new revision on an existing revision
for the current design, select the blank entry in the Based on revision
list.

7. If you want, edit the description of the revision in the Description
box.

8. If you based the new revision on an existing revision for the current
design, and you want the new revision to contain the database
information from the existing revision, turn on Copy database.

Altera Corporation 4–3
June 2004

Using Revisions with Your Design

9. If you want to specify the new revision as the current revision, turn
on Set as current revision.

10. Click OK.

11. In the Revisions dialog box, click Close.

To delete a revision that is not a design’s current revision:

1. If you have not already done so, open an existing project.

2. Choose Revisions (Project menu).

3. In the Revisions list, select the revision you want to delete.

4. Click Delete.

5. Click Close.

1 To delete the current revision, select a different revision as the
current revision first.

Comparing Revisions

You can compare the results of multiple revisions side by side with the
Compare Revisions dialog box. To compare all revisions in a single
window, click Compare in the Revisions dialog box (Project menu). In
the Compare Revisions dialog box (see Figure 4–1), the results of each
revision in three categories (Analysis & Synthesis, Fitter, and Timing
Analyzer) are compared side by side.

4–4 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Figure 4–1. Compare Revisions Dialog Box

You can also compare revisions from another project. To do this, click
Compare to other project in the Compare Revisions dialog box and
select a QPF to compare with.

Creating
Different
Versions of Your
Design

Managing different versions of design files in a large project can become
difficult. To assist in this task, the Quartus II software provides utilities to
copy and save different versions of your project. Creating a version of
your project includes copying all your design files, your Quartus II
settings file, and all your associated revisions.

Creating a new version of your project with the Quartus II software
involves creating a copy of your project and then editing your design
files. For example, you have a design that is compatible with a 32-bit data
bus and now you need to create a new version of the design to interface
with a 64-bit data bus. To solve this problem, create a new version of your
project with the Copy Project command (Project menu), and make the
necessary changes to your design files.

Creating a new version of your project with an Electronic Data
Interchange Format (EDIF) or Verilog Quartus Mapping (VQM) netlist
from a third-party EDA synthesis tool involves creating a copy of your
project and then replacing the previous netlist file with the newly

Altera Corporation 4–5
June 2004

Creating Different Versions of Your Design

generated netlist file. Use the Copy Project command (Project menu) to
create a copy of your design and use the Add/Remove Files from Project
command (Project menu) to add and remove design files.

To create a new version of your project, use the Copy Project command
(Project menu).

1. Choose Copy Project (Project menu). This opens the Copy Project
dialog box (see Figure 4–2).

2. Browse or type the path to your new project in the Destination
directory box.

3. Type the new project name in the New project name box.

4. To open the new project immediately, turn on the Open new project
in Quartus II option.

5. Click OK.

Figure 4–2. Copy Project Dialog Box

Archiving Projects

You can use the Quartus II Archive Project feature to create a single
compressed Quartus II Archive File (.qar) of your project containing all
your design, project, and settings files. You also have the option to include
additional files and the project database. The QAR file contains all the
files required to perform a full compilation to restore the original results.

A single project can contain hundreds of files, and it may be difficult to
transfer a project between engineers. The archive file generated by the
Archive Project feature (see Figure 4–3) can easily be shared between
engineers.

4–6 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Figure 4–3. Archive Project Dialog Box

To archive a project:

1. If you have not already done so, create a new project or open an
existing project.

2. If you want, analyze or compile the design.

3. Choose Archive Project (Project menu).

4. Type a name for the Quartus II Archive File (.qar) in Archive file
name, or select a name with Browse (...).

5. To include the outputs of compilation and simulation, turn on
Include database from compilation and simulation.

6. To include the Version-Compatible Database Files, turn on Include
Version-Compatible Database Files.

7. To include functions from system libraries, turn on Include
functions from system libraries.

8. Click Add/Remove Files to edit the contents of the QAR file.

9. Click OK.

1 Altera® recommends that you perform Analysis and Synthesis
before archiving a project to ensure that all design files are
located and archived.

Altera Corporation 4–7
June 2004

Version-Compatible Databases

To restore an archived project:

1. Choose Restore Archived Project (Project menu).

2. In the Archive name box, type the path and file name of the
Quartus II Archive File (.qar) you wish to restore, or select a QAR
File with Browse (...).

3. In the Destination folder box, type or select the path of the folder
into which you wish to restore the contents of the QAR File, or select
a folder with Browse (...).

4. Click Show log to view the Quartus II Archive Log File (.qarlog) for
the project you are restoring from the QAR File.

5. Click OK.

6. If necessary, recompile the project.

Version-
Compatible
Databases

In the past, compilation databases were locked to the current version of
the Quartus II software. With the introduction of the Version-Compatible
Database feature in the Quartus II software version 4.1, you can export a
version-compatible database and import it into a later version of the
Quartus II software. For example, with the same set of design files, you
can export a database generated from the Quartus II software version 4.1
and import it into the Quartus II software versions 4.1 and later without
having to recompile your design.

Perform the following steps to export a version-compatible database:

1. Choose Export Database (Project menu).

2. Browse or type in a path in the Export Directory box.

3. Click OK.

Perform the following steps to import a version-compatible database:

1. Choose Import Database (Project menu).

2. Browse to the directory to which the database was previously
exported. The default directory is <project name>\export_db.

3. Click OK.

To save the database in a version-compatible format during every
compilation, perform the following steps:

4–8 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

1. Choose Settings (Assignments menu).

2. Select the Compilation Process page.

3. Turn on the Save the database in a version-compatible format
option.

4. Browse to the directory in which you want to save the database.

5. Click OK.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some of these procedures at a command
prompt.

For detailed information about specific scripting command options and
Tcl API packages, type quartus_sh --qhelp at a system command
prompt to run the Quartus II Command-Line and Tcl API Help browser.

f For more information on Quartus II scripting support, including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters
of the Quartus II Handbook.

Managing Revisions

You can use the following commands to create and manage revisions. For
more information about managing revisions, including creating and
deleting revisions, setting the current revision, and getting a list of
revisions, see “Creating and Deleting Revisions” on page 4–2.

Creating Revisions

The following Tcl command creates a new revision called speed_ch
based on a revision called chiptrip and sets it as the current revision.
The –based_on and –set_current options are optional.

create_revision speed_ch -based_on chiptrip -set_current

Setting the Current Revision

Use the following Tcl command to set the current revision:

set_current_revision <revision name>

Altera Corporation 4–9
June 2004

Scripting Support

Getting a List of Revisions

Use the following Tcl command to get a list of revisions in the opened
project:

get_project_revisions

Deleting Revisions

Use the following Tcl command to delete a revision:

delete_revision <revision name>

Archiving Projects

You can archive projects with a Tcl command or with a command run at
the system command prompt. For more information about archiving
projects, see “Archiving Projects” on page 4–5.

The following Tcl command creates a project archive with the default
settings and overwrites the specified archived file if it already exists:

project_archive archive.qar -overwrite

Type the following command at a command prompt to create a project
archive:

quartus_sh --archive top r

Restoring Archived Projects

You can restore archived projects with a Tcl command or with a command
run at a command prompt. For more information about restoring
archived projects, see page 4–7.

The following Tcl command restores the project archive named
archive.qar in the subdirectory named restored and overwrites existing
files:

project_restore archive.qar -destination restored -overwrite

Type the following command at a command prompt to restore a project
archive:

quartus_sh --restore archive.qar r

4–10 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Importing and Exporting Version-Compatible Databases

You can import and export version-compatible databases with either a Tcl
command or a command run at a command prompt. For more
information about importing and exporting version-compatible
databases, see “Version-Compatible Databases” on page 4–7.

1 The flow package and the database_manager package
contain commands to manage version-compatible databases.

Use the following commands from the database_manager package to
import or export version-compatible databases.

export_database <directory>
import_database <directory>

Use the following commands available in the flow package to import or
export version-compatible databases. If you use the flow package, you
will also need to specify the database directory variable name.

set_global_assignment \
-name VER_COMPATIBLE_DB_DIR <directory>
execute_flow –flow export_database
execute_flow –flow import_database

Add the following Tcl commands to automatically generate
version-compatible databases after every compilation:

set_global_assignment \
-name AUTO_EXPORT_VER_COMPATIBLE_DB ON \
set_global_assignment \
-name VER_COMPATIBLE_DB_DIR <directory>

The quartus_cdb and the quartus_sh executables provide
commands to manage version-compatible databases:

quartus_cdb <project> -c <revision> \
--export_database=<directory>
quartus_cdb <project> -c <revision> \
--import_database=<directory>

quartus_sh –flow export_database <project> -c <revision>
quartus_sh –flow import_database <project> -c <revision>

Conclusion Throughout the development of a successful FPGA design, designers
often try different settings and versions of their designs. The Revisions
feature in the Quartus II software facilitates the creation and management

Altera Corporation 4–11
June 2004

Conclusion

of revisions, which are sets of different assignments and settings. The
Copy Project feature allows you to create a new version of your design
by copying a set of design files and one or more revisions.

The Quartus II Version-Compatible Database feature saves compilation
time when moving to updated versions of the Quartus II software. These
features in the Quartus II software help facilitate efficient management of
your design to accommodate today’s more sophisticated FPGA designs.

4–12 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Altera Corporation Section II–1
Preliminary

Section II. Device & Board
Utilities

This section describes the design flow to assign and analyze pin-outs
using the Start I/O Assignment Analysis command in the Quartus® II
software, both with and without a complete design.

This section includes the following chapter:

■ Chapter 5, I/O Assignment Planning & Analysis

Revision History The table below shows the revision history for Chapter 5.

Chapter(s) Date / Version Changes Made

5 June 2004 v2.0 ● Scripting support section added.
● Updated coding examples.

Feb. 2004 v1.0 Initial release

Section II–2 Altera Corporation
Preliminary

Device & Board Utilities Quartus II Handbook, Volume 2

Altera Corporation 5–1
June 2004 Preliminary

5. I/O Assignment Planning &
Analysis

Introduction Today's FPGAs support multiple I/O standards and have high pin
counts. You must be able to make pin assignments efficiently for designs
in these advanced devices. You also need the ability to easily check the
legality of the pin assignments to ensure that the pin-out does not violate
any board layout guidelines such as pin spacing and current draw
limitations.

This chapter describes the design flow to assign and analyze pin-outs
using the Start I/O Assignment Analysis command in the Quartus® II
software, both before and after completion of your design.

I/O Assignment
Planning &
Analysis

Time-to-market constraints means that board layout is often done in
parallel with, or even prior to, creating your design. Therefore, checking
the legality of your I/O assignments early in the design process is often a
requirement.

The Start I/O Assignment Analysis command in the Quartus II software
provides the capability of checking your I/O assignments early in the
process. You can use this command to check the legality of your pin
assignments before, during, or after completion of your design. If design
files are available, you can use this command to perform more thorough
legality checks on your design's I/O pins and surrounding logic. These
checks include proper reference voltage pin usage, valid pin location
assignments, and acceptable mixed I/O standards.

The Start I/O Assignment Analysis command is available for the
Stratix® II, Stratix GX, Stratix, MAX® II, and Cyclone™ device families.

I/O Assignment
Planning &
Analysis Design
Flows

The I/O assignment planning and analysis design flows depend on
whether your project contains design files.

■ When the board layout must be complete before starting the FPGA
design, use the flow shown in Figure 5–1. This flow does not need
design files and checks the legality of your pin assignments.

■ With a complete design, use the flow shown in Figure 5–3 on
page 5–5. This flow uses design files to thoroughly check the legality
of your pin assignments and surrounding logic. For more
information on creating assignments, see the Assignment Editor
chapter in Volume 2 of the Quartus II Handbook.

qii52004 - 2.0

5–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Each flow involves creating pin assignments, running the analysis, and
reviewing the report file.

Altera suggests that you run the analysis each time you add or modify a
pin-related assignment. You can use the Start I/O Assignment Analysis
command repeatedly since it completes in a short time.

The analysis checks pin assignments and surrounding logic for illegal
assignments and violations of board layout rules. For example, the
analysis checks whether your pin location supports the I/O standard
assigned, current strength, supported VREF voltages, and whether a PCI
diode is permitted.

Along with the pin-related assignments, the Start I/O Assignment
Analysis command also checks blocks that directly feed or are fed by a
pin such as a phase-locked loop (PLL), low-voltage differential signal
(LVDS), or gigabit transceiver block.

Design Flow without Design Files

During the early stages of development of an FPGA device, board layout
engineers may request preliminary or final pin-outs. It is time consuming
to manually check to see whether the pin-outs violate any design rules.
Instead, you can use the Start I/O Assignment Analysis command to
quickly perform basic checks on the legality of your pin assignments.

1 Without a complete design, the analysis performs limited checks
and cannot guarantee that your assignments did not violate
design rules.

Altera Corporation 5–3
June 2004 Preliminary

I/O Assignment Planning & Analysis Design Flows

Figure 5–1. Assigning & Analyzing Pin-outs without Design Files

You can assign and analyze pin-outs using the Start I/O Assignment
Analysis command without design files by following these steps:

1. Create a Quartus II project.

2. Use the Assignment Editor or Tcl commands to create pin locations
and related assignments. For the I/O assignment analysis to
determine the type of a pin, you must reserve your I/O pins. See
“Creating I/O Assignments” on page 5–6.

3. Choose Start > Start I/O Assignment Analysis (Processing menu)
to start the analysis.

4. View the messages in the Compilation Report window, Fitter report
file (<project name>.fit.rpt) or in the Messages window.

5. Correct any errors and violations reported by the I/O assignment
analysis.

6. Rerun the Start I/O Assignment Analysis command until all errors
are corrected.

.qsf

Modify and correct illegal
assignments found in report file

Create pin-related assignments

Start I/O assignment analysis

 Quartus II project (.qpf)

Report file generated

5–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Design Flow with Complete or Partial Design Files

During a full compilation, the Quartus II software does not report illegal
pin assignments until the fitter stage. To validate pin assignments sooner,
you can run the Start I/O Assignment Analysis command after
performing analysis and synthesis and before performing a full
compilation. Typically, the analysis takes a short time. Figure 5–2
describes the benefits of using the Start I/O Assignment Analysis
command.

Figure 5–2. Saving Compilation Time with the Start I/O Assignment Analysis Command

The rules that can be checked by the I/O assignment analysis depends on
the completeness of the design. With a complete design, the Start I/O
Assignment Analysis command thoroughly checks the legality of all pin-
related assignments. With a partial design, the Start I/O Assignment
Analysis command checks the legality of those pin-related assignments
for which it has enough information.

For example, you might assign a clock to a user I/O pin instead of
assigning it to a dedicated clock pin. You design the clock to drive a PLL
that has not yet been instantiated in the design. Because the Start I/O
Assignment Analysis command is unaware of the logic that the pin
drives, it is not able to check that only a dedicated clock input pin can
drive the clock port of a PLL.

If you have a partial design, Altera recommends that you provide as
much of the design as possible, especially logic that connects to pins, to
obtain better coverage. For example, if your design includes PLLs or
LVDS blocks, you should include these MegaWizard® files in your project
for analysis.

Error
reported
and fixed

Full compilation

I/O
assignment

analysis

Full compilation

Full compilation

Error reported and fixed

Without
Start I/O Assignment Analysis

command

With
Start I/O Assignment Analysis

command

Altera Corporation 5–5
June 2004 Preliminary

I/O Assignment Planning & Analysis Design Flows

1 A top-level wrapper file would be an example of a partial
design.

Figure 5–3. Assigning & Analyzing Pin-outs with Design Files

Use the following steps to assign and analyze pin-outs using the Start I/O
Assignment Analysis command with design files:

1. Create a Quartus II project and include your design files in the
project.

2. Create pin-related assignments with the Assignment Editor.

3. Choose Start > Start Analysis & Synthesis (Processing menu) to
generate an internal mapped netlist.

Modify and Correct Illegal
Assignments Found in Report File

Analysis and Synthesis

Mapped Netlist

Start I/O Assignment Analysis

Report File Generated

Back Annotate I/O Assignment
Analysis Pin Placements

Quartus II Project (.qpf)

Create Pin-Related Assignments

Design Files .edf, .vqm, .v, .vhd, .bdf

Assignments Stored in QSF File

5–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

4. Choose Start > Start I/O Assignment Analysis (Processing menu)
to start the analysis.

5. View the messages in the report file or in the Messages window

6. Correct any errors and violations reported

7. Rerun the Start I/O Assignment Analysis command until all errors
are corrected.

Inputs Used for
I/O Assignment
Analysis

The Start I/O Assignment Analysis command reads an internal mapped
netlist and a Quartus II Settings File (.qsf). All assignments are stored in
the single QSF.

If you do not have any design files then the Start I/O Assignment
Analysis command reads only the QSF.

If you have a partial or complete design, the Start I/O Assignment
Analysis command reads in the QSF and the mapped netlist file.

Creating I/O Assignments

You can create pin-related assignments using the following features:

■ Assign SignalProbe Pins dialog box
■ Assignment Editor
■ Tcl Commands
■ Floorplan Editor

Reserving Pins

If you do not have any design files, you must create reserved pin
assignments in addition to your other pin-related assignments. Reserving
pins is necessary so that the Start I/O Assignment Analysis command
will understand the pin type (input, output, or bidirectional) and
correctly analyze the pin. You can reserve a pin by choosing Assignment
Editor (Assignments menu), and selecting Reserved Pin from the
Category list. In the spreadsheet interface, type in the pin name and select
from the reserved list (see Figure 5–4).

Altera Corporation 5–7
June 2004 Preliminary

Inputs Used for I/O Assignment Analysis

Figure 5–4. Reserving a Pin with the Assignment Editor

f For more information on using the Assignment Editor, see the
Assignment Editor chapter in Volume 2 of the Quartus II Handbook.

Location Assignments

You can assign a location to your pins using the Assignment Editor.
Choose Assignment Editor (Assignments menu) to open the Assignment
Editor. Select the pins category from the Category list. In the spreadsheet
interface, type in the pin name and select a location from the location list.
For Stratix II, Stratix GX, Stratix, and Cyclone devices, you can also assign
a pin to an I/O Bank or Edge location.

It is common to place a group of pins (buses) with compatible I/O
standards in the same bank. For example, two buses with two I/O
standards, 2.5 V and SSTL-II can be placed in the same I/O bank.

An easy way to place large buses that exceed the pins available in a
particular I/O bank is to use Edge location assignments. You can also use
Edge location assignments to improve circuit board routing ability of
large buses, since they are close together near an edge. Figure 5–5 shows
the Altera device package edges.

Figure 5–5. Package View of the Four Edges on an Altera Device

Top Edge

Bottom Edge

Left Edge Right Edge

5–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Assignments with the Floorplan Editor

You can also make pin location assignments with the Floorplan Editor.
Open the Timing Closure Floorplan by choosing Timing Closure
Floorplan (Assignments menu). In the Timing Closure Floorplan, you
can change the view between the package view and the interior cell view
from the View menu. You can use the top and bottom package view to
view the pins in the desired package. You can find the pad separation
between two pins with the interior cell view. In both views, you can drag
and drop pins from the Node Finder or from a graphic design file (GDF)
or block design file (BDF) file into the desired pin or bank (see Figure 5–6).

Figure 5–6. Creating Pin Location Assignments with the Node Finder & the Timing Closure Floorplan

Generating a Mapped Netlist

The Start I/O Assignment Analysis command uses a mapped netlist, if
available, to identify the pin type and the surrounding logic.

Choose Start > Start Analysis & Synthesis (Processing menu) to generate
a mapped netlist. You can also use the quartus_map executable to run
analysis and synthesis.

Altera Corporation 5–9
June 2004 Preliminary

Running the I/O Assignment Analysis

The mapped netlist is stored internally in the Quartus II database.

Running the I/O
Assignment
Analysis

You can run the Start I/O Assignment Analysis command from the
Quartus II software menu (see Figure 5–7) or from the command prompt.
Choose Start > Start I/O Assignment Analysis (Processing menu) or type
the following command in your project directory.

quartus_fit <project-name> --check_ios r

1 Running the Start I/O Assignment Analysis command
overwrites any previous fitter database. You can still view the
previous compilation report text file.

Figure 5–7. I/O Assignment Analysis Command from the Quartus II Software
Menu

Understanding the I/O Assignment Analysis Report

The Start I/O Assignment Analysis command generates a detailed
analysis report (see Figure 5–8) and a Pin-out File (.pin). You can view the
report file by choosing Compilation Report (Project menu). The Fitter
page of the Compilation report contains the following five sections:

5–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

■ Analyze I/O Assignment Summary
■ Floorplan View
■ Pin-Out File
■ Resource Section
■ Fitter Messages

The Resource Section categorizes the pins as Input Pins, Output Pins,
and Bidir Pins. You can use the I/O Bank Usage page under the
Resource Section to view the utilization of each I/O bank in your device.

Figure 5–8. Summary of the I/O Bank Usage in the I/O Assignment Analysis
Report

The Fitter Messages page stores all messages including errors, warnings,
and information messages. See “Detailed Error/Status Messages” on
page 5–11 for more information.

Suggested & Partial Placement

The Start I/O Assignment Analysis command automatically assigns
locations to pins that do not have pin location assignments. For example,
if you assign an Edge location to a group of LVDS pins, the I/O
assignment analysis assigns pin locations for each LVDS pin in the
specified edge location and then performs legality checks.

Choose Back-Annotate Assignments (Assignments menu), select Pin &
device assignments, and click OK to accept the suggested pin locations.
Back-annotation saves your pin and device assignments in the QSF.

Altera Corporation 5–11
June 2004 Preliminary

Scripting Support

Detailed Error/Status Messages

The Start I/O Assignment Analysis command provides detailed
messages to help you quickly understand and resolve pin assignment
errors. Each detailed message includes a related node name and a
description of the problem.

You can view the detailed messages in the Fitter Messages page in the
compilation report, and in the Processing tab in the Messages window.
Choose Utility Windows > Messages (View menu) to open the Messages
window.

Use the location box to help resolve the error messages. Select from the
location list and click Locate.

Following is an example of error messages reported by I/O assignment
analysis:

Figure 5–9. Error Message Report by I/O Assignment Analysis

Scripting
Support

You can run procedures and make settings described in this chapter with
a Tcl script. You can also run some procedures at a command prompt. For
more information about Tcl scripting, see the Tcl Scripting chapter in
Volume 2 of this handbook. For more information about command-line
scripting, see the Command-Line Scripting chapter in Volume 2 of this
handbook. For detailed information about scripting command options
type quartus_sh --qhelp r at a system command prompt.

Reserving Pins

Use the following Tcl command to reserve a pin. For more information
about reserving pins, see page 5–6.

set_instance_assignment -name RESERVE_PIN <value> -to
<signal name>r

5–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Valid values are “AS BIDIRECTIONAL”, ”AS INPUT TRI-STATED”,“AS
OUTPUT DRIVING AN UNSPECIFIED SIGNAL”, “AS OUTPUT
DRIVING GROUND” and “AS SIGNAL PROBE OUTPUT”. Include the
quotes when specifying the value.

Location Assignments

Use the following Tcl command to assign a signal to a pin or device
location. For more information about location assignments, see page
page 5–7.

set_location_assignment <location> -to <signal name>r
Valid locations are pin location names, such as Pin_A3. The Stratix series
products and Cyclone device families also support edge and I/O bank
locations. Edge locations are EDGE_BOTTOM, EDGE_LEFT, EDGE_TOP,
and EDGE_RIGHT. I/O bank locations include IOBANK_1 up to
IOBANK_n, where n is the number of I/O banks in a particular device.

Generating a Mapped Netlist

You can generate a mapped netlist with a Tcl command or with a
command run at a command prompt. For more information about
generating a mapped netlist, see page 5–8.

Tcl Command

Enter the following in a Tcl console or script:

execute_module -tool map

The execute_module command is in the flow package.

Command Prompt

Type the following at a (non-Tcl) system command prompt:

quartus_map <project name>r

Altera Corporation 5–13
June 2004 Preliminary

Conclusion

Running the I/O Assignment Analysis

You can run the I/O Assignment Analysis with a Tcl command or with a
command run at a command prompt. For more information about
running the I/O assignment analysis, see page 5–9.

Enter the following in a Tcl console or script:

execute_flow -check_ios

Conclusion The Start I/O Assignment Analysis command quickly and thoroughly
validates the legality of your pin-related assignments. This helps reduce
development time by catching illegal pin assignments early in the design
cycle without wasting long design compilations.

By providing the designer with more confidence in the device pin-outs at
an early stage, board layout engineers can work in parallel with FPGA
designers to achieve a time-to-market advantage.

5–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Altera Corporation Section III–1
Preliminary

Section III.
Area Optimization &

Timing Closure

Techniques for achieving the highest design performance are important
when designing for programmable logic devices (PLDs), especially
higher density FPGAs. The Altera® Quartus® II software offers many
advanced design analysis tools that allow for detailed timing analysis of
your design, including a fully integrated Timing Closure Floorplan
Editor. With these tools and options, critical paths can be easily
determined and located in the targeted device floorplan. This section
explains how to use these tools and options to enhance your FPGA design
analysis flow.

This section includes the following chapters:

■ Chapter 6, Design Optimization for Altera Devices

■ Chapter 7, Timing Closure Floorplan

■ Chapter 8, Netlist Optimizations and Physical Synthesis

■ Chapter 9, Design Space Explorer

■ Chapter 10, LogicLock Design Methodology

■ Chapter 11, Timing Closure in HardCopy Devices

■ Chapter 12, Synplicity Amplify Physical Synthesis Support

Section III–2 Altera Corporation
Preliminary

Area Optimization & Timing Closure Quartus II Handbook, Volume 2

Revision History The table below shows the revision history for Chapters 6 to 12.

Chapter(s) Date / Version Changes Made

6 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software

version 4.1.

Feb. 2004 v1.0 Initial release

7 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software

version 4.1.

Feb. 2004 v1.0 Initial release

8 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software

version 4.1.

Feb. 2004 v1.0 Initial release

9 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software

version 4.1.

Feb. 2004 v1.0 Initial release

10 August 2004 v2.1 ● New functionality in the Quartus II software
version 4.1 Sp1

June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software

version 4.1.

Feb. 2004 v1.0 Initial release

11 June 2004 v2.0 ● Updates to tables, figures.
● New functionality in the Quartus II software

version 4.1.

Feb. 2004 v1.0 Initial release

12 Feb. 2004 v1.0 Initial release.

Altera Corporation 6–1
June 2004 Preliminary

6. Design Optimization for
Altera Devices

Introduction Techniques for achieving the highest design performance are important
when designing for programmable logic devices (PLDs). The tools that
facilitate these techniques must provide the highest level of flexibility
without compromising ease-of-use. The optimization features available
in the Quartus® II software allow you to meet performance requirements
by facilitating optimization at multiple points in the design process. You
can apply optimizations to an overall design or to sub-modules of a
design that are integrated later.

f For more information on a block-based design approach, see the
Hierarchical Block-Based & Team-Based Design Flows chapter in Volume 1 of
the Quartus II Handbook.

This chapter explains techniques to reduce resource usage, improve
timing performance, and reduce compile times when designing with
Altera® devices. It also explains how and when to use some of the
Quartus II software features described in detail in other chapters of the
Quartus II Handbook.

The results of following these recommendations are design-specific.
Applying each technique may not always improve your results.
Quartus II options and settings are set to default values that, on average,
provide the best trade-off between compilation time, resource utilization,
and timing performance. The software allows you to adjust these settings
to concentrate on your area of interest and see if different settings provide
better results for your specific design. Use the optimization flow
described in this chapter to explore various compiler settings and
determine the combination of techniques that provide the required
results for your design.

The first stage in the optimization process is to perform an initial
compilation (see “Initial Compilation” on page 6–2) to establish a
baseline that you can use to analyze your design. “Design Analysis” on
page 6–6 explains how to analyze the results of your design, and provides
links to the sections of this chapter where you can proceed with resource
or performance optimization. Altera recommends optimizing resource
usage first, then I/O timing, then fMAX timing, so this chapter presents the
recommendations for each stage in the appropriate order. This chapter
first documents this analysis and optimization process for look-up table
(LUT)-based devices, including FPGA devices and MAX® II device family

qii52005-2.0

6–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

CPLDs. It then focuses on the process for MAX 7000 and MAX 3000
device family macrocell-based CPLDs. The final optimization section
covers compilation time optimization, which is device independent.

Initial
Compilation

Ensure that you check all the following suggested compilation
assignments before compiling the design in the Quartus II software.
Significantly different compilation results can occur depending on
assignments made. This section describes the basic assignments and
settings to make for your initial compilation.

Device Setting

Assigning a specific device determines the timing model that the
Quartus II software uses during compilation. It is important to choose the
correct speed grade to obtain accurate results and the best optimization.
The device size and the package determines the device pin-out and how
many resources the Quartus II software can use.

Choose the target device on the Device page of the Settings dialog box
(Assignments menu).

Timing Requirements Settings

An important step in obtaining the highest performance, especially for
high performance FPGA designs, is the application of detailed timing
requirements. The Quartus II PowerFit™ Fitter attempts to meet or exceed
specified timing requirements (depending on the selected options as
described in “Fitter Effort Setting” on page 6–4). The Quartus II physical
synthesis optimizations are also performed based on the constraints in
specified timing requirements (see “Synthesis Netlist Optimizations and
Physical Synthesis Optimizations” on page 6–28 for more information).
In addition, timing requirements are used during timing analysis. The
compilation report shows whether timing requirements were met and
provides detailed timing information on which paths violate the timing
requirements.

Make timing requirement settings in the Timing Requirement &
Options page of the Settings dialog box (Assignments menu) or with the
Assignment Editor. On the Timing Requirement & Options page use the
Delay requirements, Minimum delay requirements, and Clock Settings
boxes to enter global requirements, or select Settings for individual clock
signals to make settings on individual clocks (recommended for
multiple-clock designs). First create the clock setting, then apply it to the
clock node in the design. Running the Timing Wizard makes it easy to
make individual clock settings.

Altera Corporation 6–3
June 2004 Preliminary

Initial Compilation

Every clock signal should have an accurate clock setting assignment. All
I/O pins for which tSU tH, or tCO is to be optimized should also have
settings. In addition, if you have any tPD or minimum tCO constraints,
those should be specified as well. Therefore, if there is more than one
clock or there are different I/O requirements for different pins, use the
Timing Wizard to make multiple clock settings and the Assignment
Editor to make individual I/O assignments rather than using the global
settings.

It is important to make any complex timing assignments according to the
needs of the design, including multicycle and cut-timing path
assignments. This information allows the Quartus II software to make
appropriate trade-offs between paths. Make these settings with the
Assignment Editor.

1 When there are any timing constraints in the design, the
Quartus II software does not attempt to optimize clocks that are
unconstrained. Specify timing constraints on all clock signals in
the design wherever possible for best results.

f For more information on how to make timing assignments, refer to the
Quartus II Timing Analysis chapter in Volume 3 of the Quartus II
Handbook. Also see Quartus II Help.

Smart Compilation Setting

Smart compilation can reduce compile time, especially when you have
multiple compilation iterations during the optimization phase of the
design process; however, it will use more disk space. Turn on the Use
Smart compilation option on the Compilation Process page of the
Settings dialog box (Assignments menu).

Timing Driven Compilation Settings

Ensure that the Optimize timing and the Optimize I/O cell register
placement for timing options on the Fitter Settings page of the Settings
dialog box (Assignments menu) are set appropriately. Turning on these
options allows the Quartus II software to optimize your design based on
the timing requirements that you have specified with various timing
assignments.

The Optimize hold timing option is another timing-driven compilation
option that directs the Quartus II software to optimize minimum delay
timing constraints. This option is available only for Stratix® II, Stratix,
Stratix GX, Cyclone™ II, Cyclone, and MAX II devices. When this option
is turned on, the Quartus II software adds delay to connections as needed
to guarantee that the minimum delays required by these constraints are

6–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

satisfied. If you choose I/O Paths and Minimum TPD Paths (the default
choice), the Fitter works to meet hold times (tH) from device input pins to
registers, minimum delays from I/O pins or registers to I/O pins or
registers (tPD), and minimum clock-to-out time (tCO) from registers to
output pins. If you select All paths, the Fitter also works to meet hold
requirements from registers to registers, as in Figure 6–1, where a derived
clock generated with logic causes a hold time problem on another
register. However, if your design has internal hold time violations
between registers, this is not the recommended way to fix internal hold
violation problems. Altera recommends instead that you fix internal
register to register hold problems by making changes to your design, such
as using a clock enable instead of a derived or gated clock.

Figure 6–1. Optimize Hold Timing Option Fixing an Internal Hold Time
Violation

f For good design practices that can help eliminate internal hold time
violations, see the Design Recommendations for Altera Devices chapter in
Volume 1 of the Quartus II Handbook.

Fitter Effort Setting

You can modify the Fitter Effort setting on the Fitter Settings page of the
Settings dialog box. The default setting in the Quartus II software
depends on the device family specified.

The Standard Fit option attempts to exceed specified timing
requirements and achieve the best possible timing results for your design.
This Fitter effort setting usually involves the longest compilation time.

The Fast Fit option reduces the amount of optimization effort for each
algorithm employed during fitting. This reduces the compilation time by
about 50%, while resulting in a fit that has, on average, 10% lower fMAX
than that achieved using the Standard Fit setting. For a small minority of
hard-to-fit circuits, the reduced optimization resulting from using the
Fast Fit option can result in the first fitting attempt being unroutable,
resulting in multiple fitting attempts and a long fitting time.

derived_clk Hold time violation
Logic

clk

D Q

D Q

Altera Corporation 6–5
June 2004 Preliminary

Initial Compilation

The Auto Fit option (available for Stratix II, Stratix, Stratix GX,
Cyclone II, Cyclone, and MAX II devices only) decreases compilation
time by directing the Fitter to reduce Fitter effort after meeting the
design’s timing requirements if it meets internal routability requirements.
The internal routability requirements reduce the possibility of routing
congestion and help ensure quick, successful routing. If you want the
Fitter to try to exceed the timing requirements by a certain margin before
reducing Fitter effort, you can specify a minimum slack that the Fitter
must try to achieve before reducing Fitter effort in the Desired worst case
slack box. This option also causes the Quartus II Fitter to optimize for
shorter compile times instead of maximum performance when there are
no timing constraints. For designs with no timing requirements, the
resulting fMAX is an average of 15% lower than using the Standard Fit
option. If your design has aggressive timing requirements or is hard to
route, the placement does not stop early and the compile time is the same
as using the Standard Fit option. For designs with easy or no timing
requirements, the Auto Fit option reduces compile time by 40% on
average.

1 Note that selecting this option does not guarantee that the Fitter
will meet the design's timing requirements, and specifying a
minimum slack does not guarantee that the Fitter will achieve
the slack.

I/O Assignments

The I/O standards and drive strengths specified for a design affect I/O
timing. Specify these assignments so that the Quartus II software uses
accurate I/O timing delays in timing analysis and Fitter optimizations.

The Quartus II software can choose pin locations automatically for best
quality of results. If your pin locations are not fixed due to printed circuit
board (PCB) layout requirements, Altera recommends leaving pin
locations unconstrained to achieve the best results. If your pin locations
are already fixed, make the pin assignments in the Quartus II software to
constrain the compilation appropriately. “Optimization Techniques for
Macrocell-Based (MAX 7000 and MAX 3000) CPLDs” on page 6–41
includes recommendations for making pin assignments, since your pin
assignments can have a larger effect on your quality of results in smaller
macrocell-based architectures.

You can assign I/O standards and pin locations with the Assignment
Editor (Assignments menu) or Tcl script commands.

6–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

f For more information on I/O standards and pin constraints, see the
appropriate device data sheet or handbook. For information on using the
Assignment Editor, refer to the Assignment Editor chapter in Volume 2 of
the Quartus II Handbook. For information on scripting, see the Tcl
Scripting chapter in Volume 2 of the Quartus II Handbook.

Design Analysis The initial compilation establishes whether the design achieves a
successful fit and meets the specified performance. The Compilation
Report reports the design results. This section describes how to analyze
your design results, which is the first stage in the design optimization
process.

After design analysis, proceed to the other optimization stages, as
follows.

For LUT-based devices (FPGAs and MAX II CPLDs) see “Optimization
Techniques for LUT-Based (FPGA and MAX II) Devices” on page 6–12:

■ If your design does not fit, see “Resource Utilization Optimization
Techniques (LUT-Based Devices)” on page 6–13 before trying to
optimize I/O timing or fMAX timing.

■ If the I/O timing performance requirements are not met, see “I/O
Timing Optimization Techniques (LUT-Based Devices)” on
page 6–21 before trying to optimize fMAX timing.

■ If fMAX performance requirements are not met, see “fMAX Timing
Optimization Techniques (LUT-Based Devices)” on page 6–27.

For Macrocell-based devices (MAX 7000 and MAX 3000 CPLDs) see
“Optimization Techniques for Macrocell-Based (MAX 7000 and MAX
3000) CPLDs” on page 6–41:

■ If your design does not fit, see “Resource Utilization Optimization
Techniques (Macrocell-based CPLDs)” on page 6–41 before trying to
optimize I/O timing or fMAX timing.

■ If the timing performance requirements are not met, see “Timing
Optimization Techniques (Macrocell-based CPLDs)” on page 6–49.

For techniques to reduce the compilation time, see “Compilation Time
Optimization Techniques” on page 6–55.

Resource Utilization

Determining device utilization is important regardless of whether a
successful fit is achieved. If your compilation results in a no-fit error, then
resource utilization information is important to analyze the fitting

Altera Corporation 6–7
June 2004 Preliminary

Design Analysis

problems in your design. If your fitting is successful, review the resource
utilization information to determine whether the future addition of extra
logic or any other design changes could introduce fitting difficulties.

To determine resource usage, see the Flow Summary section of the
Compilation Report. This section reports how many pins are used, as well
as other device resources such as memory bits, digital signal processing
(DSP) block 9-bit elements, and phase-locked loops (PLLs). The Flow
Summary indicates whether the design exceeds the available device
resources. More detailed information is available by viewing the reports
under Resource Section in the Fitter section of the Compilation Report
(Processing menu).

1 Note that for Stratix II devices, a device with low utilization
does not have the lowest adaptive logic module (ALM)
utilization possible. For Stratix II devices, the Fitter uses
adaptive look-up tables (ALUTs) in different ALMs even when
the logic could be placed within one ALM. The Quartus II Fitter
spreads out a design as much as possible while trying to meet
any timing constraints set by the user. As the device fills up, the
Fitter automatically searches for logic functions with common
inputs to place in one ALM. The number of partnered ALUTs
and packed registers also increases.

If resource usage is reported as less than 100% and a successful fit was not
achieved, then it is likely that there were not enough routing resources or
that some assignments were illegal. In either case, a message appears in
the Processing tab of the Messages window to explain the problem.

If the Fitter finishes very quickly, then a resource may be over-utilized or
there may be an illegal assignment (an error message is also reported for
illegal assignments). If the Quartus II software runs for a long time, then
it is likely that a legal placement or route cannot be found. Look for
compilation messages that give an indication of the problem.

You can use the Timing Closure Floorplan to view areas of routing
congestion.

f For details on using the Timing Closure Floorplan, see the Timing Closure
Floorplan chapter in Volume 2 of the Quartus II Handbook.

I/O Timing (including tPD)

To determine whether I/O timing has been met, see the Timing Analyzer
section of the Compilation Report (Processing menu). The tSU, tH, and tCO
reports list the I/O paths, along with the “Required” timing number if
you have made a timing requirement, its “Actual” timing number for the

6–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

parameter as reported by the Quartus II software, and the slack, or
difference between your requirement and the actual number as specified
by the Quartus II software. If you have any point-to-point propagation
delay assignments (tPD), the tPD report lists the corresponding paths.

The I/O paths that have not met the required timing performance are
reported as having negative slack and are displayed in red, as shown in
Figure 6–2. Even if you have not made an I/O timing assignment on that
pin, the “Actual” number is the timing number that you must meet when
the device runs in your system.

Figure 6–2. I/O Timing Report

To analyze the reasons that your timing requirements were not met, right-
click a particular entry in the report and choose List Paths (as shown in
Figure 6–2). A message listing the paths appears in the System tab of the
Messages window. You can expand a selection by clicking the “+” icon at
the beginning of the line, as shown in Figure 6–3. This is a good method
of determining where along the path the greatest delay is located.

The List Paths report lists the slack time and how that slack time was
calculated. By expanding the different entries, you can see the
incremental delay through each node in the path as well as the total delay.
The incremental delay is the sum of the interconnect delay (IC) and the
cell delay (CELL) through the logic.

Altera Corporation 6–9
June 2004 Preliminary

Design Analysis

Figure 6–3. I/O Slack Report

To visually analyze I/O timing, right-click on an I/O entry in the report
and select Locate in Timing Closure Floorplan (right button pop-up
menu) to highlight the I/O path on the floorplan. Negative slack indicates
paths that failed to meet their timing requirements. There are also options
to allow you to see all the intermediate nodes (i.e., combinational logic
cells) on a path and the delay for each level of logic. You can also look at
the fan-in and fan-out of a selected node.

f For more information on how timing numbers are calculated, refer to the
Quartus II Timing Analysis chapter in Volume 3 of the Quartus II
Handbook. For details on using the Timing Closure Floorplan, see the
Timing Closure Floorplan chapter in Volume 2 of the Quartus II Handbook.

fMAX Timing

To determine whether fMAX timing requirements are met, see the Timing
Analyzer section of the Compilation Report (Processing menu). The
Clock Setup folder gives figures for the actual register-to-register fMAX, as
reported by the Quartus II software, and the slack, or difference between
the timing requirement you have specified and the actual number
specified by the Quartus II software. The paths that do not meet timing
requirements are shown with a negative slack and appear in red (see
Figure 6–4).

6–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 6–4. fMAX Timing Analysis Report

To analyze why your timing requirements were not met, right click on a
particular entry in the report and choose List Paths (as shown in
Figure 6–4). A message listing the paths appears in the System tab of the
Messages window. You can expand a selection by clicking the “+” icon at
the beginning of the line, as shown in Figure 6–5. This is a good method
of determining where along the path the greatest delay is located.

The List Paths report lists the slack time and how that slack time was
calculated. By expanding the different entries, you can see the
incremental delay through each node in the path as well as the total delay.
The incremental delay is the sum of the interconnect delay (IC) and the
cell delay (CELL) through the logic.

Altera Corporation 6–11
June 2004 Preliminary

Design Analysis

Figure 6–5. fMAX Slack Report

You can visually analyze fMAX paths by right-clicking on a path in the
report and selecting Locate in Timing Closure Floorplan to display the
Timing Closure Floorplan, which then highlights the path. You can also
view all failing paths in the Timing Closure Floorplan using the Show
Critical Paths command.

f For more information on how timing analysis results are calculated, refer
to the Quartus II Timing Analysis chapter in Volume 3 of the Quartus II
Handbook. For details on using the Timing Closure Floorplan, see the
Timing Closure Floorplan chapter in Volume 2 of the Quartus II Handbook.

Compilation Time

In long compilations, most of the time is spent in the Analysis & Synthesis
and Fitter modules. Analysis & Synthesis includes synthesis netlist
optimizations, if you have turned on those options. The Fitter includes
two steps, placement and routing, and includes Physical Synthesis if you
have turned on those options. The Flow Elapsed Time section of the
Compilation Report shows how much time the Analysis & Synthesis and
Fitter modules took. The Fitter Messages report in the Fitter section of the
Compilation Report shows how much time was spent in placement and
how much time was spent in routing.

1 The applicable messages say Info: Fitter placement
operations ending: elapsed time = n seconds and
Info: Fitter routing operations ending: elapsed
time = n seconds.

6–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Placement describes the process of finding optimum locations for the
logic in your design. Routing describes the process of connecting the nets
between the logic in your design. There are many possible placements for
the logic in a design, and finding better placements typically takes more
compilation time. Good logic placement allows you to more easily meet
your timing requirements and makes the design easy to route.

Optimization
Techniques for
LUT-Based
(FPGA and
MAX II) Devices

This section of the chapter addresses resource and timing optimization
issues for LUT-based Altera devices, which consists of all FPGA devices
and MAX II device family CPLDs.

For information on optimizing MAX 7000 and MAX 3000 CPLD designs,
refer to “Optimization Techniques for Macrocell-Based (MAX 7000 and
MAX 3000) CPLDs” on page 6–41. For information on optimizing
compilation time (when targeting any device), refer to “Compilation
Time Optimization Techniques” on page 6–55.

Optimization Advisors

The Quartus II software includes the Resource Optimization Advisor
and the Timing Optimization Advisor (Tools menu) that provide
guidance for making settings to optimize your design. The advisors cover
many of the suggestions listed in this chapter. If you open the advisors
after compilation, the Optimization Advisors show icons that indicate
which resources or timing constraints were not met.

When you expand one of the categories (such as Logic Element Usage or
Maximum Frequency (fMAX)), recommendations are split into stages. The
stages show the order in which you should apply the recommended
settings. The first stage contains the options that are easiest to change,
make the least drastic changes to your design optimization, and have the
least effect on compilation time. Icons indicate whether each
recommended setting has been made in the current project. Refer to the
“How to use” page in the Advisor for a legend that describes each icon.

There is a link from each recommendation to the appropriate location in
the Quartus II user interface where you can change the setting. This
provides you with the most control over which settings are made, and
helps you learn about the settings in the software.

Altera Corporation 6–13
June 2004 Preliminary

Resource Utilization Optimization Techniques (LUT-Based Devices)

Resource
Utilization
Optimization
Techniques
(LUT-Based
Devices)

After design analysis, the next stage of design optimization is to improve
resource utilization. Complete this stage before proceeding to I/O timing
optimization or fMAX timing optimization. First, ensure that you have set
the basic constraints described in “Initial Compilation” on page 6–2. If a
design is not fitting into a specified device, use the techniques in this
section to achieve a successful fit.

Use Register Packing

The Auto Packed Registers option is available regardless of the tool used
to synthesize the design. Register packing combines a logic cell where
only the register is used with another logic cell where only the lookup
table (LUT) is used, and implements both functions in a single logic cell.
Figure 6–6 shows the packing and the gain of one logic cell.

Figure 6–6. Register Packing

Registers may also be packed into DSP blocks as shown in Figure 6–7.

Figure 6–7. Register Packing in DSP Blocks

LUT2

LUT
REG

REG2

LUT1
REG1

Register Packing
Turned on

DSP Block DSP Block
Register Packing

Turned on

6–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

The following list indicates the most common cases in which register
packing can help to optimize a design:

■ A LUT can be implemented in the same cell as an unrelated register
with a single data input

■ A LUT can be implemented in the same cell as the register that is fed
by the LUT

■ A LUT can be implemented in the same cell as the register that feeds
the LUT

■ A register can be packed into a RAM block
■ A register can be packed into a DSP block
■ A register can be packed into an I/O Element (IOE)

The following options are available for register packing (for certain
device families):

■ Off—Does not pack registers.
■ Normal—Default setting packs registers when this is not expected to

hurt timing results.
■ Minimize Area—Aggressively packs registers to reduce area.
■ Minimize Area with Chains—Aggressively packs registers to

reduce area. This option packs registers with carry chains. It also
converts registers into register cascade chains and packs them with
other logic to reduce area. This option is available only for Stratix II,
Stratix, Stratix GX, Cyclone II, Cyclone, and MAX II devices.

■ Auto—Attempts to achieve the best performance while maintaining
a fit for the design in the specified device. The Fitter combines all
combinational (LUT) and sequential (register) functions that are
deemed to benefit circuit speed. In addition, more aggressive
combinations of unrelated combinational and sequential functions
are performed to the extent required to reduce the area of the design
to achieve a fit in the specified device. This option is available only
for Stratix II, Stratix, Stratix GX, Cyclone II, Cyclone, and MAX II
devices.

Turning on register packing decreases the number of logic elements (LEs)
or adaptive logic modules (ALMs) in the design, but could also decrease
performance. To turn on register packing, turn on the Auto Packed
Registers option by clicking More Settings on the Fitter Settings page of
the Settings dialog box (Assignments menu).

The area reduction and performance results can vary greatly depending
on the design. Typical results for register packing are shown in the
following tables. Table 6–1 shows typical results for Stratix II devices,
Table 6–2 shows typical results for Cyclone II devices, and Table 6–3
shows typical results for Stratix, Stratix GX, and Cyclone devices.

Altera Corporation 6–15
June 2004 Preliminary

Resource Utilization Optimization Techniques (LUT-Based Devices)

Note that the Auto setting performs more aggressive register packing as
needed, so the typical results vary depending on the device logic
utilization.

Table 6–1. Typical Register Packing Results for Stratix II Devices

Register Packing Setting Relative fMAX Relative LE Count

Off 0.95 1.29

Normal 1.00 1.00

Minimize Area 0.98 0.97

Minimize Area with Chains 0.98 0.97

Auto (default) 1.0 until device is very
full, then gradually to

0.98 as required

1.0 until device is very
full, then gradually to

0.97 as required

Table 6–2. Typical Register Packing Results for Cyclone II Devices

Register Packing Setting Relative fMAX Relative LE Count

Off 0.97 1.40

Normal 1.00 1.00

Minimize Area 0.96 0.93

Minimize Area with Chains 0.94 0.91

Auto (default) 1.0 until device is very
full, then gradually to

0.94 as required

1.0 until device is very
full, then gradually to

0.91 as required

Table 6–3. Typical Register Packing Results for Stratix, Stratix GX, and
Cyclone Devices

Register Packing Setting Relative fMAX Relative LE Count

Off 1.00 1.12

Normal 1.00 1.00

Minimize Area 0.97 0.93

Minimize Area with Chains 0.94 0.90

Auto (default) 1.0 until device is very
full, then gradually to

0.94 as required

1.0 until device is very
full, then gradually to

0.90 as required

6–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Remove Fitter Constraints

A design with too many user constraints may not fit the targeted device.
This occurs when the location or LogicLock™ assignments are too strict
and there are not enough routing resources. In this case, use the Routing
Congestion view in the Timing Closure Floorplan to locate routing
problems in the floorplan, then remove any location and/or LogicLock
region assignments in that area. If your design still does not fit, the design
is over-constrained. To correct the problem, remove all location and
LogicLock assignments and run successive compilations, incrementally
constraining the design before each compilation.

f For more information on the Routing Congestion view in the Timing
Closure Floorplan, see the Quartus II Help.

Perform WYSIWYG Resynthesis for Area

If you use another EDA synthesis tool and wish to see if the Quartus II
software can re-map the circuit so that fewer LEs or ALMs are used,
perform the following steps:

1. Turn on Perform WYSIWYG primitive resynthesis (using
optimization techniques specified in Analysis & Synthesis
settings) on the Synthesis Netlist Optimizations page under
Analysis & Synthesis Settings in the Settings dialog box
(Assignments menu), or apply the Perform WYSIWYG Primitive
Resynthesis logic option to a specific module in your design with
the Assignment Editor (Assignments menu).

2. Choose Area for Optimization Technique on the Analysis &
Synthesis Settings page of the Settings dialog box (Assignments
menu), or set the Optimization Technique logic option to Area for a
specific module in your design with the Assignment Editor
(Assignments menu).

3. Recompile the design.

1 Performing WYSIWYG resynthesis for Area in this way
typically reduces fMAX.

Optimize Synthesis for Area

If your design fails to fit because it uses too much logic, resynthesize the
design to improve the area utilization, as follows.

Altera Corporation 6–17
June 2004 Preliminary

Resource Utilization Optimization Techniques (LUT-Based Devices)

First, ensure that you have set your device and timing constraints
correctly in your synthesis tool. Particularly when the area utilization of
the design is a concern, ensure that you do not over-constrain the timing
requirements for the design. Synthesis tools generally try to meet the
specified requirements, which may result in higher device resource usage
if the constraints are too aggressive.

f For information on setting timing requirements and synthesis options in
other synthesis tools, see the appropriate chapter in the Synthesis section
in Volume 1 of the Quartus II Handbook, or your synthesis software's
documentation.

Optimize for Area, Not Speed

If device utilization is an important concern, some synthesis tools offer an
easy way to optimize for area instead of speed. If you are using the
Quartus II integrated synthesis, choose Area for Optimization
Technique on the Analysis & Synthesis Settings page of the Settings
dialog box (Assignments menu). You can also specify this logic option for
specific modules in your design with the Assignment Editor in cases
where you want to reduce area (potentially at the expense of fMAX timing
performance) while leaving the default Optimization Technique setting
at Balanced (for the best trade-off between area and speed for certain
device families) or Speed. In some synthesis tools, not specifying an fMAX
requirement may result in less logic utilization. Other attributes or
options may also be available to help improve the quality of results,
including the recommendations in the following paragraphs.

Change State Machine Encoding

State machines can be encoded using various techniques. Using binary or
Gray code encoding typically results in fewer state registers than one-hot
encoding, which requires one register for every state bit. If your design
contains state machines, changing the state machine encoding to one that
uses the minimal number of registers may reduce device utilization. The
effect of state machine encoding differs depending on the way your
design is structured.

If your design does not manually encode the state bits, you can specify the
state machine encoding in your synthesis tool. In the Quartus II
integrated synthesis, choose Minimal Bits for State Machine Processing
on the Analysis & Synthesis Settings page of the Settings dialog box
(Assignments menu). You can also specify this logic option for specific
modules or state machines in your design with the Assignment Editor.

6–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Flatten the Hierarchy

Synthesis tools typically provide you with the option of preserving
hierarchical boundaries, which may be useful for verification or other
purposes. Optimizing across hierarchical boundaries, however, allows
the synthesis tool to perform the most logic minimization, which may
reduce area. Therefore, flatten your design hierarchy whenever possible
to achieve best results. If you are using the Quartus II integrated
synthesis, ensure that the Preserve Hierarchical Boundary logic option is
turned off.

Retarget Memory Blocks

If the design fails to fit because it runs out of device memory resources, it
may be due to a lack of a certain type of memory. For example, a design
may require two M-RAM blocks and be targeted for a Stratix EP1S10
device, which has only one. By building one of the memories with a
different size memory block, such as an M4K memory block, it may be
possible to obtain a fit.

If the memory was created with the MegaWizard® Plug-In Manager,
simply open the MegaWizard and edit the RAM block type so that it
targets a new memory block size.

ROM and RAM memory blocks can also be inferred from your hardware
description language (HDL) code, and your synthesis software may place
large shift registers into memory blocks with the altshift_taps
megafunction. This inference can be turned off in your synthesis tool so
that the memory is placed in logic instead of in memory blocks. In
Quartus II integrated synthesis, disable inference by turning off the Auto
RAM Replacement, Auto ROM Replacement, or Auto Shift Register
Replacement logic option as appropriate for your whole project on the
Analysis & Synthesis Settings page of the Settings dialog box
(Assignments menu), or by disabling the option for a specific block in the
Assignment Editor.

Depending on your synthesis tool, you may be able to set the RAM block
type for inferred memory blocks as well. In Quartus II integrated
synthesis, set the ramstyle attribute to the desired memory type for the
inferred RAM blocks: M512, M4K, or M-RAM.

f For more information on memory inference control, see the appropriate
chapter in the Synthesis section in Volume 1 of the Quartus II Handbook, or
your synthesis software's documentation.

Altera Corporation 6–19
June 2004 Preliminary

Resource Utilization Optimization Techniques (LUT-Based Devices)

Retarget DSP Blocks

A design may not fit because it requires too many DSP blocks. All DSP
block functions can be implemented with logic cells, making it possible to
retarget some of the DSP blocks to logic to obtain a fit.

If the DSP function was created with the MegaWizard Plug-In Manager,
simply open the MegaWizard and edit the block so it targets logic instead
of DSP blocks.

DSP blocks can be inferred from your HDL code from multipliers,
multiply-adders, and multiply-accumulators. This inference can be
turned off in your synthesis tool. In Quartus II integrated synthesis,
disable inference by turning off the Auto DSP Block Replacement logic
option for your whole project on the Analysis & Synthesis Settings page
of the Settings dialog box (Assignments menu), or by disabling the
option for a specific block with the Assignment Editor.

f For more information on disabling DSP block inference in other
synthesis tools, see the appropriate chapter in the Synthesis section in
Volume 1 of the Quartus II Handbook, or your synthesis software's
documentation.

Optimize Source Code

If your design does not fit because of logic utilization, and the methods
described in the preceding sections do not sufficiently improve the
resource utilization in the design, modify the design at the source to
achieve the desired results. You may also be able to improve logic
efficiency by making design-specific changes to your source code. In
many cases, optimizing the design’s source code can have a significant
effect on your logic utilization.

If your design does not fit because of logic resources, but you have
unused memory or DSP blocks, check whether you have code blocks in
your design that describe memory or DSP functions but are not being
inferred and placed in dedicated logic. You may be able to modify your
source code to allow these functions to be placed into dedicated memory
or DSP resources in the target device.

f For coding style guidelines including examples of HDL code for
inferring memory and DSP functions and other coding examples, refer to
the Recommended HDL Coding Styles chapter in Volume 1 of the Quartus II
Handbook.

6–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Modify Pin Assignments or Choose a Larger Package

If a design with pin assignments fails to fit, try compiling the design
without the pin assignments to see whether a fit is possible for the design
in the specified device and package. You can also try this approach if a
Quartus II error message indicates fit problems due to pin assignments.

If the design fits when all pin assignments are ignored or when several
pin assignments are ignored or moved, it may be necessary to modify the
pin assignments for the design or choose a larger package.

If the design fails to fit because of lack of available I/Os, a successful fit
can often be obtained by using a larger device package with more
available user I/O pins.

Use a Larger Device

If a successful fit cannot be achieved because of a shortage of LEs or
ALMs, memory, or DSP blocks, you may need to use a larger device.

Resolving Resource Utilization Issues Summary

Table 6–4 shows design options used to reduce excess resource utilization
and the recommended order in which to try the options, starting with
those requiring the least effort and having the greatest effect.

The Quartus II software includes the Design Space Explorer (DSE) Tcl/Tk
script for automating successive compilations of a design, each
employing different design options.

f For more information on the DSE script, see the Design Space Explorer
chapter in Volume 2 of the Quartus II Handbook.

Table 6–4. Techniques for Resolving Resource Utilization Issues (Part 1 of 2)

Issue Design Options to Employ (in Order from Left to Right)

Too many logic cells
used or logic cells
do not fit

Use register
packing

Remove Fitter
constraints

Perform
WYSIWYG
Primitive
Resynthesis

Optimize
synthesis for
area /
change state
machine
encoding

Optimize
source
code

Use a
larger
device

Too many memory
blocks used

Retarget
memory
blocks

Modify synthesis
options

Remove Fitter
constraints

Optimize
source code

Use a
larger
device

Altera Corporation 6–21
June 2004 Preliminary

I/O Timing Optimization Techniques (LUT-Based Devices)

Once resource utilization has been optimized and your design fits in the
desired target device, you can proceed to optimize I/O timing, as
described in the “I/O Timing Optimization Techniques (LUT-Based
Devices)” section.

I/O Timing
Optimization
Techniques
(LUT-Based
Devices)

The next stage of design optimization focuses on I/O timing. Ensure that
you have made the appropriate assignments as described in “Initial
Compilation” on page 6–2, and that the resource utilization is satisfactory,
before proceeding with I/O timing optimization. Because changes to the
I/O path affect the internal fMAX, complete this stage before proceeding to
the fMAX timing optimization stage.

The options presented in this section address how to improve I/O timing,
including the setup delay (tSU), hold time (tH), and clock-to-output (tCO)
parameters.

Timing-Driven Compilation

Perform I/O timing optimization using the Optimize I/O cell register
placement for timing assignment located on the Fitter Settings page of
the Settings dialog box (Assignments menu). This option moves registers
into I/O elements if required to meet tSU or tCO assignments, duplicating
the register if necessary (as in the case where a register fans out to
multiple output locations). This option is on by default and is a global
setting. The option does not apply to MAX II devices because they do not
contain I/O registers.

For APEX™ 20KE and APEX 20KC devices, if the I/O register is not
available, the Fitter tries to move the register into the logic array block
(LAB) adjacent to the I/O element.

Too many DSP
blocks used

Retarget
DSP blocks

Modify synthesis
options

Remove Fitter
constraints

Optimize
source code

Use a
larger
device

Problems placing
I/O pins

Change pin
assignments

Use a larger
package with the
same device
density

Use a larger
device with a
larger pin count

Too many routing
resources used

Remove
Fitter
constraints

Modify synthesis
options

Optimize source
code

Use a larger
device

Table 6–4. Techniques for Resolving Resource Utilization Issues (Part 2 of 2)

Issue Design Options to Employ (in Order from Left to Right)

6–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

The Optimize I/O cell register placement for timing option only affects
pins that have a tSU or tCO requirement. Using the I/O register is only
possible if the register directly feeds a pin or is fed directly by a pin. This
setting does not affect registers with the following characteristics:

■ Have combinational logic between the register and the pin
■ Are part of a carry or cascade chain
■ Have an overriding location assignment
■ Use the synchronous load or asynchronous load port, and the value

is not 1 (Stratix, Stratix GX, and Cyclone devices only)
■ Use the synchronous load or asynchronous clear port (APEX and

APEX II devices only)

Registers with the above characteristics are optimized using the regular
Quartus II Fitter optimizations.

Fast Input, Output, & Output Enable Registers

You can manually place individual registers in I/O cells by making fast
I/O assignments with the Assignment Editor. For an input register, use
the Fast Input Register option; for an output register, use the Fast Output
Register option; and for an output enable register, use the Fast Output
Enable Register option. In MAX II devices, which have no I/O registers,
these assignments lock the register into the LAB adjacent to the I/O pin if
there is a pin location assignment on that I/O pin.

If the fast I/O setting is on, the register is always placed in the I/O
element. If the fast I/O setting is off, the register is never placed in the I/O
element. This is true even if the Optimize I/O cell register placement for
timing option, located on the Fitter Settings page of the Settings dialog
box (Assignments menu), is turned on. If there is no fast I/O assignment,
the Quartus II software determines whether to place registers in I/O
elements if the Optimize I/O cell register placement for timing option is
turned on.

The three fast I/O options (Fast Input Register, Fast Output Register,
and Fast Output Enable Register) can also be used to override the
location of a register that is in a LogicLock region and force it into an I/O
cell. If this assignment is applied to a register that feeds multiple pins, the
register is duplicated and placed in all relevant I/O elements. In MAX II
devices, the register is duplicated and placed in each distinct LAB
location that is next to an I/O pin with a pin location assignment.

Altera Corporation 6–23
June 2004 Preliminary

I/O Timing Optimization Techniques (LUT-Based Devices)

Programmable Delays

Various programmable delay options can be used to minimize the tSU and
tCO times. For Stratix II, Stratix, Stratix GX, Cyclone II, Cyclone, and
MAX II devices, the Quartus II software automatically adjusts the
applicable programmable delays to help meet timing requirements. For
the APEX families of devices, the default values are set to generally avoid
any hold time problems. Programmable delays are advanced options that
should be used only after you have compiled a project, checked the I/O
timing, and determined that the timing is unsatisfactory. For detailed
information on the effect of these options, see the device family handbook
or data sheet.

Assign programmable delay options to supported nodes with the
Assignment Editor.

After you have made a programmable delay assignment and compiled
the design, you can view the value of every delay chain for every I/O pin
in the Delay Chain Summary section of the Quartus II Compilation
Report.

You can also view and modify the delay chain setting for the target device
with the Quartus II Chip Editor and Resource Property Editor. Figure 6–8
shows the Resource Property Editor window displaying a programmable
delay implemented in the delay chain of a Stratix device. When you use
the Resource Property Editor to make changes after performing a full
compilation, you don't need to recompile the entire design; you can write
changes directly to the netlist.

f For more information on using the Quartus II Chip Editor and Resource
Property Editor, see the Design Analysis and Engineering Change
Management with Chip Editor chapter in Volume 3 of the Quartus II
Handbook.

6–24 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 6–8. Delay Chain Shown in the Quartus II Resource Property Editor

Table 6–5 summarizes the programmable delays available for Altera
devices.

Table 6–5. Programmable Delays for Altera Devices (Part 1 of 3)

Programmable
Delay Description I/O Timing

Impact Device Families

Decrease input delay
to input register

Decreases propagation delay from an input
pin to the data input of the input register in
the I/O cell associated with the pin. Applied
to input/bidirectional pin or register it feeds.

Decreases tS U
Increases tH

Stratix, Stratix GX,
Cyclone, APEX II,
APEX 20KE,
APEX 20KC, Mercury™,
MAX 7000B

Input delay from pin
to input register

Sets propagation delay from an input pin to
the data input of the input register
implemented in the I/O cell associated with
the pin. Applied to input/bidirectional pin.

Changes tS U
Changes tH

Stratix II, Cyclone II

Altera Corporation 6–25
June 2004 Preliminary

I/O Timing Optimization Techniques (LUT-Based Devices)

Decrease input delay
to internal cells

Decreases the propagation delay from an
input or bidirectional pin to logic cells and
embedded cells in the device. Applied to
input/bidirectional pin or register it feeds.

Decreases tS U
Increases tH

Stratix, Stratix GX,
Cyclone, APEX II,
APEX 20KE,
APEX 20KC, Mercury,
FLEX 10K®,
FLEX® 6000, ACEX® 1K

Input delay from pin
to internal cells

Sets the propagation delay from an input or
bidirectional pin to logic and embedded
cells in the device. Applied to a input or
bidirectional pin.

Changes tS U
Changes tH

Stratix II, Cyclone II,
MAX II

Decrease input delay
to output register

Decreases the propagation delay from the
interior of the device to an output register in
an I/O cell. Applied to input/bidirectional pin
or register it feeds.

Decreases tP D Stratix, Stratix GX,
APEX II, APEX 20KE,
APEX 20KC

Increase delay to
output enable pin

Increases the propagation delay through
the tri-state output to the pin. The signal
can either come from internal logic or the
output enable register in an I/O cell. Applied
to output/bidirectional pin or register
feeding it.

Increases tC O Stratix, Stratix GX,
APEX II, Mercury

Delay to output
enable pin

Sets the propagation delay to an output
enable pin from internal logic or the output
enable register implemented in an I/O cell.

Changes tC O Stratix II

Increase delay to
output pin

Increases the propagation delay to the
output or bidirectional pin from internal logic
or the output register in an I/O cell. Applied
to output/bidirectional pin or register
feeding it.

Increases tC O Stratix, Stratix GX,
Cyclone, APEX II,
APEX 20KE,
APEX 20KC, Mercury

Delay from output
register to output pin

Sets the propagation delay to the output or
bidirectional pin from the output register
implemented in an I/O cell. This option is off
by default.

Changes tC O Stratix II, Cyclone II

Increase input clock
enable delay

Increases the propagation delay from the
interior of the device to the clock enable
input of an I/O input register.

N/A Stratix, Stratix GX,
APEX II, APEX 20KE,
APEX 20KC

Input Delay from Dual
Purpose Clock Pin to
Fan-Out Destinations

Sets the propagation delay from a dual-
purpose clock pin to its fan-out destinations
that are routed on the global clock network.
Applied to an input or bidirectional dual-
purpose clock pin.

N/A Cyclone II

Table 6–5. Programmable Delays for Altera Devices (Part 2 of 3)

Programmable
Delay Description I/O Timing

Impact Device Families

6–26 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Using Fast Regional Clocks in Stratix Devices

Stratix EP1S25, EP1S20, and EP1S10 devices and Stratix GX EP1SGX10
and EP1SGX25 devices contain two fast regional clock networks,
FCLK[1..0], in each quadrant, fed by input pins that can connect to
other fast regional clock networks. In Stratix EP1S30, Stratix GX
EP1SGX40, and larger devices in both families, there are two fast regional
clock networks in each half-quadrant. Dedicated FCLK input pins can
feed these clock nets directly. Fast regional clocks have less delay to I/O
elements than regional or global clocks and are used for high fan-out
control signals. Placing clocks on fast regional clock nets provides better
tCO performance.

Using PLLs to Shift Clock Edges

Using a PLL should improve I/O timing automatically. If the timing
requirements are still not met, most devices allow the PLL to be phase
shifted in order to change the I/O timing. Shifting the clock backwards
gives a better tCO at the expense of the tSU, while shifting it forward gives
a better tSU at the expense of tCO and tH. This technique can be used only
in devices that offer PLLs with the phase shift option. See Figure 6–9.

Figure 6–9. Shift Clock Edges Forward to Improve tSU at the Expense of tCO

Increase output clock
enable delay

Increases the propagation delay from the
interior of the device to the clock enable
input of the I/O output register and output
enable register.

N/A Stratix, Stratix GX,
APEX II, APEX 20KE,
APEX 20KC

Increase output
enable clock enable
delay

Increases the propagation delay from the
interior of the device to the clock enable
input of an output enable register.

N/A Stratix, Stratix GX

Increase tZX delay to
output pin

Used for zero bus-turnaround (ZBT) by
increasing the propagation delay of the
falling edge of the output enable signal.

Increases tC O Stratix, Stratix GX,
APEX II, Mercury

Table 6–5. Programmable Delays for Altera Devices (Part 3 of 3)

Programmable
Delay Description I/O Timing

Impact Device Families

Original

With PLL

Altera Corporation 6–27
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

Improving Setup & Clock-to-Output Times Summary

Table 6–6 shows the recommended order in which to use techniques to
reduce tSU and tCO times. Keep in mind that reducing tSU times increases
hold (tH) times.

Once I/O timing has been optimized, you can proceed to optimize fMAX,
as described in the “fMAX Timing Optimization Techniques (LUT-Based
Devices)” section.

fMAX Timing
Optimization
Techniques
(LUT-Based
Devices)

The next stage of design optimization is to improve the fMAX timing.
There are a number of options available if the performance requirements
are not achieved after compiling with the Quartus II software.

1 It is important to understand your design and apply appropriate
assignments to increase performance. It is possible to decrease
performance if assignments are applied without full
understanding of the design or the effect of the assignments.

Table 6–6. Improving Setup & Clock-to-Output Times Note (1)

Technique tSU tCO

Ensure that the appropriate constraints are set for the failing I/Os v v
Use timing-driven compilation for I/O v v
Use fast input register v
Use fast output register and fast output enable register v
Set Decrease Input Delays to Input Register = ON or decrease the value of Input
Delay from Pin to Input Register v
Set Decrease Input Delays to Internal Cells = ON or decrease the value of Input
Delay from Pin to Internal Cells v
Set Increase Delay to Output Pin = OFF or decrease the value of Delay from Output
Register to Output Pin v
Use PLLs to shift clock edges v v
Use the Fast Regional Clock option v
Note to Table 6–6:
(1) These options may not apply for all device families.

6–28 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Synthesis Netlist Optimizations and Physical Synthesis
Optimizations

The Quartus II software offers advanced netlist optimization options,
including physical synthesis, for certain device families, to optimize your
design further than the optimization performed in the course of the
standard Quartus II compilation.

The effect of these options depends on the structure of your design, but
netlist optimizations can help improve the performance of your design
regardless of the synthesis tool used. Netlist optimizations can be applied
both during synthesis and during fitting.

The synthesis netlist optimizations occur during the synthesis stage of the
Quartus II compilation. Operating either on the output from another
EDA synthesis tool or as an intermediate step in the Quartus II standard
integrated synthesis, these optimizations make changes to the synthesis
netlist that improve either area or speed, depending on your selected
optimization technique.

The following synthesis netlist optimizations are available:

■ WYSIWYG Primitive Resynthesis
■ Gate-level Register Re-timing

You can view and modify the synthesis netlist optimization options on
the Synthesis Netlist Optimizations page under Analysis & Synthesis
Settings in the Settings dialog box (Assignments menu).

The physical synthesis optimizations take place during the Fitter stage of
Quartus II compilation. Physical synthesis optimizations make
placement-specific changes to the netlist that improve speed performance
results for a specific Altera device.

The following physical synthesis optimizations are available:

■ Physical synthesis for combinational logic
■ Physical synthesis for registers:

● Register duplication
● Register retiming

You can also specify the Physical synthesis effort, which sets the level of
physical synthesis optimization you want the Quartus II software to
perform. You can specify the physical synthesis optimization options on
the Physical Synthesis Optimizations page under Fitter Settings in the
Settings dialog box (Assignments menu).

Altera Corporation 6–29
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

f For more information and detailed descriptions of these netlist
optimization options, see the Netlist Optimizations & Physical Synthesis
chapter in Volume 2 of the Quartus II Handbook.

To achieve the best results, use these options in different combinations.
Performance results are design dependant. Typical benchmark results
with netlists from a leading third-party synthesis tool and compiled with
the Quartus II software version 4.1 are shown in Table 6–7. These results
were obtained for Stratix devices, using various designs and numbers of
LEs.

The results for the WYSIWYG primitive re-synthesis option depend on
the Optimization Technique selected on the Analysis & Synthesis page
of the Settings dialog box (Assignments menu). These results use the
default Balanced setting. Changing the setting to Speed or Area can
affect your results.

The DSE Tcl/Tk script can automate successive compilations of a design,
each employing different netlist optimization options.

Table 6–7. Average Performance of Different Netlist Optimizations

Optimization Method
fMAX
Gain
(%)

Win
Ratio

(%) (1)

Winner’s
fMAX Gain
(%) (2)

Change
Logic
(%)

Increase
in

Compile
Time (×)

WYSIWYG primitive resynthesis 2 60 6 -8 1.0

Physical synthesis for combinational logic and registers

Using physical synthesis Fast effort level 10 86 14 4 1.7

Using physical synthesis Normal effort level 15 86 14 4 2.7

Using physical synthesis Extra effort level 17 86 14 4 4.2

WYSIWYG primitive re-synthesis as well as physical synthesis for combinational logic and registers

Using physical synthesis Fast effort level 12 87 16 -5 1.7

Using physical synthesis Normal effort level 17 87 16 -5 2.7

Using physical synthesis Extra effort level 19 87 16 -5 4.2

All options on (WYSIWYG primitive re-synthesis, gate level register re-timing, and physical synthesis for
combinational logic and registers)

Using physical synthesis Extra effort level 19 82 17 -6 4.3

Notes to Table 6–7:
(1) Win is the percentage of designs that showed better performance with the option on, than without the option on.
(2) Winner’s fMAX gain refers to the average improvement for the designs that showed better performance with these

settings (designs considered a Win).

6–30 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

f For more information on the DSE script, see the Design Space Explorer
chapter in Volume 2 of the Quartus II Handbook.

Seed

Changing the seed affects the initial placement configuration and often
causes different Fitter results. To obtain a better fMAX value, you can
experiment with different settings. This method should only be
attempted if the design is finalized and is failing timing on a small
number of paths. The fMAX variation is typically about 3% for Stratix
devices.

Changing the seed changes Fitter results because all Fitter algorithms
have random variations when initial conditions change, and changing the
seed takes advantage of this behavior. However, note that if anything in
the design changes, the results from seed to seed changes.

The seed for initial placement is controlled by the Seed setting on the
Fitter Settings page of the Settings dialog box (Assignments menu).

The DSE Tcl/Tk script can automate successive compilations of a design,
each employing different seeds.

f For more information on the DSE script, see the Design Space Explorer
chapter in Volume 2 of the Quartus II Handbook.

Optimize Synthesis for Speed

The manner in which the design is synthesized has a large impact on its
performance. Performance varies depending on the way the design is
coded, which synthesis tool is used, and which options are specified
when synthesizing. Synthesis options should be changed if a large
number of paths are failing or specific paths are failing by a large amount
and have many levels of logic.

Ensure that you have set your device and timing constraints correctly in
your synthesis tool. Your synthesis tool tries to meet the specified
requirements. If a target frequency is not specified, some synthesis tools
optimize for area.

To achieve best performance with push-button compilation, use the
recommendations in the following paragraphs.

f For information on setting timing requirements and synthesis options in
other synthesis tools, see the appropriate chapter in the Synthesis section
in Volume 1 of the Quartus II Handbook, or see your synthesis software’s
documentation.

Altera Corporation 6–31
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

You can use the DSE to experiment with different Quartus II synthesis
options to optimize for best performance.

f For more information, see the Design Space Explorer chapter in Volume 2
of the Quartus II Handbook.

Optimize for Speed, Not Area

Most synthesis tools optimize to meet your speed requirements. Some
synthesis tools offer an easy way to optimize for speed instead of area. For
the Quartus II integrated synthesis, specify Speed as the Optimization
Technique option on the Analysis & Synthesis Settings page of the
Settings dialog box (Assignments menu). You can also specify this logic
option for specific modules in your design with the Assignment Editor
while leaving the default Optimization Technique setting at Balanced
(for the best trade-off between area and speed for certain device families)
or Area (if area is an important concern).

Flatten the Hierarchy

Synthesis tools typically provide the option of preserving hierarchical
boundaries, which may be useful for verification or other purposes.
However, optimizing across hierarchical boundaries allows the synthesis
tool to perform the most logic minimization, which may improve
performance. Therefore, whenever possible, flatten your design
hierarchy to achieve best results. If you are using the Quartus II
integrated synthesis, ensure that the Preserve Hierarchical Boundary
logic option is turned off.

Set the Synthesis Effort to High (where applicable)

Some synthesis tools offer varying synthesis effort levels to trade off
compilation time with synthesis results. Set the synthesis effort to high to
achieve best results.

Change State Machine Encoding

State machines can be encoded using various techniques. One-hot
encoding, which uses one register for every state bit, usually provides the
best performance. If your design contains state machines, changing the
state machine encoding to one-hot can improve performance at the cost
of area.

If your design does not manually encode the state bits, you can select the
state machine encoding chosen in your synthesis tool. In Quartus II
integrated synthesis, choose One-Hot for State Machine Processing on
the Analysis & Synthesis Settings page of the Settings dialog box

6–32 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

(Assignments menu). You can also specify this logic option for specific
modules or state machines in your design with the Assignment Editor. In
some cases (especially in Stratix II devices), other encoding styles can
offer better performance. You can experiment with different encoding
styles to see what effect the style has on your resource utilization and
timing performance.

Duplicate Logic for Fan-Out Control

Duplicating logic or registers can help improve timing in cases where
moving a register in a failing timing path to reduce routing delay creates
other failing paths, or where there are timing problems due to the fan-out
of the registers.

Many synthesis tools support options or attributes to set the maximum
fan-out of a register. In the Quartus II integrated synthesis, you can set the
Maximum Fan-Out logic option in the Assignment Editor to control the
number of destinations for a node so that the fan-out count does not
exceed a specified value. You can also use the maxfan attribute in your
HDL code. The software duplicates the node as needed to achieve the
specified maximum fan-out.

You can manually duplicate registers in the Quartus II software
regardless of the synthesis tool used. To duplicate a register, apply the
Manual Logic Duplication option to the register with the Assignment
Editor. For more information on the Manual Logic Duplication option,
see the Quartus II Help.

Other Synthesis Options

With your synthesis tool, experiment with the following options if they
are available:

■ Register balancing or retiming
■ Register pipelining

LogicLock Assignments

You can make LogicLock assignments for optimization based on nodes,
design hierarchy, or critical paths. This method can be used if a large
number of paths are failing, but recoding the design is thought to be
unnecessary. LogicLock assignments can help if routing delays form a
large portion of your critical path delay, and placing logic closer together
on the device will help improve the routing delay.

Altera Corporation 6–33
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

1 Note that improving fitting results, especially for larger devices
such as Stratix and Stratix II, can be difficult. LogicLock
assignments will not always improve the performance of the
design. In many cases you will not be able to improve upon the
results from the Fitter.

When making LogicLock assignments, it is important to consider how
much flexibility to leave the Fitter. LogicLock assignments provide more
flexibility than hard location assignments. Assignments that are more
flexible require higher Fitter effort, but reduce the chance of design
over-constraint. The following types of LogicLock assignments are
available, listed in order of decreasing flexibility:

■ Soft LogicLock regions
■ Auto size, floating location regions
■ Fixed size, floating location regions
■ Fixed size, locked location regions

To determine what to put into a LogicLock region, see the timing analysis
results and the Timing Closure Floorplan. The register-to-register fMAX
paths in the Timing Analyzer section of the Compilation Report can
provide a helpful method of recognizing patterns. The following
paragraphs describe cases in which LogicLock regions can help to
optimize a design.

f For more information on the LogicLock design methodology, see the
LogicLock Design Methodology chapter in Volume 2 of the Quartus II
Handbook.

Hierarchy Assignments

For a design with the hierarchy shown in Figure 6–10, which has failing
paths in the timing analysis results similar to those shown in Table 6–8,
mod_A is probably a problem module. In this case, mod_A could be placed
in a LogicLock region to attempt to put all the nodes in the module closer
together in the floorplan.

6–34 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 6–10. Design Hierarchy

Table 6–8 shows the failing module paths in timing analysis.

Path Assignments

If you see a pattern such as the one shown in Figure 6–11 and Table 6–9,
it is probably an indication of paths with a common problem. In this case,
a path-based assignment could be made from all d_reg registers to all
memaddr registers. A path-based assignment can be made to place all
source registers, destination registers, and the nodes between them in a
LogicLock region using the wild cards characters “*” and “?”.

You can also explicitly place the nodes of a critical path in a LogicLock
region. There may be alternate paths between the source and destination
registers that could become critical if you use this method instead of
path-based assignments.

f For information on making path-based assignments, using wild cards,
and individual node assignments, see the LogicLock Design Methodology
chapter in Volume 2 of the Quartus II Handbook.

Table 6–8. Failing Module Paths in Timing Analysis

|mod_A|reg1 |mod_A|reg9

|mod_A|reg3 |mod_A|reg5

|mod_A|reg4 |mod_A|reg6

|mod_A|reg7 |mod_A|reg10

|mod_A|reg0 |mod_A|reg2

top

BA

Altera Corporation 6–35
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

Figure 6–11. Failing Paths in Timing Analysis

Location Assignments & Back Annotation

If a small number of paths are failing, you can use hard location
assignments to optimize placement. Location assignments are less
flexible for the Quartus II Fitter than LogicLock assignments. In some
cases when you are very familiar with your design, you may be able to
enter location constraints in a way that produces better results than the
Quartus II Fitter.

1 Note that improving fitting results, especially for larger devices
such as Stratix and Stratix II, can be difficult; location
assignments will not always improve the performance of the
design. In many cases you will not be able to improve upon the
results from the Fitter.

Table 6–9. Failing Paths in Timing Analysis

From To

|d_reg[1] |memaddr[5]

|d_reg[1] |memaddr[6]

|d_reg[1] |memaddr[7]

|d_reg[2] |memaddr[0]

|d_reg[2] |memaddr[1]

D Q

memaddr[2]

D Q

memaddr[7]

D Q

d_reg[7]

D Q

d_reg[1]

D Q

memaddr[0]

D Q

d_reg[0]

6–36 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

The following are commonly used location assignments, listed in order of
decreasing flexibility:

■ Custom regions
■ Back-annotated LAB location assignments
■ Back-annotated LE or ALM location assignments

Custom Regions

A custom region is a rectangular region containing user-assigned nodes.
These assigned nodes are then constrained in the region's boundaries. If
any portion of a block in the device floorplan overlaps with a custom
region, such as part of a M-RAM, it is considered to be entirely in that
region.

Custom regions are hard location assignments that cannot be overridden
and are very similar to fixed-size, locked-location LogicLock regions.
Custom regions are commonly used when logic must be constrained to a
specific portion of the device.

Back Annotation and Manual Placement

Fixing the location of nodes in a design in the locations resulting from the
last compilation is known as back-annotation. When all the nodes are
back-annotated, manually moving nodes does not affect the locations of
other design nodes that are locked down. This is referred to as manual
placement.

1 Locking down node locations is very restrictive to the Compiler,
so you should only back-annotate when the design has been
finalized and no further changes are expected. The assignments
may become invalid if the design is changed. Combinational
nodes often change names when a design is resynthesized, even
if they are unrelated to the logic that was changed.

1 Moving nodes manually can be very difficult for large devices,
and in many cases you will not be able to improve upon the
results from the Fitter.

1 Illegal or unroutable location constraints may cause “no fit”
errors.

Before making location assignments, determine whether to lock down the
location of all nodes in the design. When you are using a hierarchical
design flow, you can choose to lock down node locations in only one
LogicLock region, while the other node locations are left as floating in a

Altera Corporation 6–37
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

fixed LogicLock region. A hierarchical approach using the LogicLock
design methodology can reduce the dependence of logic blocks with
other logic blocks in the device.

f For more information on a block-based design approach, see the
Hierarchical Block-Based Design & Team-Based Design Flows chapter in
Volume 1 of the Quartus II Handbook.

When you back-annotate a design, you can choose that the nodes be
assigned either to LABs (this is preferred because of increased flexibility)
or LEs/ALMs. You can also choose to back-annotate routing to further
restrict the Fitter and force a specific routing within the device.

1 Using back-annotated routing with physical synthesis
optimizations may cause a routing failure.

f For more information on back-annotation of routing, see Quartus II
Help.

When performing manual placement on a detailed level, Altera suggests
that you move LABs, not logic cells (LEs or ALMs). The Quartus II
software places nodes that share the same control signals in appropriate
LABs. Successful place-and-route is more difficult when you move
individual logic cells.

In general, when you are performing manual place-and-route, it is best to
fix all I/O paths first. This is because there are often fewer options
available to meet I/O timing. After I/O timing has been met, focus on
manually placing fMAX paths. This strategy follows the methodology
outlined in this chapter.

The best way to meet performance is to move nodes closer together. For a
critical path such as the one shown in Figure 6–12, moving the destination
node closer to the other nodes reduces the delay and may cause it to meet
your timing requirements.

6–38 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 6–12. Reducing Delay of Critical Path

Optimizing Placement for Stratix II, Stratix, Stratix GX, & Cyclone II
Devices

In Stratix II, Stratix, Stratix GX, and Cyclone II architectures, the row
interconnect delay is slightly faster than the column interconnect delay.
Therefore, when placing nodes, optimal placement is typically an ellipse
around the source or destination node. In Figure 6–13, if the source is
located in the center, any of the shaded LABs should give approximately
the same delay.

Figure 6–13. Possible Optimal Placement Ellipse

In addition, you should avoid crossing any M-RAM memory blocks for
node-to-node routing, if possible, because routing paths across M-RAM
blocks requires using R24 or C16 routing lines.

Altera Corporation 6–39
June 2004 Preliminary

fMAX Timing Optimization Techniques (LUT-Based Devices)

To determine the actual delays to and from a resource, use the Show
Physical Timing Estimate feature in the Timing Closure Floorplan.

f For more information on using the Timing Closure Floorplan, see the
Timing Closure Floorplan chapter in Volume 2 of the Quartus II Handbook.

Optimizing Placement for Cyclone Devices

In Cyclone devices, the row and column interconnect delays are similar;
therefore, when placing nodes, optimal placement is typically a circle
around the source or destination node.

Try to avoid long routes across the device because they require more than
one routing line to cross the Cyclone device.

Optimizing Placement for Mercury, APEX II, & APEX 20KE/C Devices

For the Mercury, APEX II, and APEX 20KE/C architectures, the delay for
paths should be reduced by placing the source and destination nodes in
the same geographical resource location. The following list shows the
device resources in order from fastest to slowest:

■ LAB
■ MegaLAB™ structure
■ MegaLAB column
■ Row

For example, if the nodes cannot be place in the same MegaLAB structure
to reduce the delay, they should be place in the same MegaLAB column.
For the actual delays to and from resources, use the Show Physical
Timing Estimate feature in the Timing Closure Floorplan.

Optimize Source Code

If the methods described in the preceding sections do not sufficiently
improve the timing in the design, you must modify the design at the
source to achieve the desired results. You may be able to rearchitect the
design using pipelining or more efficient coding techniques. In many
cases, optimizing the design’s source code can have a very significant
effect on your design performance. In fact, optimizing your source code
is often a better choice of optimization than using LogicLock or location
assignments.

If your critical path involved memory or DSP functions, check whether
you have code blocks in your design that describe memory or DSP
functions that are not being inferred and placed in dedicated logic. You

6–40 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

may be able to modify your source code to allow these functions to be
placed into high-performance dedicated memory or DSP resources in the
target device.

f For coding style guidelines including examples of HDL code for
inferring memory and DSP functions, refer to the Inferring and
Instantiating Altera Megafunctions section of the Recommended HDL Coding
Styles chapter in Volume 1 of the Quartus II Handbook.

Ensure that your state machines are recognized as state machine logic and
optimized appropriately in your synthesis tool. State machines that are
recognized are generally optimized better than if the synthesis tool treats
them as generic logic. In the Quartus II software, you can check for the
State Machine report under Analysis & Synthesis in the Compilation
Report (Processing menu). This report provides details, including the
state encoding for each state machine that was recognized during
compilation. If your state machine is not being recognized, you may need
to change your source code to enable it to be recognized.

f For guidelines and sample HDL code for state machines, refer to the
State Machines section in the Recommended HDL Coding Styles chapter in
Volume 1 of the Quartus II Handbook.

Improving fMAX Summary

The choice of options and the adjustment of settings to improve fMAX
depends on the failing paths in the design. To achieve the best results
relative to your performance requirements, apply the following options,
compiling after each:

1. Apply netlist optimization options (including physical synthesis).

2. Modify the seed. (This step may be omitted if a large number of
critical paths are failing, or if paths are failing by large amounts.)

3. Apply synthesis options to optimize for speed.

4. Use the DSE Tcl/Tk script as appropriate to automate successive
compilations of a design, each employing the different options in
steps 1 through 3.

5. Make LogicLock assignments.

6. Make location assignments, or perform manual placement by
back-annotating the design.

Altera Corporation 6–41
June 2004 Preliminary

Optimization Techniques for Macrocell-Based (MAX 7000 and MAX 3000) CPLDs

If these options do not achieve performance requirements, design source
code modifications may be required.

f For more information on the DSE script, see the Design Space Explorer
chapter in Volume 2 of the Quartus II Handbook.

Optimization
Techniques for
Macrocell-
Based (MAX
7000 and MAX
3000) CPLDs

This section of the chapter addresses resource and timing optimization
issues for Macrocell-based Altera devices, MAX 7000 and MAX 3000
CPLD device families.

For information on optimizing FPGA and MAX II CPLD designs, refer to
“Optimization Techniques for LUT-Based (FPGA and MAX II) Devices”
on page 6–12. For information on optimizing compilation time (when
targeting any device), refer to “Compilation Time Optimization
Techniques” on page 6–55.

Resource
Utilization
Optimization
Techniques
(Macrocell-
based CPLDs)

The following recommendations will help you take advantage of the
macrocell-based architecture in the MAX 7000 and MAX 3000 device
families to yield maximum speed, reliability, and device resource
utilization while minimizing fitting difficulties.

After design analysis, the first stage of design optimization is to improve
resource utilization. Complete this stage before proceeding to timing
optimization. First, ensure that you have set the basic constraints
described in “Initial Compilation” on page 6–2. If your design is not
fitting into a specified device, use the techniques in this section to achieve
a successful fit.

Use Dedicated Inputs for Global Control Signals

MAX 7000 and MAX 3000 devices have four dedicated inputs that can be
used for global register control. Because the global register control signals
can bypass the logic cell array and directly feed registers, product terms
for primary logic can be preserved. Also, because each signal has a
dedicated path into the LAB, global signals can also bypass logic and data
path interconnect resources.

Because the dedicated input pins are designed for high fan-out control
signals and provide low skew, you should always assign global signals
(e.g., clock, clear, and output enable) to the dedicated input pins.

You can use logic-generated control signals for global control signals
instead of dedicated inputs. However, the disadvantages to using
logic-generated controls signals include:

6–42 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

■ More resources are required (i.e., logic cells, interconnect)
■ May result in more data skew
■ If the logic-generated control signals have high fan-out, the design

may be more difficult to fit

By default, the Quartus II software uses dedicated inputs for global
control signals automatically. You can assign the control signals to
dedicated input pins in one of four ways:

■ In the Assignment Editor, choose one of two methods:
● Assign pins to dedicated pin locations
● Assign global signal settings to the pins

■ Choose Register Control Signals in the Auto Global Options
section of the Analysis & Synthesis Settings page of the Settings
dialog box (Assignments menu)

■ Insert a global primitive after the pins

1 If you have already assigned pins in the MAX+PLUS II software
for the design, choose Import Assignments (Assignments
menu).

Reserve Device Resources

Because pin and logic option assignments might be necessary for board
layout and performance requirements, and because full utilization of the
device resources may cause the design to be more difficult to fit, Altera
recommends that you leave 10% of the device’s logic cells and 5% of the
I/O pins unused to accommodate future design modifications. Following
the Altera-recommended device resource reservation guidelines
increases the chance that the Quartus II software will be able to fit the
design during recompilation after changes or assignments have been
made.

Pin Assignment Guidelines & Procedures

Sometimes user-specified pin assignments are necessary for board layout.
This section discusses pin assignment guidelines and procedures.

To minimize fitting issues with pin assignments, follow these guidelines:

■ Assign speed-critical control signals to dedicated inputs
■ Assign output enables to appropriate locations
■ Estimate fan-in to assign output pins to appropriate LAB
■ Assign output pins in need of parallel expanders to macrocells

numbered 4 to 16

Altera Corporation 6–43
June 2004 Preliminary

Resource Utilization Optimization Techniques (Macrocell-based CPLDs)

1 Altera recommends that you allow the Quartus II software to
automatically choose pin assignments when possible.

Control Signal Pin Assignments

You should assign speed-critical control signals to dedicated input pins.
Every MAX 7000 and MAX 3000 device has four dedicated input pins
(GCLK1, OE2/GCLK2, OE1, GCLRn). You can assign clocks to global
clock dedicated inputs (GCLK1, OE2/GCLK2), clear to the global clear
dedicated input (GCLRn), and speed-critical output enable to global OE
dedicated inputs (OE1, OE2/GCLK2).

Figure 6–14 shows the EPM3032A device’s pin-out information for the
dedicated pins. You can use the Quartus II Help to determine the
dedicated input pin numbers.

Figure 6–14. Quartus II Help EPM3032A Dedicated Pin-Out Information

Output Enable Pin Assignments

Occasionally, because the total number of required output enable pins is
more than the dedicated input pins, output enable signals may need to be
assigned to I/O pins. Therefore, to minimize the possibility of fitting
errors, refer to Quartus II Help when assigning the output enable pins for
MAX 7000 and MAX 3000 devices. Search for the device name (e.g.,
EPM3032A) in Quartus II Help to bring up the device pin table with
output enable information.

Figure 6–15 shows the dedicated pin-out information for the EPM3512A
device from Quartus II Help. Specifically, Figure 6–15 shows that the first
row Pin;LCell value is 8/5; which means that GOE8 can be driven by pin
170 or C6 (depending on package) and GOE5 can be driven by logic cell
21.

Dedicated Input Pins Pin Numbers

6–44 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 6–15. Quartus II Help EPM3512A Dedicated Pin-Out Information

Estimate Fan-In When Assigning Output Pins

Macrocells with high fan-in can cause more placement problems for the
Quartus II Fitter than those with low fan-in. The maximum number of
fan-in per LAB should not exceed 36 in MAX 7000 and MAX 3000 devices.
Therefore, it is important to estimate the fan-in of logic (e.g., x-input AND
gate) that feeds each output pin. If the total fan-in of logic that feeds each
output pin in the same LAB exceeds 36, compilation may fail. To save
resources and prevent compilation errors, avoid assigning pins that have
high fan-in.

Outputs Using Parallel Expander Pin Assignments

Figure 6–16 illustrates how parallel expanders are used within a LAB.
MAX 7000 and MAX 3000 devices contain chains that can lend or borrow
parallel expanders. The Quartus II Fitter places macrocells in a location
that allows them to lend and borrow parallel expanders appropriately.

As shown in Figure 6–16, only macrocells 2 through 16 can borrow
parallel expanders. Therefore, you should assign output pins that may
need parallel expanders to pins adjacent to macrocells 4 through 16.
Altera recommends using macrocells 4 through 16 because they can
borrow the largest number of parallel expanders.

This column lists the possible sources for
the output enable signals (i.e., GOE1, GOE2, etc), (1)

Global output enable signals that are fed by
logic cell in the corresponding LCell column.

Global output enable signals that are fed by
pin in the corresponding Function column.

Altera Corporation 6–45
June 2004 Preliminary

Resource Utilization Optimization Techniques (Macrocell-based CPLDs)

Figure 6–16. LAB Macrocells & Parallel Expander Associations

Resolving Resource Utilization Problems

During compilation with the Quartus II software, you may receive an
error message (see Figure 6–17) alerting you that the compilation was not
successful.

There are two common Quartus II compilation fitting issues: macrocell
usage and routing resources. Macrocell usage errors occur when the total
number of macrocells in the design exceeds the available macrocells in
the device. Routing errors occur when the available routing resources
cannot implement the design. To resolve your design issues, check the
Message Window (see Figure 6–17) for the no-fit compilation results.

Macrocell 1

LAB A

Macrocell 2

Macrocell 3

Macrocell 4

Macrocell 5

Macrocell 6

Macrocell 7

Macrocell 8

Macrocell 9

Macrocell 10

Macrocell 11

Macrocell 12

Macrocell 13

Macrocell 14

Macrocell 15

Macrocell 16

Macrocells 4 through 16 borrow
up to 15 parallel expanders from the
three immediately-preceding macrocells.

Macrocell two borrows up to five
parallel expanders from macrocell one.

Macrocell three borrows up to ten
parallel expanders from macrocell
one and two.

Macrocell one cannot borrow
any parallel expanders.

6–46 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

1 Messages in the Message Window are also copied in the Report
Files. Right-click on a message and select Help (right button
pop-up menu) for more information.

Figure 6–17. Quartus II Software Compilation No-Fit Error Message WIndow

Resolving Macrocell Usage Issues

Occasionally, a design requires more macrocell resources than are
available in the selected device, resulting in a no-fit compilation. The
following list provides tips for resolving macrocell-usage issues as well as
tips to minimize the amount of macrocells used:

■ Turn off Auto Parallel Expanders on the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu)—If the
design’s clock frequency (fMAX) is not an important part of the design
requirements, you should turn off the parallel expanders for all or
part of the project. The design will usually require more macrocells if
parallel expanders are turned on.

■ Change Optimization Technique from Speed to Area—An
algorithm that is written to give preference to device-fitting rather
than device-speed (fMAX) is selected when the Area Optimization
technique is enabled. As expected, the device-fitting algorithm
produces a slower compilation result. You can change the
Optimization Technique option in the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu).

■ Use D-flip-flops instead of latches—Altera recommends that you
always use D-flip-flops instead of latches in your design because
D-flip-flops may reduce the macrocell fan-in, and thus reduce
macrocell usage. The Quartus II software uses extra logic to
implement latches in MAX 7000 and MAX 3000 designs because
individual MAX 7000 and MAX 3000 macrocells contain D-flip-flops
instead of latches.

Design Requires
Too Many Pins

Design Requires
Too Many Macrocells

Altera Corporation 6–47
June 2004 Preliminary

Resource Utilization Optimization Techniques (Macrocell-based CPLDs)

■ Use asynchronous clear and preset instead of synchronous clear and
preset—To reduce the product term usage, use asynchronous clear
and preset in your design whenever possible. Using other control
signals such as synchronous clear will produce macrocells and pins
with higher fan-out.

1 If you have followed the suggestions listed in this section and
your project still does not fit the targeted device, consider using
a larger device. When upgrading to a different density device,
the vertical-package-migration feature of the MAX 7000 and
MAX 3000 device families allows pin assignments to be
maintained.

Resolving Routing Issues

The other resource that can cause design-fitting issues is routing. For
example, if the total fan-in into a LAB exceeds the maximum allowed, the
result may be a no-fit error during compilation. If your design does not fit
the targeted device because of routing issues, consider the following
suggestions:

■ Use dedicated inputs/global signals for high fan-out signals—The
dedicated inputs in MAX 7000 and MAX 3000 devices are designed
for speed-critical and high fan-out signals. Therefore, Altera
recommends that you always assign high fan-out signals to
dedicated inputs/global signals.

■ Change the Optimization Technique option from Speed to Area—
This option may resolve routing resource and the macrocell usage
issues. See the same suggestion in “Resolving Macrocell Usage
Issues” on page 6–46.

■ Reduce the fan-in per cell—If you are not limited by the number of
macrocells used in the design, you can use the Fanin per cell (%)
option to reduce the fan-in per cell. The allowable values are 20-100%
and the default value is 100%. Reducing the fan-in can reduce
localized routing congestion but increase the macrocell count. You
can set this logic option in the Assignment Editor (Assignments
menu) or under More Settings in the Analysis & Synthesis Settings
page of the Settings dialog box (Assignments menu).

■ Turn off Auto Parallel Expanders in the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu)—By
turning off the parallel expanders, the Quartus II software will have
more fitting flexibility for each macrocell, i.e., allowing macrocells to
relocate. For example, each macrocell (previously grouped together
in the same LAB) may move to a different LAB to reduce routing
constraints.

6–48 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

■ Inserting logic cells—Inserting logic cells reduces fan-in and shared
expanders used per macrocell, increasing routability. By default, the
Quartus II software will automatically insert logic cells when
necessary. You can turn this feature off by turning off Auto Logic
Cell Insertion under More Settings in the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu). See
“Using LCELL Buffers to Reduce Required Resources” on page 6–48
for more information.

■ Change pin assignments—If you are willing to discard your pin
assignments, you can let the Quartus II Fitter automatically ignore all
the assignments, the minimum number of assignments, or specific
assignments.

1 If you prefer reassigning the pins to increase the
device-routing efficiency, refer to “Pin Assignment
Guidelines & Procedures” on page 6–42.

Using LCELL Buffers to Reduce Required Resources

Complex logic, such as multi-level XOR gates, will often be implemented
with more than one macrocell. When this occurs, the Quartus II software
automatically allocates shareable expanders—or additional macrocells
(called synthesized logic cells)—to supplement the logic resources that
are available in a single macrocell. You can also break down complex logic
by inserting logic cells in the project to reduce the average fan-in and total
number of shareable expanders needed. Manually inserting logic cells
can provide greater control over speed-critical paths.

Instead of using the Quartus II software’s Auto Logic Cell Insertion
option, you can manually insert logic cells. However, Altera recommends
that you use the Auto Logic Cell Insertion option unless you know
which part of the design is causing the congestion.

A good location to manually insert LCELL buffers is where a single
complex logic expression feeds multiple destinations in your design. You
can insert an LCELL buffer just after the complex expression; the
Quartus II Fitter extracts this complex expression and places it in a
separate logic cell. Rather than duplicating all the logic for each
destination, the Quartus II software feeds the single output from the logic
cell to all destinations.

To reduce fan-in and prevent no-fit compilations caused by routing
resource issues, insert an LCELL buffer after a NOR gate, see Figure 6–18.
The Figure 6–18 design was compiled for a MAX 7000AE device. Without
the LCELL buffer, the design requires two macrocells, eight shareable

Altera Corporation 6–49
June 2004 Preliminary

Timing Optimization Techniques (Macrocell-based CPLDs)

expanders, and the average fan-in is 14.5. However, with the LCELL
buffer, the design requires three macrocells, eight shareable expanders,
and the average fan-in is just 6.33.

Figure 6–18. Reducing the Average Fan-In by Inserting LCELL Buffers

Timing
Optimization
Techniques
(Macrocell-
based CPLDs)

The stage of design optimization after resource optimization focuses on
timing. Ensure that you have made the appropriate assignments as
described in “Initial Compilation” on page 6–2, and that the resource
utilization is satisfactory, before proceeding with timing optimization.

Maintaining the system’s performance at or above certain timing
requirements is an important goal of circuit designs. The five main timing
parameters that determine a design’s system performance are: setup time
(tSU), hold time (tH), clock-to-output time (tCO), pin-to-pin delays (tPD),
and maximum clock frequency (fMAX). The setup and hold times are the
propagation time for input data signals. Clock-to-output time is the
propagation time for output signals, pin-to-pin delay is the time required
for a signal from an input pin to propagate through combinational logic
and appear at an external output pin, and the maximum clock frequency
is the internal register-to-register performance.

XOR
a0

b0

XOR
a1

b1

XOR
a2

b2

XOR
a3

b3

XOR
a4

b4

XOR
a5

b5

clk

PRN

CLRN

D Q

DFF

Output

PRN

CLRN

D Q

DFF

Output

Insert LCELL Buffer After NOR Gate

6–50 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

This section provides guidelines to improve the timing if the timing
requirements are not met. Figure 6–19 shows the parts of the design that
determine the tSU, tH, tCO, tPD, and fMAX timing parameters.

Figure 6–19. Main Timing Parameters That Determine the System’s Performance

Timing results for tSU, tH, tCO, tPD, and fMAX are found in the Compilation
Report, as discussed in “Design Analysis” on page 6–6.

When you are analyzing a design to improve its performance, be sure to
consider the two major contributors to long delay paths:

■ Excessive levels of logic
■ Excessive loading (high fan-out)

For MAX 7000 and MAX 3000 devices, when a signal drives out to more
than one LAB, the programmable interconnect array (PIA) delay
increases by 0.1 ns per additional LAB fan-out. Therefore, to minimize the
added delay, you should concentrate the destination macrocells into
fewer LABs, minimizing the number of LABs that are driven. The main
cause of long delays in circuit design is excessive levels of logic.

Improving Setup Time

Sometimes the tSU timing reported by the Quartus II Fitter may not meet
your timing requirements. To improve the tSU timing, refer to the
guidelines listed below:

■ Turn on the Fast Input Register option—The Fast Input Register
option allows input pins to directly drive macrocell registers via the
fast-input path, thus minimizing the pin-to-register delay. This
option is helpful when a pin drives a D-flip-flop without
combinational logic between the pin and the register.

Input

Logic
PRN

CLRN

D Q

DFF

PRN

CLRN

D Q

DFF
Output

Logic

Input

Set up & hold time

Clock frequency

Clock-to-output-time

Logic Logic

Altera Corporation 6–51
June 2004 Preliminary

Timing Optimization Techniques (Macrocell-based CPLDs)

■ Reduce the amount of logic between the input and the register—
Excessive logic between the input pin and register will cause more
delays. Therefore, to improve setup time, Altera recommends that
you reduce the amount of logic between the input pin and the
register whenever possible.

■ Reduce fan-out—The delay from input pins to macrocell registers
increases when the fan-out of the pins increases. Therefore, to
improve the setup time, minimize the fan-out.

Improving Clock-to-Output Time

To improve a design’s clock-to-output time, you should minimize the
register-to-output-pin delay. To improve the tCO timing, refer to the
guidelines listed below:

■ Use the global clock—Besides minimizing the delay from the register
to output pin, minimizing the delay from the clock pin to the register
can also improve the tCO timing. Altera recommends that you always
use the global clock for low-skew and speed-critical signals.

■ Reduce the amount of logic between the register and output pin—
Excessive logic between the register and the output pin will cause
more delay. Always minimize the amount of logic between the
register and output pin for faster clock-to-output time.

Table 6–10 lists timing results for an EPM7064AETC100-4 device when a
combination of the Fast Input Register option, global clock, and minimal
logic is used. When the Fast Input Register option is turned on, the tSU
timing is improved (tSU decreases from 1.6 ns to 1.3 ns and from 2.8 ns to
2.5 ns). The tCO timing is improved when the global clock is used for
low-skew and speed-critical signals (tCO decreases from 4.3 ns to 3.1 ns).
However, if there is additional logic used between the input pin and the
register or the register and the output pin, the tSU and tCO timing will
increase.

Table 6–10. EPM7064AETC100-4 Device Timing Results (Part 1 of 2)

Number
of

Registers
tSU tH tCO

Global
Clock
Used

Fast
Input

Register
Option

D Input
Location

Q Output
Location

Additional
Logic

Between D
Input

Location &
Register

Additional
Logic

Between
Register & Q

Output
Location

One 1.3 ns 1.2 ns 4.3 ns No On LAB A LAB A No No

One 1.6 ns 0.3 ns 4.3 ns No Off LAB A LAB A No No

One 2.5 ns 0 ns 3.1 ns Yes On LAB A LAB A No No

6–52 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Improving Propagation Delay (tPD)

Achieving fast propagation delay (tPD) timing is required in many system
designs. However, if there are long delay paths through complex logic,
achieving fast propagation delays can be difficult. To improve your
design’s tPD, Altera recommends that you follow the guidelines discussed
in this section.

■ Turn on Auto Parallel Expanders in the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu)—
Turning on the parallel expanders for individual nodes or
subdesigns can increase the performance of complex logic functions.
However, if the project’s pin or logic cell assignments use parallel
expanders placed physically together with macrocells (which can
reduce routability), parallel expanders can cause the Quartus II Fitter
to have difficulties finding and optimizing a fit. Additionally, the
number of macrocells required to implement the design will also
increase and result in a no fit error during compilation if the device’s
resources are limited. For more information on turning the Auto
Parallel Expanders option on, refer to “Resolving Macrocell Usage
Issues” on page 6–46.

■ Set the Optimization Technique to Speed—By default, the
Quartus II software sets the Optimization Technique option to
Speed for MAX 7000 and MAX 3000 devices. Thus, you should only
need to reset the Optimization Technique option back to Speed if
you have previously set it to Area. You can reset the Optimization
Technique option in the Analysis & Synthesis Settings page of the
Settings dialog box (Assignments menu).

One 2.8 ns 0 ns 3.1 ns Yes Off LAB A LAB A No No

One 3.6 ns 0 ns 3.1 ns Yes Off LAB A LAB A Yes No

One 2.8 ns 0 ns 7.0 ns Yes Off LAB D LAB A No Yes

16
registers
with the
same D
and clock
inputs

2.8 ns 0 ns All
6.2 ns

Yes Off LAB D LAB A, B No No

32
registers
with the
same D
and clock
inputs

2.8 ns 0 ns All
6.4 ns

Yes Off LAB C LAB A,
B, C

No No

Table 6–10. EPM7064AETC100-4 Device Timing Results (Part 2 of 2)

Altera Corporation 6–53
June 2004 Preliminary

Timing Optimization Techniques (Macrocell-based CPLDs)

Improving Maximum Frequency (fMAX)

Maintaining the system clock at or above a certain frequency is a major
goal in circuit design. For example, if you have a fully synchronous
system that must run at 100 MHz, the longest delay path from the output
of any register to the input(s) of the register(s) it feeds must be less than
10 ns. Maintaining the system clock speed can be difficult if there are long
delay paths through complex logic. Altera recommends that you follow
the guidelines below to improve your design’s clock speed (i.e., fMAX).

■ Turn on Auto Parallel Expanders in the Analysis & Synthesis
Settings page of the Settings dialog box (Assignments menu)—
Turning on the parallel expanders for individual nodes or
subdesigns can increase the performance of complex logic functions.
However, if the project’s pin or logic cell assignments use parallel
expanders placed physically together with macrocells (which can
reduce routability), parallel expanders can cause the Quartus II
Compiler to have difficulties finding and optimizing a fit.
Additionally, the amount of macrocells required to implement the
design will also increase and result in a no fit error during
compilation if the device’s resources are limited. For more
information on turning the Auto Parallel Expanders option on, refer
to “Resolving Macrocell Usage Issues” on page 6–46.

■ Use global signals/dedicated inputs—Altera MAX 7000 and MAX
3000 devices’ dedicated inputs provide low skew and high speed for
high fan-out signals. Thus, Altera recommends that you always
minimize the number of control signals in the design and use the
dedicated inputs to implement them.

■ Set the Optimization Technique to Speed—By default, the
Quartus II software sets the Optimization Technique option to
Speed for MAX 7000 and MAX 3000 devices. Thus, you should only
need to reset the Optimization Technique option back to Speed if
you have previously set it to Area. You can reset the Optimization
Technique option in the Analysis & Synthesis Settings page of the
Settings dialog box (Assignments menu).

■ Pipeline the design—Pipelining, which increases clock frequency
(fMAX), refers to dividing large blocks of combinational logic by
inserting registers. For more information on pipelining, see
“Optimizing Source Code—Pipelining for Complex Register Logic”.

Optimizing Source Code—Pipelining for Complex Register Logic

If the methods described in the preceding sections do not sufficiently
improve your results, modify the design at the source to achieve the
desired results. Using a pipelining technique can consume device
resources, but it also lowers the propagation delay between registers,
allowing you to maintain high system clock speed.

6–54 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

The benefits of pipelining can be demonstrated with a 4- to 16-pipelined
decoder that decodes the 4-bit numbers. The decoder is based on five 2- to
4-pipelined decoders with outputs that are registered using D-flip-flops.
Figures 6–20 shows one of the 2- to 4-pipelined decoders. The function
2TO4DEC is the 2- to 4-decoder that feeds all four decoded outputs (i.e.,
out1, out2, out3, and out4) to the D-flip-flops in 4REG.

Figure 6–20. A 2- to 4-Pipelined Decoder

Figures 6–21 shows five 2- to 4-decoders (2TO4REGDEC) that are
combined to form a 4- to 16-pipelined decoder. The first decoder
(2TO4REGDEC1) will decode the two most significant bits (MSB) (i.e., in3
and in4) of the 4- to 16-decoder. The decoded output from the
2TO4REGDEC1 decoder will only enable one of the rest of the 2- to
4-decoders (i.e., 2TO4REGDEC2, 2TO4REGDEC3, 2TO4REGDEC4, or
2TO4REGDEC5). The inputs in1 and in2 are decoded by the enabled
2- to 4-decoder. Because the time to generate the decoded output
increases with the size of the decoder, pipelining the design reduces the
time consumed to generate the decoded output, thus improving the
maximum frequency. In Figures 6–21, the MSBs (i.e.,in3 and in4) are
decoded in the first clock cycle, while the other bits (i.e., in1, and in2)
are decoded in the following clock cycle.

in1

in2

clk

reset

in0

in1
out1

out2

out3

out4

2TO4DEC

out1

out2

out3

out4

d1

d2

d3

d4

clk

reset

q1

q2

q3

q4

4REG

Altera Corporation 6–55
June 2004 Preliminary

Compilation Time Optimization Techniques

Figure 6–21. Five 2- to 4-Pipelined Decoders Combined to Form a 4- to 16-Pipelined Decoder

Compilation
Time
Optimization
Techniques

If optimizing the compilation time of your design is important, use the
techniques in this section. Be aware that reducing compilation time using
these techniques may reduce the overall quality of results.

Reducing Synthesis and Synthesis Netlist Optimization Time

You can use Quartus II integrated synthesis to synthesize and optimize
HDL designs. You can also use synthesis netlist optimizations to optimize
netlists synthesized by third-party EDA software. Using these
optimizations can make the Analysis & Synthesis module take much

in1

in2

reset

2TO4REGDEC2

in1

in2

clk

reset

out1

out2

out3

out4

2TO4REGDEC1

in1

in2

clk

reset

out1

out2

out3

out4

2TO4REGDEC3

in1

in2

clk

reset

out1

out2

out3

out4

2TO4REGDEC4

in1

in2

clk

reset

out1

out2

out3

out4

2TO4REGDEC5

out13

out14

out15

out16

in1

in2

clk

reset

out1

out2

out3

out4

clk

in3

in4

out9

out10

out11

out12

out1

out2

out3

out4

out5

out6

out7

out8

6–56 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

longer to run. Look at the Analysis & Synthesis messages to find out how
much time these optimizations take. Note that the compilation time spent
in Analysis & Synthesis is typically small compared to the compilation
time spent in the Fitter.

If your design meets your performance requirements without synthesis
netlist optimizations, turn the optimizations off to save time. If you need
to turn on synthesis netlist optimizations to meet performance, separately
optimize parts of your design hierarchy to reduce analysis and synthesis.
Create ATOM netlists for parts of your design you have already
synthesized and optimized. The Quartus II Analysis & Synthesis module
will not need to reoptimize those netlists, resulting in reduced synthesis
and netlist optimization time.

f For more information on creating hierarchical designs with multiple
netlists, refer to the Hierarchical Block-Based & Team-Based Design Flows
chapter in Volume 1 of the Quartus II Handbook.

Reducing Placement Time

The time needed to place a design depends on two factors:

■ The number of ways the logic in the design can be placed in the
device

■ The settings that control how hard the placer works to find a good
placement

You can reduce the placement time in two ways: change the settings for
the placement algorithm, or use LogicLock regions to manually control
where parts of the design are placed. Sometimes there is a trade-off
between placement time and routing time. Routing time can increase if
the placer does not run long enough to find a good placement. When you
reduce placement time, make sure that it does not increase routing time
and cancel out the time reduction.

Fitter Effort Setting

Use the Fitter effort setting on the Fitter Settings page of the Settings
dialog box (Assignments menu) to shorten run time by changing the
effort level to Auto Fit or Fast Fit.

Physical Synthesis Effort Settings

You can use the physical synthesis options to optimize your
post-synthesis netlist and improve your timing performance. These
options, which affect placement, can significantly increase compilation
time. Refer to Table 6–7 on page 6–29 for detailed results.

Altera Corporation 6–57
June 2004 Preliminary

Compilation Time Optimization Techniques

If your design meets your performance requirements without physical
synthesis options, turn them off to save time. You can also use the
Physical synthesis effort setting on the Physical Synthesis
Optimizations page under Fitter Settings in the Settings dialog box
(Assignments menu) to reduce the amount of extra compilation time used
by these optimizations. The Fast setting directs the Quartus II software to
use a lower level of physical synthesis optimization that, compared to the
normal level, may cause a smaller increase in compilation time. However,
the lower level of optimization may result in a smaller increase in design
performance.

Incremental Fitting

Incremental fitting can reduce placement time after an initial compilation
because the placer tries to place unchanged nodes in your design in their
previous locations. The matching is based on the nodes’ logic and
connectivity, not just their names. Even if all of the combinational node
names have changed, incremental fitting should be able to match the
original nodes’ functionality and recreate the same placement. Not all
nodes need to match, making this mode perfect for Engineering Change
Orders (ECOs). Incremental fitting can start an entirely new placement
under some conditions:

■ More than 500 nodes in the design do not match
■ Performance drops by more than 5%
■ You significantly change LogicLock regions
■ You target a new device
■ You delete the design database

Start incremental fitting by choosing Start > Start Incremental Fitting
(Processing menu).

LogicLock Regions

Preserving information about previous placements can make future
placements take less time. To successfully preserve information, node
names must not change from placement to placement, and node locations
must be preserved so they will not change from placement to placement.

To preserve node names, you must use atom netlists. Atom netlists
include Verilog Quartus Mapping (.vqm) files and EDIF files, which are
the outputs of third-party synthesis software. If you use Quartus II
integrated synthesis, or turn on any Quartus II netlist optimizations, you
must generate VQM files and turn off netlist optimizations in future
compilations.

6–58 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

To preserve node locations, use back-annotated LogicLock regions. After
you back-annotate a LogicLock region, the node locations are fixed and
the placer skips those nodes, saving time. If you change part of your
design in a back-annotated LogicLock region, delete the back-annotated
contents of the region and recompile the design. The placer will find a
new placement for the changed logic and any logic that is not in a
LogicLock region.

Follow these steps to reduce placement time with atom netlists and
LogicLock regions:

1. Choose hierarchies in your design to assign to LogicLock regions.
You do not have to use LogicLock regions for all hierarchies in your
design, just the hierarchies for which you want to reduce placement
time.

2. Create separate atom netlists for the chosen hierarchies and assign
them to LogicLock regions

3. Turn off netlist optimizations on each LogicLock region

4. Compile the design

5. Back-annotate the LogicLock regions

Follow these steps when you change logic in a back-annotated LogicLock
region

1. Create a new atom netlist for the hierarchy

2. Delete the back-annotated contents of the appropriate LogicLock
region

3. Recompile the design

4. Back-annotate the LogicLock region

f For more information on creating hierarchical designs with multiple
netlists, refer to the Hierarchical Block-Based & Team-Based Design Flows
chapter in Volume 1 of the Quartus II Handbook.

Altera Corporation 6–59
June 2004 Preliminary

Scripting Support

Reducing Routing Time

The time needed to route a design depends on three factors: the device
architecture, the placement of the design in the device, and the
connectivity between different parts of the design. Typically the routing
time is not a significant amount of the compilation time. If your design
takes a long time to route, perform one or more of the following actions:

■ Check for routing congestion
■ Let the placer run longer to find a more routable placement
■ Use LogicLock regions to preserve routing information

Routing Congestion

To identify congested routing areas in your design, open the Timing
Closure Floorplan. Choose Timing Closure Floorplan (Assignments
menu) and turn on Show Routing Congestion. A routing resource usage
above 90% indicates routing congestion.

If the area with routing congestion is in a LogicLock region or between
LogicLock regions, remove the LogicLock regions and recompile the
design. If the routing time remains the same, then the time is a
characteristic of the design and the placement. If the routing time
decreases, you should consider changing the size, location, or contents of
the LogicLock regions to reduce congestion and decrease routing time.

LogicLock Regions

You can use LogicLock regions back-annotated to the routing level to
preserve routing information between compilations. This can reduce the
time required to route a design. Follow the same steps as for using
LogicLock regions to reduce placement time, but back-annotate to the
routing level.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some of these procedures at a command
prompt.

For detailed information about specific scripting command options and
Tcl API packages, type quartus_sh --qhelp at a system command
prompt to run the Quartus II Command-Line and Tcl API Help browser.

f For more information on Quartus II scripting support, including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters
in Volume 2 of the Quartus II Handbook.

6–60 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

You can specify many of the options described in this section either in an
instance, or at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF Variable Name> <Value>

Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF Variable Name> <Value> \
-to <Instance Name>

Initial Compilation Settings

Table 6–11 lists the QSF variable name and applicable values for the
settings discussed in “Initial Compilation” on page 6–2. The QSF variable
name is used in the Tcl assignment to make the setting along with the
appropriate value. The Type column indicates whether the setting is
supported as a Global setting, an Instance setting, or both.

Resource Utilization Optimization Techniques (LUT-Based
Devices)

Table 6–12 lists the QSF variable name and applicable values for the
settings discussed in “Resource Utilization Optimization Techniques
(LUT-Based Devices)” on page 6–13. The QSF variable name is used in the

Table 6–11. Initial Compilation Settings

Setting Name QSF Variable Name Values Type

Use Smart
Compilation

SPEED_DISK_USAGE_TRADEOFF SMART, NORMAL Global

Optimize Timing OPTIMIZE_TIMING OFF, “NORMAL
COMPLIATION”, “EXTRA
EFFORT”

Global

Optimize I/O Cell
Register
Placement

OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR
_TIMING

ON,OFF Global

Optimize Hold
Timing

OPTIMIZE_HOLD_TIMING OFF, “IO PATHS AND
MINIMUM TPD PATHS”,
“ALL PATHS”

Global

Fitter Effort FITTER_EFFORT “STANDARD FIT”, “FAST
FIT”, “AUTO FIT”

Global

Altera Corporation 6–61
June 2004 Preliminary

Scripting Support

Tcl assignment to make the setting along with the appropriate value. The
Type column indicates whether the setting is supported as a Global
setting, an Instance setting, or both.

I/O Timing Optimization Techniques (LUT-Based Devices)

Table 6–13 lists the QSF variable name and applicable values for the
settings discussed in “I/O Timing Optimization Techniques (LUT-Based
Devices)” on page 6–21. The QSF variable name is used in the Tcl

Table 6–12. Resource Utilization Optimization Settings

Setting Name QSF Variable Name Values Type

Auto Packed
Registers

AUTO_PACKED_REGISTERS
_<Device Family Name>

OFF, NORMAL,
“MINIMIZE AREA”

Global,
Instance

Auto Packed
Registers

AUTO_PACKED_REGISTERS
_<CYCLONE|MAXII|STRATIX|STRATIXII>

OFF, NORMAL,
“MINIMIZE AREA”,
“MINIMIZE AREA WITH
CHAINS”, AUTO

Global,
Instance

Perform
WYSIWYG
Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_
REMAP

ON, OFF Global,
Instance

Optimization
Technique

<Device Family Name>_OPTIMIZATION_
TECHNIQUE

AREA, SPEED,
BALANCED

Global,
Instance

State Machine
Encoding

STATE_MACHINE_PROCESSING AUTO, “ONE-HOT”,
“MINIMAL BITS”,
“USER-ENCODED”

Global,
Instance

Preserve
Hierarchy

PRESERVE_HIERARCHICAL_BOUNDARY OFF, RELAXED, FIRM, Instance

Auto RAM
Replacement

AUTO_RAM_RECOGNITION ON, OFF Global,
Instance

Auto ROM
Replacement

AUTO_ROM_RECOGNITION ON, OFF Global,
Instance

Auto Shift Register
Replacement

AUTO_SHIFT_REGISTER_RECOGNITION ON, OFF Global,
Instance

Auto DSP Block
Replacement

AUTO_DSP_RECOGNITION ON, OFF Global,
Instance

6–62 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

assignment to make the setting along with the appropriate value. The
Type column indicates whether the setting is supported as a Global
setting, an Instance setting, or both.

FMAX Timing Optimization Techniques (LUT-Based Devices)

Table 6–14 lists the QSF variable name and applicable values for the
settings discussed in “fMAX Timing Optimization Techniques (LUT-Based
Devices)” on page 6–27. The QSF variable name is used in the Tcl
assignment to make the setting along with the appropriate value. The
Type column indicates whether the setting is supported as a Global
setting, an Instance setting, or both.

Table 6–13. I/O Timing Optimization Settings

Setting Name QSF Variable Name Values Type

Optimize I/O cell
register placement
for timing

OPTIMIZE_IOC_REGISTER_PLACEMENT_FOR
_TIMING

ON, OFF Global

Fast Input Register FAST_INPUT_REGISTER ON, OFF Instance

Fast Output
Register

FAST_OUTPUT_REGISTER ON, OFF Instance

Fast Output
Enable Register

FAST_OUTPUT_ENABLE_REGISTER ON, OFF Instance

Table 6–14. FMAX Timing Optimization Settings (Part 1 of 2)

Setting Name QSF Variable Name Values Type

Perform
WYSIWYG
Primitive
Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_
REMAP

ON, OFF Global,
Instance

Perform Gate
Level Register
Retiming

ADV_NETLIST_OPT_SYNTH_GATE_RETIME ON, OFF Global

Allow Register
Retiming to trade
off Tsu/Tco with
fMAX

ADV_NETLIST_OPT_RETIME_CORE_AND_IO ON, OFF Global

Perform Physical
Synthesis for
Combinational
Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global

Altera Corporation 6–63
June 2004 Preliminary

Conclusion

Conclusion Today's complex designs have complex requirements. Methodologies for
fitting your design and for achieving timing closure are fundamental to
optimal performance in today's designs. Using the Quartus II design
optimization methodology closes timing quickly on complex designs,
reduces iterations by providing more intelligent and better linkage
between analysis and assignment tools, and balances multiple design
constraints including multiple clocks, routing resources, and area
constraints.

The Quartus II software provides many features to effectively achieve
optimal results. Follow the techniques presented in this chapter to
efficiently optimize a design for area or timing performance or to reduce
compilation time.

Perform Register
Duplication

PHYSICAL_SYNTHESIS_REGISTER_
DUPLICATION

ON, OFF Global

Perform Register
Retiming

PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global

Physical Synthesis
Effort

PHYSICAL_SYNTHESIS_EFFORT NORMAL, EXTRA, FAST Global

Seed SEED <integer> Global

Maximum Fan-Out MAX_FANOUT <integer> Instance

Manual Logic
Duplication

DUPLICATE_ATOM <node name> Instance

Table 6–14. FMAX Timing Optimization Settings (Part 2 of 2)

Setting Name QSF Variable Name Values Type

6–64 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Altera Corporation 7–1
June 2004 Preliminary

7. Timing Closure Floorplan

Introduction With FPGA designs surpassing the million-gate mark, designers need
advanced tools to better analyze timing closure issues to achieve their
system performance goals.

The Altera® Quartus® II software offers many advanced design analysis
tools that allow detailed timing analysis of your designs, including a fully
integrated Timing Closure Floorplan Editor. With these tools and options,
the critical paths in your design can be easily determined and located in
the floorplan of the targeted device. This chapter explains how to use
these tools and options to enhance your FPGA design analysis.

Design Analysis
Using the
Timing Closure
Floorplan

The Timing Closure Floorplan Editor assists you in visually analyzing
your designs before and after performing a full design compilation in the
Quartus II software. This floorplan editor, used in conjunction with
traditional Quartus II timing analysis features, provides a powerful
method to perform design analysis.

Timing Closure Floorplan Views

The Timing Closure Floorplan Editor allows you to customize the views
of your design. The Field View is a color-coded, high-level view of
resources. Figure 7–1 shows the Field View of a Stratix® device.

qii52006 2.0

7–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–1. Field View of a Stratix Device

In the field view, you can view the details of a resource by selecting the
resource, right-clicking, then selecting Show Details from the
right-button pop-up menu. To hide the details, select all the resources,
right-click, and select Hide Details. See Figure 7–2.

You can also view your design in the Timing Closure Floorplan Editor
with the traditional Interior Cells, Package Top, and Package Bottom
views. Use the View menu to change to the various floorplan views.

M4K
Blocks

I/O Blocks

DSP
Blocks

M512
Blocks

M-RAM

Altera Corporation 7–3
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–2. Show Details & Hide Details of a LAB in Field View

Viewing Assignments

The Timing Closure Floorplan Editor differentiates between user
assignments and fitter placements. User assignments are location and
LogicLock™ assignments that you make. Fitter placements are the
locations where the Quartus II software placed all nodes after the last
compilation. You can view both user assignments and fitter placements at
the same time.

To see user assignments, click the User Assignments icon in the
Floorplan Editor toolbar, or choose Assignments (View menu) and select
Show User Assignments. See Figure 7–3.

7–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–3. User Assignments

To see fitter placements, click the Fitter Assignments icon in the
Floorplan Editor toolbar, or choose Assignments (View menu) and select
Show Fitter Placements. See Figure 7–4.

Altera Corporation 7–5
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–4. Fitter Placements

Viewing Critical Paths

The View Critical Paths feature displays routing paths in the floorplan
and ranks their importance, as shown in Figure 7–5. The criticality of a
path is determined by either delay or slack. You can view a percentage of
critical paths or specify how many paths you wish to see. You can also
choose to see paths for all clock domains or a specific clock domain. The
following paths can be displayed:

■ tPD - The time required for a signal from an input pin to propagate
through combinational logic and appear at an external output pin.

■ tSU - The length of time for which data that feeds a register via its data
or enable input(s) must be present at an input pin before the clock
signal that clocks the register is asserted at the clock pin.

■ tCO - The maximum time required to obtain a valid output at an
output pin that is fed by a register after a clock signal transition on
an input pin that clocks the register. This time always represents an
external pin-to-pin delay.

7–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

■ tH - The minimum length of time for which data that feeds a register
through data or enable input(s) must be retained at an input pin after
the clock signal that clocks the register is asserted at the clock pin.

■ Register-to-Register (fMAX) - The maximum clock frequency that can
be achieved without violating internal setup (tSU) and hold (tH) time
requirements.

To view critical paths in the floorplan, click the Show Critical Paths icon
or chose Routing > Show Critical Paths (View menu). To set the criteria
for the critical path you want to view, select the Critical Paths Settings
icon or choose Routing > Critical Paths Settings (View menu). See
Figure 7–5.

Figure 7–5. Critical Paths

When viewing critical paths by slack, the settings are specified with the
By Slack tab of the Critical Path Settings dialog box shown in Figure 7–6.
You determine which path to view and specify the slack threshold
beyond which you would like the path displayed in the floorplan. For
example, you can view all paths with a slack of -1 ns or worse.

1 Timing settings must be made for paths to be displayed in the
floorplan.

Altera Corporation 7–7
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–6. Critical Paths Settings, by Slack

When viewing critical paths by delay, the settings are specified with the
By Delay tab of the Critical Path Settings dialog box shown in
Figure 7–7. This view displays the critical paths with the longest delay.

7–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–7. Critical Paths Settings, by Delay

The critical path feature is extremely useful in determining the criticality
of nodes based on placement. There are a number of options to view the
details of critical path. To see the delay of the critical path, click the Show
Routing Delays icon or choose Routing > Show Routing Delays (View
menu). See Figure 7–8.

Altera Corporation 7–9
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–8. Routing Delays for Critical Paths

The default view shows the path. You can also view all the combinational
nodes to see the worst-case path between the source and destination
nodes. To view the full path, select the path by clicking on the delay label,
right click, and select Show Path Edges. Figure 7–9 shows a critical path
through combinational nodes. To hide the combinational nodes, select the
path, right click, and select Hide Path Edges.

1 The routing delays must be shown in order to be able to select a
path.

7–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–9. Worst-Case Combinational Paths of Critical Paths

You can also assign the path to a LogicLock region in the Paths dialog box;
select the path, right click, and select Properties.

You can determine the maximum routing delay between two nodes
within a LogicLock region. To use this feature, click the Show
Intra-region Delay icon or go to Routing> Show Intra-region Delay
(View menu). Place your cursor over a fitter-placed LogicLock region to
see the maximum delay. Figure 7–10 shows the maximum routing delay
of a LogicLock region.

Figure 7–10. Maximum Intra-Region Delay

Altera Corporation 7–11
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

f For more information on making path assignments with the Paths dialog
box, see the LogicLock Design Methodology chapter in Volume 2 of the
Quartus II Handbook.

Physical Timing Estimates

In the Timing Closure Floorplan Editor, you can select a resource and see
the approximate delay to any other resource on the chip. Once a resource
is selected, the delay is represented by the color of potential destination
resources. The darker the resource, the longer the delay, as shown in
Figure 7–11.

Figure 7–11. Physical Timing Estimates for Large Floorplan

You can also get an approximation of the delay between two points by
selecting a source and holding your cursor over a potential destination
resource, as shown in Figure 7–12.

7–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–12. Delay for Physical Timing Estimate

The delays represent an estimate based on probable best-case routing. It
is possible the delay is greater than what is shown, depending on the
availability of routing resources. In general, there is a strong correlation
between the probable and actual delay.

To view the physical timing estimates, click the Show Physical Timing
Estimate icon or choose Routing > Show Physical Timing Estimates
(View menu).

The physical timing estimate information can be used when manually
placing logic in a device. This allows you to place critical nodes and
modules closer together and non-critical or unrelated nodes and modules
further apart. This reduces the routing congestion between critical and
non-critical entities and modules allowing the Quartus II Fitter to select
the timing requirements.

LogicLock Region Connectivity

You can also see how logic in LogicLock regions interface by viewing the
connectivity between assigned LogicLock regions. This capability is
extremely valuable when entities are assigned to LogicLock regions. It is
also possible to see the fan-in and fan-out of selected LogicLock regions.

Figure 7–13 shows standard LogicLock region connections. To view the
connections in the timing closure floorplan, click the Show LogicLock
Regions Connectivity icon in the toolbar or choose Routing > Show
LogicLock Regions Connectivity (View menu).

Altera Corporation 7–13
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–13. LogicLock Region Connections with Connection Count

The connection line thickness indicates how many connections exist
between regions. To view the number of connections between regions,
click the Show Connection Count icon or choose Routing > Show
Connection Count (View menu).

LogicLock region connectivity is applicable only when the user
assignments are viewed in the floorplan. When floating LogicLock
regions are used, the origin of the user-assigned region is not necessarily
the same as the fitter-placed region. This allows you to unlock a region
and then lock it down again at a later time. You can change the origin of
your floating LogicLock regions to that of the last compilation origin in

7–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

the LogicLock Regions window (Assignments Menu), or by selecting
Back-Annotate Origin and Lock under Location in the LogicLock
Regions Properties dialog box.

To see the fan-in or fan-out of a LogicLock region, select the user-assigned
LogicLock region while the fan-in or the fan-out option is turned on. To
set the fan-in option, click the Show Node Fan-In icon or choose Routing
> Show Node Fan-In (View menu). To set the fan-out option, select the
Show Node Fan-Out icon or choose Routing > Show Node Fan-Out
(View menu). Only the nodes that have user assignments are seen when
viewing fan-in or fan-out of LogicLock regions. Figure 7–14 shows the
fan-out of a selected LogicLock region.

Figure 7–14. Fan-In or Fan-Out

Altera Corporation 7–15
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Viewing Routing Congestion

The View Routing Congestion feature allows you to determine the
percentage of routing resources used after a compilation. This feature
identifies where there is a lack of routing resources.

The congestion is visually represented by the color and shading of logic
resources. The darker shading represents a greater routing resource
utilization. Logic resources that are red have routing resource utilization
greater than the specified threshold.

To view routing congestion in the floorplan, click the Show Routing
Congestion icon, or choose Routing > Show Routing Congestion (View
menu). To set the criteria for the critical path you wish to view, click the
View Routing Congestion Settings icon or choose Routing > Routing
Congestion Settings (View menu). Figure 7–15 shows the Routing
Congestion Settings dialog box.

Figure 7–15. Routing Congestion Settings Window

You can choose the routing resource you want to examine and set the
congestion threshold. Routing congestion is calculated based on the total
resource usage divided by the total available resources.

If you are using the routing congestion viewer to determine where there
is a lack of routing resources, examine each routing resource individually
to see which ones use close to 100% of available resources.

7–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

I/O Timing Analysis Report File

Use the Timing Analyzer folder in the Compilation Report (Processing
menu) to determine whether I/O timing has been met. The tSU, tH, and tCO
reports list the I/O paths and the slack associated with each. The I/O
paths that have not met the required timing are reported with a negative
slack and are displayed in red as shown in Figure 7–16.

Figure 7–16. I/O Requirements

To determine why timing requirements are not met, right-click a
particular I/O entry and choose List Paths. A message appears in the
System tab of the Message window. You can expand a selection by
clicking the "+" icon at the beginning of the line, as shown in Figure 7–17.
This is a good method of determining where along the path the greatest
delay is located.

Altera Corporation 7–17
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–17. I/O Slack Report

To visually analyze I/O timing, right-click on an I/O entry in the report
and select Locate in Timing Closure Floorplan as shown in Figures 7–18
and 7–19. The Timing Closure Floorplan Editor is displayed, highlighting
the I/O path. Note that you can set the level of detail in the floorplan in
the View menu.

Figure 7–18. Locate Failing Path in Timing Closure Floorplan Editor

7–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–19. Failing Path in Timing Closure Floorplan Editor, Field View

In Figure 7–20 the arrows indicate the critical path (i.e., a register) from
the beginning point to the end point (i.e., another register). The times
shown are the slack figures for each path. Negative slack indicates paths
that failed to meet their timing requirements.

To see all the intermediate nodes (i.e., combinational logic cells) on a path
and the delay for each level of logic, right-click the title bar above a path's
slack number and choose Expand (right button pop-up menu). To view
all these paths in the Timing Closure Floorplan Editor choose Routing >
Show Critical Paths (View menu).

Altera Corporation 7–19
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–20. Critical I/O Paths in the Timing Closure Floorplan

fMAX Timing Analysis Report File

To determine whether your system performance or fMAX timing
requirements are met, the Quartus II software generates a timing analysis
report that provides detailed timing information on every clock in your
design. This report is accessed by opening the Timing Analyzer folder in
the Compilation Report (Processing menu). The Clock Setup folder of
the Compilation Report provides figures for slack and
register-to-register fMAX. The paths that are not meeting timing
requirements are shown in red. See Figure 7–21.

Figure 7–21. fMAX Requirements

7–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

To analyze why timing was not met, right-click on a particular path
reported in the System tab of the Message window (Figure 7–22) and
select List Paths (right button pop-up menu) to determine the location of
the greatest delay. You can expand a selection by clicking the "+" icon at
the beginning of the line.

Figure 7–22. fMAX Slack Report

Visually analyze fMAX paths by right-clicking on a path in the report and
selecting Locate in Timing Closure Floorplan to display the Timing
Closure Floorplan Editor, which highlights the path. See Figure 7–23.
Figure 7–24 shows the Timing Closure Floorplan Editor displaying a
failing path.

1 Double-clicking the section Info: - Longest register to register
delay is <slack value> ns in the list path text locates the path in
the Timing Closure Floorplan.

Altera Corporation 7–21
June 2004 Preliminary

Design Analysis Using the Timing Closure Floorplan

Figure 7–23. Locate Failing Path in Timing Closure Floorplan

7–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 7–24. Failing Path in Timing Closure Floorplan

You can view all failing paths in the Timing Closure Floorplan Editor
using the Show Critical Paths feature. Figure 7–25 shows critical fMAX
paths in the Timing Closure Floorplan Editor.

Altera Corporation 7–23
June 2004 Preliminary

Conclusion

Figure 7–25. Critical Paths in the Timing Closure Floorplan Editor

The Design Optimization for Altera Devices chapter in Volume 2 of the
Quartus II Handbook shows you how to optimize your design in the
Quartus II software. With the options and tools available in the Timing
Closure Floorplan and the techniques described in that chapter, the
Quartus II software can assist you in achieving timing closure in a more
time efficient manner.

Conclusion Design analysis for timing closure is a fundamental requirement for
optimal performance in highly complex designs. The Quartus II Timing
Closure Floorplan Editor assists in closing timing quickly on complex
designs, reduces iterations by providing more intelligent and better
linkage between analysis and assignment tools, and balances multiple
design constraints including multiple clocks, routing resources, and area
constraints.

7–24 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Altera Corporation 8–1
June 2004

8. Netlist Optimizations and
Physical Synthesis

Introduction The Quartus® II software offers advanced netlist optimization options,
including physical synthesis, to optimize your design further than the
optimization performed in the course of the standard Quartus II
compilation flow. Device support for these optimizations vary; see the
appropriate section for details.

The effect of these options depends on the structure of your design, but
netlist optimizations can help improve the performance of your design
regardless of the synthesis tool used. These options work with your
design's atom netlist, which specifies a design as Altera®-specific
primitives. An example of an atom netlist file is an EDIF Input File (.edf)
or a Verilog Quartus Mapping (.vqm) file generated by a third-party
synthesis tool, or an internal netlist generated within the Quartus II
software. Netlist optimizations are applied at different stages of the
Quartus II compilation flow, either during synthesis or during fitting.

The synthesis netlist optimizations occur during the synthesis stage of the
Quartus II compilation flow. Operating on the output from a third-party
synthesis tool, or operating as an intermediate step in the Quartus II
standard integrated synthesis, these optimizations make changes to the
synthesis netlist. These netlist changes are beneficial in terms of area or
speed, depending on your selected optimization technique.

The physical synthesis optimizations take place during the fitter stage of
the Quartus II compilation flow. Physical synthesis optimizations make
placement-specific changes to the netlist that improve performance
results for a specific Altera device.

This chapter explains how the netlist optimizations in the Quartus II
software can modify your design's netlist and help improve your quality
of results. The following sections “Synthesis Netlist Optimizations” on
page 8–2 and “Physical Synthesis Optimizations” on page 8–9 explain
how the available optimizations work. This chapter also provides
information on preserving your compilation results through
back-annotation and writing out a new netlist, and provides guidelines
for applying the various options.

qii52007-2.0

8–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

1 When synthesis netlist optimization or physical synthesis
options are turned on, the node names for primitives in the
design can change. The fact that nodes may be renamed must be
considered if you are using a LogicLock™ or verification flow
that may require fixed node names, such as SignalTap® II or
formal verification. Primitive node names are specified during
synthesis and are contained in atom netlists from third-party
synthesis tools. When netlist optimizations are applied, node
names may change as primitives are created and removed. HDL
attributes applied to preserve logic in third-party synthesis tools
cannot be honored because those attributes are not written into
the atom netlist read by the Quartus II software. If you are
synthesizing in the Quartus II software, you can use the
Preserve Register (preserve) and Keep Combinational Logic
(keep) attributes to maintain certain nodes in the design. For
more information on using these attributes during synthesis in
the Quartus II software, see the Quartus II Integrated Synthesis
chapter in Volume 1 of the Quartus II Handbook.

1 Any nodes or entities that have the logic option Netlist
Optimizations set to Never allow are not affected during netlist
optimizations (including physical synthesis). This logic option
can be applied with the Assignment Editor (Assignments
menu) if you want to disable all netlist optimizations for parts of
your design.

Synthesis Netlist
Optimizations

You can view and modify the synthesis netlist optimization options in the
Synthesis Netlist Optimizations page under Analysis & Synthesis
Settings in the Settings dialog box (Assignments Menu).

The sections “WYSIWYG Primitive Resynthesis” on page 8–2 and
“Gate-Level Register Retiming” on page 8–4 describe these synthesis
netlist optimizations, and how they can help improve the quality of
results for your design.

WYSIWYG Primitive Resynthesis

You can use the Perform WYSIWYG primitive resynthesis (using
optimization technique specified in Analysis & Synthesis settings)
synthesis option when you have an atom netlist file that specifies a design
as Altera-specific primitives. Atom netlist files can be either an EDIF
(.edf) or VQM (.vqm) file generated by a third-party synthesis tool. This
option can be found on the Synthesis Netlist Optimizations page under
Analysis & Synthesis Settings in the Settings dialog box (Assignments
menu). If you want to perform WYSIWYG resynthesis on only a portion
of your design, you can use the Assignment Editor (Assignments menu)

Altera Corporation 8–3
June 2004 Preliminary

Synthesis Netlist Optimizations

to assign the Perform WYSIWYG primitive resynthesis logic option to a
lower-level entity in your design. This option can be used with the
Cyclone™ II, MAX® II, Stratix® II, Stratix GX, Stratix, Cyclone, or APEX™
device families.

The Perform WYSIWYG primitive resynthesis option directs the
Quartus II software to un-map the logic elements (LEs) in an atom netlist
to logic gates, and then re-map the gates back to Altera-specific
primitives. This feature allows the Quartus II software to use different
techniques specific to the device architecture during the re-mapping
process. The Quartus II technology mapper optimizes the design for
Speed, Area, or Balanced, according to the setting of the Optimization
Technique option on the Analysis & Synthesis Settings page in the
Settings dialog box (Assignments menu). The Balanced setting is default
for most Altera device families; this setting optimizes the timing-critical
parts of the design for speed and the rest for area.

f See the Quartus II Integrated Synthesis chapter in Volume 1 of the
Quartus II Handbook for details on the Optimization Technique option.

Figure 8–1 shows the Quartus II software flow for this feature.

Figure 8–1. WYSIWYG Primitive Resynthesis

Un-Map

Re-Map

Atom
Netlist

Place
&

Route

8–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

This option is not applicable if you are using Quartus II integrated
synthesis. With Quartus II synthesis, you do not need to un-map Altera
primitives; they are already mapped during the synthesis step using the
techniques that are used with the WYSIWYG primitive resynthesis
option.

The Perform WYSIWYG primitive resynthesis option only un-maps and
re-maps logic cell (also referred to as LCELL or LE) primitives and regular
I/O primitives (which may contain registers). DDR (double data rate)
I/O primitives, memory primitives, digital signal processing (DSP)
primitives, and logic cells in carry/cascade chains are not touched. Logic
specified in an encrypted VQM or EDIF file, such as third-party
intellectual property (IP), is not touched.

Turning on this option can cause drastic changes to the node names in the
VQM or EDIF atom netlist from your third-party synthesis tool, because
the primitives in the netlist are being broken apart and then remapped
within the Quartus II software. Registers can be minimized away and
duplicates removed, but registers that are not removed have the same
name after remapping.

Any nodes or entities that have the Netlist Optimizations logic option set
to Never allow are not affected during WYSIWYG primitive resynthesis.
This logic option can be applied with the Assignment Editor
(Assignments menu) if you want to disable WYSIWYG resynthesis for
parts of your design.

Gate-Level Register Retiming

The Perform gate-level register retiming option enables movement of
registers across combinational logic to balance timing, allowing the
Quartus II software to trade off the delay between timing-critical paths
and non-critical paths. See Figure 8–2 for an example. It can be used with
the Cyclone II, MAX II, Stratix II, Stratix, Stratix GX, Cyclone, and APEX
device families. The option is found on the Synthesis Netlist
Optimizations page under Analysis & Synthesis Settings in the
Settings dialog box (Assignments menu).

The functionality of your design is not changed when the Perform
gate-level register retiming option is turned on. However, if any registers
in your design have the Power-Up Don't Care logic option assigned, the
values of registers during power-up may change due to this register and
logic movement. The Power-Up Don't Care logic option is turned on
globally by default. You can change the default setting for the option on
the Analysis & Synthesis Settings page in the Settings dialog box
(Assignments menu) by clicking More Settings. You can also set the logic

Altera Corporation 8–5
June 2004 Preliminary

Synthesis Netlist Optimizations

option for individual registers or entities using the Assignment Editor.
Registers that are explicitly assigned power-up values are not combined
with registers that have been explicitly assigned other values.

Figure 8–2 shows an example of gate-level register retiming where the
10 ns critical delay is reduced by moving the register relative to the
combinational logic.

Figure 8–2. Gate-Level Register Retiming Diagram

Register retiming makes changes at the gate level. If you are using an
atom netlist from a third-party synthesis tool, you must also use the
Perform WYSIWYG primitive resynthesis option to un-map atom
primitives to gates (so that register retiming can be performed) and then
to re-map gates to Altera primitives. If your design uses Quartus II
integrated synthesis, retiming occurs during synthesis before the design
is mapped to Altera primitives. Megafunctions instantiated in a design
are always synthesized using the Quartus II software.

The design flows for the case of integrated Quartus II synthesis and a
third-party atom netlist are shown in Figure 8–3.

D Q D Q D Q10 ns 5 ns

D Q D Q D Q7 ns 8 ns

8–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 8–3. Gate-Level Synthesis

The gate-level register retiming options only moves registers across
combinational gates. Registers are not moved across LCELL primitives
instantiated by the user, memory blocks, DSP blocks, or carry/cascade
chains that you have instantiated. Carry/cascade chains are always left
intact when performing register retiming.

One of the benefits of register retiming is the ability to move registers
from the inputs of a combinational logic block to the output, potentially
combining the registers. In this case, some registers are removed, and one
is created at the output. This case is shown in Figure 8–4.

Figure 8–4. Combining Registers with Register Retiming

Retiming can only move and combine registers in this type of situation if
the following conditions are met:

■ All registers have the same clock signal
■ All registers have the same clock enable signal
■ All registers have asynchronous control signals that are active under

the same conditions
■ Only one register has an asynchronous load other than VCC or GND

Quartus II Integrated Synthesis

Third-Party ATOM Netlist

Gate
Synthesis Retiming

Technology
Map Place & Route

Unmap Retiming Remap Place & Route

D Q

D Q

D Q

Altera Corporation 8–7
June 2004 Preliminary

Synthesis Netlist Optimizations

Retiming can always create multiple registers at the input of a
combinational block from a register at the output of a combinational
block. In this case, the new registers have the same clock and clock enable.
The asynchronous control signals and power-up level are derived from
previous registers to provide equivalent functionality.

The Gate-level Retiming report provides a list of registers that were
created and removed during register retiming. This report can be found
in the Analysis & Synthesis Netlist Optimizations section of the
Analysis & Synthesis Optimization Results folder under Analysis &
Synthesis in the Compilation Report (Processing menu). See Figure 8–5.
Note that the node names for these registers change during the retiming
process.

Figure 8–5. Gate-Level Retiming Report

You can set the Netlist Optimizations logic option to Never Allow for
registers to prevent movement during register retiming. This option can
be applied either to individual registers or entities in the design and is
applied through the Assignment Editor (Assignments menu).

The following registers are not moved during gate-level register retiming:

■ Registers that have any timing constraint other than global fMAX, tSU,
or tCO. For example, any node affected by a Multicycle or Cut Timing
assignment is not moved.

■ Registers that feed asynchronous control signals on another register
■ Registers feeding the clock of another register
■ Registers feeding a register in another clock domain
■ Registers that are fed by a register in another clock domain
■ Registers connected to serializer/deserializer (SERDES)

8–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

■ Registers that have the Netlist Optimizations logic option set to
Never Allow

■ Registers feeding output pins (without logic between the register
and the pin)

■ Registers fed by an input pin (without logic between register and
input pin)

■ Both registers in a connection from input pin-register-register
connection if both registers have the same clock and the first register
does not fan out to anywhere else (since these are considered
synchronization registers).

If you want to consider registers with any of these conditions for register
retiming, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow on a given set of registers.

Allow Register Retiming to Trade-Off tSU/tCO with fMAX

The Allow register retiming to trade off tSU/ tCO with fMAX option on the
Synthesis Netlist Optimizations page under Analysis & Synthesis
Settings in the Settings dialog box (Assignments menu) determines
whether the Quartus II compiler should attempt to increase fMAX at the
expense of tSU or tCO times. This option affects the optimizations
performed due to the gate-level register retiming option.

When both the Perform gate-level register retiming and the Allow
register retiming to trade off tSU/tCO with fMAX options are turned on,
retiming can affect registers that feed and are fed by I/O pins. If the latter
option is not turned on, the retiming option does not touch any registers
that connect to I/O pins through one or more levels of combinational
logic.

Preserving Your Synthesis Netlist Optimization Results

Given the same source code and settings on a given system, the
Quartus II software generates the same results on every compilation.
Therefore, it is typically not necessary to take any steps to preserve your
results from compilation to compilation. When changes are made to the
source code or to the settings, you usually get the best results by allowing
the software to compile without using any previous compilation results
or location assignments. In addition, in some cases you may skip the
synthesis stage of the compile by avoiding running Analysis &
Synthesis, or quartus_map, and instead just running the Fitter or another
desired Quartus II executable.

However, if you wish, you may preserve the netlist resulting from netlist
optimizations. Preserving the netlist can be required if you use the
LogicLock flow to preserve placement and/or import one design into

Altera Corporation 8–9
June 2004 Preliminary

Physical Synthesis Optimizations

another. If you are using any Quartus II synthesis netlist optimization
options, you can save your optimized results by turning on the Save a
node-level netlist into a persistent source file (Verilog Quartus
Mapping File) option on the Compilation Process page in the Settings
dialog box (Assignments menu). This option saves your final results as an
atom-based netlist in Verilog Quartus Mapping File (.vqm) format. By
default, the Quartus II software places the VQM file in the atom_netlists
directory under the current project directory. If you'd like to create a
different VQM file using different Quartus II settings, you may do so by
changing the file name setting on the Compilation Process page in the
Settings dialog box (Assignments menu).

If you are using the synthesis netlist optimizations (and not any physical
synthesis optimizations), generating a VQM file is optional. You may lock
down the location of all LEs and other device resources in the design
using the Back-Annotate Assignments command (Assignments menu)
with or without a Quartus II-generated VQM file. Altera recommends
against using back-annotated location assignments unless the design has
been finalized. Making any changes to the design invalidates your
back-annotated location assignments. If you need to make changes later
on, use the new source HDL code as your input files, and remove the
back-annotated assignments corresponding to the old code or netlist.

If you create a VQM file and wish to recompile the design, use the new
VQM file as the input source file and turn off the synthesis netlist
optimizations for the new compilation.

Physical
Synthesis
Optimizations

Traditionally, the Quartus II design flow has involved separate steps of
synthesis and fitting. The synthesis step optimizes the logical structure of
a circuit for area, speed, or both. The fitter then places and routes the logic
elements to ensure critical portions of logic are close together and use the
fastest possible routing resources. While this push-button flow produces
excellent results, the synthesis stage is unable to anticipate the routing
delays seen in the fitter. Since routing delays are a significant part of the
typical critical path delay, performing synthesis operations with physical
delay knowledge allows the tool to target its timing-driven optimizations
at these parts of the design. This tight integration of the fitting and
synthesis processes is known as physical synthesis.

The following sections describe the physical synthesis optimizations
available in the Quartus II software, and how they can help improve your
performance results. Physical synthesis optimization options can be used
with the MAX II, Stratix II, Stratix, Stratix GX, or Cyclone device families.

You can view and modify the physical synthesis optimization options on
the Physical Synthesis Optimizations page in the Fitter Settings section
of the Settings dialog box (Assignments Menu).

8–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

The physical synthesis optimizations are split into two groups, those that
affect only combinational logic and not registers, and those that can affect
registers. The options are split to allow designers to keep their registers
intact for formal verification or other reasons.

The following physical synthesis optimizations are available:

■ Physical synthesis for combinational logic
■ Physical synthesis for registers:

● Register duplication
● Register retiming

You can control the effect of physical synthesis with the Physical
synthesis effort option. The default selection is Normal. The Extra effort
setting uses extra compile time to try for extra circuit performance, while
the Fast effort setting uses less compilation time than Normal but may not
achieve the same gains.

The Physical Synthesis report in the Fitter Netlist Optimizations section
under Fitter in the Compilation Report (Processing menu) provides a list
of atoms that were modified, created, or deleted during physical
synthesis. See the“Physical Synthesis Report” on page 8–13.

Nodes or entities that have the Netlist Optimizations logic option set to
Never Allow are not affected by the Physical Synthesis algorithms. This
logic option can be applied with the Assignment Editor (Assignments
menu) if you want to disable physical synthesis optimizations for parts of
your design.

Physical Synthesis for Combinational Logic

The Perform physical synthesis for combinational logic option on the
Physical Synthesis Optimizations page in the Fitter section of the
Settings dialog box (Assignments menu) allows the Quartus II fitter to
resynthesize the design to reduce delay along the critical path. Physical
Synthesis can achieve this type of optimization by swapping the look-up
table (LUT) ports within LEs so that the critical path has fewer layers
through which to travel. See Figure 8–6 for an example. This option also
allows the duplication of LUTs to enable further optimizations on the
critical path.

Altera Corporation 8–11
June 2004 Preliminary

Physical Synthesis Optimizations

Figure 8–6. Physical Synthesis for Combinational Logic

In first case, the critical input feeds through the first LUT to the second
LUT. The Quartus II software swaps the critical input to the first LUT
with an input feeding the second LUT. This reduces the number of LUTs
contained in the critical path. The synthesis information for each LUT is
altered to maintain design functionality.

The Physical Synthesis for combinational logic option only affects
combinational logic in the form of LUTs. The registers contained in the
affected logic cells are not modified. Inputs into memory blocks, DSP
blocks, and I/O elements are not swapped.

The Quartus II software does not perform combinational optimization on
logic cells that have the following properties:

■ Are part of a carry/cascade chain
■ Drive global signals
■ Are constrained to a single logic array block (LAB) location
■ Have the Netlist Optimizations option set to Never Allow

If you want to consider logic cells with any of these conditions for
physical synthesis, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow on a given set of nodes.

Physical Synthesis for Registers - Register Duplication

The Perform register duplication fitter option on the Physical synthesis
Optimizations page in the Fitter Settings section of the Settings dialog
box allows the Quartus II fitter to duplicate registers based on fitter
placement information. Combinational logic can also be duplicated when
this option is enabled. A logic cell that fans out to multiple locations can
be duplicated to reduce the delay of one path without degrading the
delay of another. The new logic cell may be placed closer to critical logic
without affecting the other fan-out paths of the original logic cell.
Figure 8–7 shows an example of register duplication.

8–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 8–7. Register Duplication

The Quartus II software does not perform register duplication on logic
cells that have the following properties:

■ Are part of a carry/cascade chain
■ Contain registers that drive asynchronous control signals on another

register
■ Contain registers that drive the clock of another register
■ Contain registers that drive global signals
■ Contain registers that are constrained to a single LAB location
■ Contain registers that are driven by input pins without a tSU

constraint
■ Contain registers that are driven by a register in another clock

domain
■ Are considered virtual I/O pins
■ Have the Netlist Optimizations option set to Never Allow

f For more information on virtual I/O pins, see the LogicLock Design
Methodology chapter in Volume 2 of the Quartus II Handbook.

If you want to consider logic cells with any of these conditions for
physical synthesis, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow on a given set of nodes.

Altera Corporation 8–13
June 2004 Preliminary

Physical Synthesis Optimizations

Physical Synthesis for Registers - Register Retiming

The Perform register retiming fitter option in the Physical Synthesis
Optimizations page in the Fitter Settings section of the Settings dialog
box allows the Quartus II fitter to move registers across combinational
logic to balance timing. This option enables algorithms similar to the
Perform gate-level register retiming option (see ““Gate-Level Register
Retiming” on page 8–4). This option applies to the atom level (registers
and combinational logic have already been placed into logic cells), and it
compliments the synthesis gate-level option.

The Quartus II software does not perform register retiming on logic cells
that have the following properties:

■ Are part of a cascade chain
■ Contain registers that drive asynchronous control signals on another

register
■ Contain registers that drive the clock of another register
■ Contain registers that drive a register in another clock domain
■ Contain registers that are driven by a register in another clock

domain
■ Contain registers that are constrained to a single LAB location
■ Contain registers that are connected to serializer/deserializer

(SERDES)
■ Are considered virtual I/O pins
■ Registers that have the Netlist Optimizations logic option set to

Never Allow

f For more information on virtual I/O pins, see the LogicLock Design
Methodology chapter in Volume 2 of the Quartus II Handbook.

If you want to consider logic cells with any of these conditions for
physical synthesis, you can override these rules by setting the Netlist
Optimizations logic option to Always Allow on a given set of registers.

Physical Synthesis Report

All the Physical Synthesis optimizations write results to the Physical
Synthesis report in the Fitter Netlist Optimizations section under Fitter
in the Compilation Report (Processing menu). This report provides a list
of atoms that were modified, created, and deleted during physical
synthesis. Note that the node names for these atoms change during the
physical synthesis process.

8–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Preserving Your Physical Synthesis Results

Given the same source code and settings on a given system, the
Quartus II software generates the same results on every compilation.
Therefore, it is typically not necessary to take any steps to preserve your
results from compilation to compilation. When changes are made to the
source code or to the settings, you usually get the best results by allowing
the software to compile without using any previous compilation results
or location assignments. However, if you do wish to preserve the
compilation results, make sure to follow the guidelines outlined in this
section.

If you are using any Quartus II physical synthesis optimization options,
you can save your optimized results using the Save a node-level netlist
into a persistent source file (Verilog Quartus Mapping File) option on
the Compilation Process page in the Settings dialog box (Assignments
menu). This option saves your final results as an atom-based netlist in
VQM file format. By default, the Quartus II software places the VQM File
in the atom_netlists directory under the current project directory. If you
want to create a different VQM file using different Quartus II settings,
you may do so by changing the file name setting on the Compilation
Process page in the Settings dialog box (Assignments menu).

If you are using the physical synthesis optimizations and you wish to lock
down the location of all LEs and other device resources in the design
using the Back-Annotate Assignments command (Assignments menu),
a VQM netlist is required to preserve the changes that were made to your
original netlist. Since the physical synthesis optimizations depend on the
placement of the nodes in the design, back-annotating the placement
changes the results from physical synthesis. Changing the results means
that node names are different, and your back-annotated locations are no
longer valid.

Altera recommends against using a Quartus II-generated VQM or
back-annotated location assignments with Physical Synthesis
Optimizations unless the design has been finalized. Making any changes
to the design invalidates your physical synthesis results and
back-annotated location assignments. If you need to make changes later,
use the new source HDL code as your input files, and remove the
back-annotated assignments corresponding to the Quartus II-generated
VQM.

To back-annotate logic locations for a design that was compiled with
physical synthesis optimizations, first create a VQM. When recompiling
the design with the hard logic location assignments, use the new VQM
file as the input source file and turn off the physical synthesis
optimizations for the new compilation.

Altera Corporation 8–15
June 2004 Preliminary

Applying Netlist Optimization Options

If importing a VQM and back-annotated locations into another project
that has any Netlist Optimizations turned on, it is important to apply the
Netlist Optimizations = Never Allow constraint, to make sure node
names don't change, otherwise the back-annotated location or LogicLock
assignments are not valid.

Applying Netlist
Optimization
Options

Netlist optimizations options can have various effects on different
designs. Designs that are well coded or have already been restructured to
balance critical path delays may not see a noticeable difference in
performance.

To obtain optimal results when using netlist optimization options, you
may need to vary the options applied to find the best results. By default,
all options are off. Turning on additional options leads to the largest effect
on the node names in the design. Take this into consideration if you are
using a LogicLock or verification flow such as SignalTap II or formal
verification that requires fixed or known node names. In general,
applying all of the Physical Synthesis options at the Extra effort level
produces the best results for those options, but adds significantly to the
compilation time. You can use the Physical synthesis effort option to
decrease the compilation time.

The Synthesis Netlist Optimizations typically do not add much
compilation time, relative to the overall design compilation time.

1 When using a third-party atom netlist (VQM or EDIF), the
WYSIWYG Primitive Resynthesis option must be turned on in
order to use the Gate-level Register Retiming option.

A design space explorer (DSE) Tcl/Tk script is provided with the
Quartus II software to automate the application of various sets of netlist
optimization options.

f For more information on using the DSE script to run multiple
compilations, see the Design Space Explorer chapter in Volume 2 of the
Quartus II Handbook.

f For information on typical performance results using combinations of
netlist optimization options and other optimization techniques, see the
Design Optimization for Altera Devices chapter in Volume 2 of the
Quartus II Handbook.

8–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script.

For detailed information about specific scripting command options and
Tcl API packages, type quartus_sh --qhelp at a system command
prompt to run the Quartus II Command-Line and Tcl API Help utility.

f For more information on Quartus II scripting support, including
examples, refer to the Tcl Scripting and Command-Line Scripting chapters
in Volume 2 of the Quartus II Handbook.

You can specify many of the options described in this section either on an
instance, or at a global level, or both.

Use the following Tcl command to make a global assignment:

set_global_assignment -name <QSF variable name> <value> r
Use the following Tcl command to make an instance assignment:

set_instance_assignment -name <QSF variable name> <value> -to <instance name> r

Synthesis Netlist Optimizations

Table 8–1 lists the QSF variable name and applicable values for the
settings discussed in “Synthesis Netlist Optimizations” on page 8–2. The
QSF variable name is used in the Tcl assignment to make the setting along
with the appropriate value. The Type column indicates whether the
setting is supported as a Global setting, an Instance setting, or both.

Table 8–1. Synthesis Netlist Optimizations and Associated Settings (Part 1 of 2)

Setting Name QSF Variable Name Values Type

Perform WYSIWYG
Primitive Resynthesis

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON, OFF Global,
Instance

Optimization Technique <Device Family Name>_OPTIMIZATION_TECHNIQUE AREA,
SPEED,
BALANCED

Global,
Instance

Perform Gate-Level
Register Retiming

ADV_NETLIST_OPT_SYNTH_GATE_RETIME ON, OFF Global

Power-Up Don't Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Allow Register Retiming
to trade off Tsu/Tco with
fMAX

ADV_NETLIST_OPT_RETIME_CORE_AND_IO ON, OFF Global

Altera Corporation 8–17
June 2004 Preliminary

Scripting Support

Physical Synthesis Optimizations

Table 8–2 lists the QSF variable name and applicable values for the
settings discussed in “Physical Synthesis Optimizations” on page 8–9.
The QSF variable name is used in the Tcl assignment to make the setting,
along with the appropriate value. The Type column indicates whether the
setting is supported as a Global setting, an Instance setting, or both.

Save a node-level netlist
into a persistent source
file

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON, OFF Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <filename>

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS
ALLOW",
DEFAULT,
"NEVER
ALLOW"

Instance

Table 8–1. Synthesis Netlist Optimizations and Associated Settings (Part 2 of 2)

Setting Name QSF Variable Name Values Type

Table 8–2. Physical Synthesis Optimizations and Associated Settings

Setting Name QSF Variable Name Values Type

Physical Synthesis for
Combinational Logic

PHYSICAL_SYNTHESIS_COMBO_LOGIC ON, OFF Global

Perform Register
Duplication

PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION ON, OFF Global

Perform Register
Retiming

PHYSICAL_SYNTHESIS_REGISTER_RETIMING ON, OFF Global

Power-Up Don't Care ALLOW_POWER_UP_DONT_CARE ON, OFF Global

Allow Netlist
Optimizations

ADV_NETLIST_OPT_ALLOWED "ALWAYS
ALLOW",
DEFAULT,
"NEVER
ALLOW"

Instance

Save a node-level netlist
into a persistent source
file

LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON, OFF Global

LOGICLOCK_INCREMENTAL_COMPILE_FILE <filename>

8–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Back-Annotating Assignments

Use the logiclock_back_annotate Tcl command to back-annotate
resources in your design. This command can back-annotate resources in
LogicLock regions, and resources in designs without LogicLock regions.

f For more information on back-annotating assignments, refer to
“Preserving Your Synthesis Netlist Optimization Results” on page 8–8 or
“Preserving Your Physical Synthesis Results” on page 8–14.

The following Tcl command back-annotates all registers in your design.

logiclock_back_annotate -resource_filter "REGISTER"

The logiclock_back_annotate command is in the backannotate
package.

Conclusion Synthesis Netlist Optimizations and Physical Synthesis Optimizations
work in different ways to restructure and optimize your design netlist.
Taking advantage of these Quartus II Netlist Optimizations can help
improve your quality of results.

Altera Corporation 9–1
June 2004 Preliminary

9. Design Space Explorer

Introduction The Quartus® II software includes many advanced optimization
algorithms to help you achieve timing closure. The various settings and
parameters control the behavior of the algorithms. These options provide
complete control over the Quartus II software optimization techniques.

Because each FPGA design is unique, there is no standard set of options
that always results in the best performance. Each design requires a unique
set of options to achieve optimal performance. This section describes the
Design Space Explorer (DSE), a utility that automates the process of
finding the best set of options for your design. DSE explores the design
space of your design by applying various optimization techniques and
analyzing the results.

DSE Concepts

This section provides an explanation of concepts and terminology used
by DSE.

Exploration Space & Exploration Point

Before a design is explored by DSE, an exploration space is created. An
exploration space is a composition of various Synthesis and Fitter settings
that are available in the Quartus II software. A single group of settings in
the exploration space is referred to as a point. DSE traverses the points in
an exploration space to determine the optimal settings for your design.

Seed & Seed Sweeping

The Quartus II Fitter utilizes seeds that specify the starting value which
randomly determines the initial placement for the current design. The
value of the seed can be any non-negative integer value. Changing the
starting value may or may not produce better fitting. By varying the value
of the seed value or seed sweeping, an optimal value can be determined
for the current design.

DSE extends the concept of fitter seed sweeping with exploration spaces,
providing a method for sweeping through general compilation and fitter
parameters to find the best options for your design. You can run DSE in a
variety of exploration modes, ranging from an exhaustive try-all-options-
and-values mode to one that focuses on one parameter.

qii52008-2.0

9–2 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

DSE Exploration

DSE compares all exploration space point results with the results of a base
compilation. This base compile result is generated from the initial settings
that were specified in the original Quartus II project files. As DSE
traverses all points in the exploration space, all settings that are not
explicitly modified by DSE defaults to the base compile setting. For
example, if an exploration space point turns on register retiming and does
not modify the register packing setting, the register packing setting
defaults to the value specified in the base compile.

1 The base compilation is the original Quartus II project and is
restored after DSE traverses all points in the exploration space.

DSE General
Information

You can use DSE in either graphical user interface (GUI) or command-line
mode. In either mode, you should run DSE with the Quartus II shell. To
run DSE in user interface mode, type quartus_sh --dser at a
command prompt. To run DSE in command-line mode, type
quartus_sh --dse --nogui <options>r at a command prompt. The
example below lists available command-line options.

DSE Command Line Options
Command-line Mode: quartus_sh --dse -nogui [<options>]

Options:
-project <project name>
-revision <revision name>
-seeds <seed list>
-llr-restructuring
-exploration-space <space>
-optimization-goal <goal>
-search-method <method>
-custom-file <filename>
-stop-after-gain <stop-after-gain value>
-stop-after-time <stop-after-time value>
-ignore-failed-base
-archive
-run-assembler
-slaves <slave list>
-use-lsf
-slack-column <column name>
-help

Altera Corporation 9–3
June 2004 Preliminary

DSE General Information

The DSE Tcl/Tk script is in the default Quartus II software installation at
<Quartus II install directory>\bin\tcl_scripts\dse\dse.tcl on the PC
platform and <Quartus II install directory>/<platform>/tcl_scripts on the
Solaris, HP-UX, and Linux platforms.

1 For more information, type quartus_sh --help=dser at the
command prompt.

Figure 9–1 shows the DSE user interface. The main user interface is
divided into two sections: project settings and exploration settings.

Figure 9–1. DSE User Interface

9–4 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

DSE Flow You can run DSE at any point in the design process. However, Altera
recommends that you run DSE very late in your design cycle when you
are increasing the performance of the design. The results gained from
different combinations of optimization options may not persist over large
changes in a design. You can run DSE in signature mode at the midpoint
in your design cycle to see the effect of various parameters, such as the
register packing logic option.

DSE launches the Quartus II software for every compilation specified in
the Exploration Settings option. DSE selectively determines the best
settings for your design based upon the Optimization Goal selected for
the exploration. For example, if the Optimization Goal is set to Optimize
for Speed the Quartus II software tries to achieve all your timing
requirements and DSE reports the compile with the smallest slack.
Therefore, it is important that you correctly specify all timing
requirements in your Quartus II project before performing a design
exploration with DSE.

You can change the initial placement configuration used by the Quartus II
Fitter by varying the Fitter Seed value. You can enter seeds in the Seeds
field of the DSE user interface.

1 When using the Quartus II software, the seed value is set in the
Fitter Settings page of the Settings dialog box (Assignments
menu).

Compilation time increases as DSE exploration spaces become more
comprehensive. This increase in compilation time comes as a result of
running several compilations and comparing the reported slack with the
original compilation results.

For typical designs, varying only the seed value results in a 5% fMAX
increase. For example, when compiling with three different seeds,
one-third of the time fMAX does not improve over the initial compilation,
one-third of the time fMAX gets 5% better, and one-third of the time fMAX
gets 10% better.

Altera Corporation 9–5
June 2004 Preliminary

DSE Support for Altera Device Families

DSE Support for
Altera Device
Families

The following device families support all Advanced Exploration Space
types:

■ Stratix® II
■ Stratix
■ Stratix GX
■ CycloneTM
■ MAX® II

The Advanced Exploration Space supports the following device families,
as shown in Table 9–1:

■ APEXTM 20K
■ APEX 20KC
■ APEX 20KE
■ APEX II
■ FLEX® 10K
■ FLEX 10KA
■ FLEX 10KE

The following device families support the Synthesis Space type:

■ MAX 3000A
■ MAX 7000AE
■ MAX 7000B
■ MAX 7000S

1 The Synthesis Space type support for the MAX device family is
supported only at the command line.

Table 9–1. Advanced Exploration Space Support for APEX 20K, APEX II, and
FLEX 10K Devices

Seed sweep Area optimization space

Extra effort space Signature fitting effort level

Extra effort for Quartus Integrated Synthesis
Projects

Custom space

9–6 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

DSE Exploration

DSE compares all exploration space point results with the results of a base
compilation. This base compile result is generated from the initial settings
that were specified in the original Quartus II project files. As DSE
traverses all points in the exploration space, all settings that are not
explicitly modified by DSE defaults to the base compile setting. For
example, if an exploration space point turns on register retiming and does
not modify the register packing setting, the register packing setting
defaults to the value specified in the base compile.

1 The base compilation is the original Quartus II project and is
restored after DSE traverses all points in the exploration space.

DSE Project
Settings

DSE Project Settings

This section includes information about setting up the working
environment for DSE, specifying the project and revision, setting the
initial seed, and restructuring LogicLock regions.

The DSE user interface provides two methods to open a Quartus II project
for a design exploration. By selecting Open Project (File menu) you can
browse to your project. The Open icon can also be used to open a project
for a design exploration.

You can specify the revision to be explored with the Revision field in the
DSE user interface. The Revision field is populated once the Quartus II
project has been opened.

1 If no revisions are created in the Quartus II project, the default
revision which is the top-level entity is used. For more
information refer to Quartus II Project Management chapter in
Volume 2 of the Quartus II Handbook

The Seed field allows you to specify the seed DSE uses in an exploration.
The seed value determines the initial placement for your design in a
Quartus II compilation.

If your design is written in VHDL or Verilog HDL, turn on the Project
Uses Quartus II Integrated Synthesis option to allow DSE to explore
synthesis options.

The Allow LogicLock Region Restructuring option allows DSE to
modify the state of any LogicLock regions in your design.

The section below describes the options available in the Exploration
Settings section of the DSE user interface.

Altera Corporation 9–7
June 2004 Preliminary

Performing an Advanced Search in Design Space Explorer

Use the Exploration Settings field to select the type of exploration to
perform: Search for Best Area, Search for Best Performance, or
Advanced Search.

Use the section “Exploration Space” on page 9–8 to select the type of
exploration to perform: “Search for Best Area or Performance Options”
below, or “Performing an Advanced Search in Design Space Explorer” on
page 9–7.

Search for Best Area or Performance Options

The Search for Best Performance option uses a predefined exploration
space that targets performance improvements for your design.
Depending on the device your design targets, you can select up to four
predefined exploration spaces: low (seed sweep), medium (extra effort
space), high (physical synthesis space), and highest (physical synthesis
with retiming space). As you move from “low” to “highest,” the number
of options explored by DSE and compilation time increases.

Advanced Search Option

The Advanced Search option allows full control over the exploration
space, the optimization goal for your design, and the search method used
in a design exploration. The section titled “Performing an Advanced
Search in Design Space Explorer” on page 9–7 provides detailed
information on how to set up and perform an advanced search in DSE.

1 The advanced search can be used to define equivalent
exploration spaces to those found in the Search for Best Area
and Search for Best Performance options.

Performing an
Advanced
Search in
Design Space
Explorer

You must make three exploration settings in the Advanced Search dialog
box before exploring a design space. These three settings, Exploration
Space, Optimization Goal, and Search Method, are described in the
following sections. Figure 9–2 shows the Advanced Search dialog box.

9–8 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 9–2. DSE Advanced Search Dialog Box

Allow LogicLock Region Restructuring

The Allow LogicLock Region Restructuring option allows DSE to modify
LogicLock region properties in your design if any exist. DSE applies the
Soft property to LogicLock regions to improve timing. Also, DSE may
remove LogicLock regions that negatively affect the performance of the
design.

Exploration Space

The exploration space list controls the exploration type that DSE
performs on your design. DSE traverses the points in an exploration
space, applying the settings to the design and comparing the compilation
results to determine the best settings for your design. DSE offers the
following predefined exploration spaces:

■ Seed sweep
■ Extra effort search
■ Physical synthesis search
■ Retiming search
■ Area optimization search
■ Custom space
■ Signature mode

Altera Corporation 9–9
June 2004 Preliminary

Performing an Advanced Search in Design Space Explorer

1 Not all advanced exploration spaces are available for every
device family. See “DSE Support for Altera Device Families” on
page 9–5 for advanced exploration space support for various
device families.

Compilation time increases proportionally to the breadth of the
exploration; the design space increases as more optimization options and
parameters are explored.

1 The Exploration Space field is enabled after a project has been
opened in DSE.

Turn on Save exploration space to file (Option menu) to save an XML file
representing the exploration space. The exploration space is written to a
file named <project name>.dse in the project directory. You can modify this
file to create a custom exploration space.

f For more information on using custom exploration spaces in DSE, see
“Creating Custom Spaces for DSE” on page 9–16.

Seed Sweep

The Seed Sweep exploration space leverages the seed sweeping concept
and automates the process. Enter the seed values in the Seeds field in the
DSE user interface. There are no “magic” seeds. Because the variation
between seeds is truly random, any integer value is as likely to produce
good results. DSE defaults to seeds 3, 5, 7, and 11. The Seed Sweep
exploration space does not make changes to your netlist.

1 The seed field accepts individual seed values, e.g., 2, 3, 4, and 5,
or seed ranges, e.g. 2-5.

There is a 1× increase in compilation time for every seed value specified.
For example, if you enter five seeds, the compilation time is 5× the initial
compilation time.

Extra Effort Search

The Extra Effort Search exploration space adds the Register Packing
option to the exploration space performed by the Seed Sweep. This
exploration type also increases the Quartus II Fitter effort during the
place-and-route stage. This type of exploration makes no changes to your
netlist.

The Extra Effort Search for Quartus Integrated Synthesis Projects
exploration space includes all the options in Extra Effort, and explores
various Quartus II integrated synthesis optimization options. The Extra

9–10 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Effort Search for Quartus Integrated Synthesis Projects exploration
space works only for designs that have been synthesized using the
Quartus II integrated synthesis.

f For more information on integrated synthesis options, see the Quartus II
Integrated Synthesis chapter in Volume 1 of the Quartus II Handbook.

Physical Synthesis Search

The Physical Synthesis Search exploration space adds physical synthesis
options such as register retiming and physical synthesis for
combinational logic to the options included in the Extra Effort Search
exploration space. These netlist optimizations move registers in your
design. Look-up tables (LUTs) may be modified. The design behavior is
not affected by these options.

f For more information about physical synthesis, see the Netlist
Optimization & Physical Synthesis chapter in Volume 2 of the Quartus II
Handbook.

The Physical Synthesis for Quartus Integrated Synthesis Projects
exploration space includes all the options in the Physical Synthesis
exploration space and explores various Quartus II integrated synthesis
optimization options. The Physical Synthesis for Quartus Integrated
Synthesis Projects exploration space works only for designs that have
been synthesized using Quartus II integrated synthesis.

Retiming Search

The Retiming Search exploration space includes all the options in the
Physical Synthesis Search exploration space and explores register
retiming. The register retiming may move registers in your design.

The Retiming Search for Quartus Integrated Synthesis Projects
exploration space includes all the options in Retiming Search exploration
space, and explores various Quartus II integrated synthesis optimization
options. The Retiming Search for Quartus integrated synthesis Projects
exploration space works only for designs that have been synthesized
using the Quartus II integrated synthesis.

Area Optimization Search

The Area Optimization Search exploration space explores options that
affect logic cell utilization for your design. These options include register
packing and Quartus II Optimization Technique set to Area.

Altera Corporation 9–11
June 2004 Preliminary

Performing an Advanced Search in Design Space Explorer

Custom Space

Use the Custom Space exploration space to selectively explore the effects
of various optimization options on your design. This exploration type
gives you complete control over which options are explored and in what
mode. In the Custom Space mode you can explore all optimization
options available in DSE.

For summaries of exploration spaces, refer to Table 9–2.

f For more information about using custom exploration spaces with DSE,
see “Creating Custom Spaces for DSE” on page 9–16.

Table 9–2. Summaries of Exploration Spaces Note (1)

Search Type

Exploration Spaces

Seed
Sweep Extra Effort Physical

Synthesis Retiming Area
Optimization Custom

Analysis & Synthesis Settings

Optimization technique v v v vx
Perform WYSIWYG resynthesis v v v vx
Perform gate-level register
retiming v vx
Fitter Settings

Fitter seed v v v v v v
Register packing v v v v v
Increase PowerFit fitter effort v v v v
Perform physical synthesis for
combinational logic v v v
Perform register retiming v v
Note to Table 9–2:
(1) For exploration spaces that include Quartus Integrated Synthesis, DSE increases the synthesis effort.

9–12 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Signature Mode

In Signature mode, DSE analyzes the fMAX, slack, compile time, and area
trade-offs of a single parameter. Running the single parameter over
multiple seeds, DSE reports the average of these values. With this
information you gain a better understanding of how that parameter
affects your design. There are four signature mode settings in DSE:

■ Signature: Fitting Effort Level
■ Signature: Netlist Optimizations
■ Signature: Fast Fit
■ Signature: Register Packing

Each setting explores a specific optimization option for your design. For
example, in Signature: Register Packing mode, DSE explores the Auto
Packed Registers logic option with its four settings (OFF, Normal,
Minimized Area, and Minimize Area with Chains), and reports the
effects of each on your design.

Optimization Goal

Design metrics are extremely important when exploring the design space
of your design whether it be performance, logic utilization, or a
combination of both. These metrics allow you to selectively determine
which compilation is best, based on the requirements of the design. DSE
uses the Optimization Goal setting to determine the best compilation
results. Here you can specify to DSE which optimization goal you are
trying to achieve. Table 9–3 summarizes the four available optimization
goals.

Table 9–3. Optimization Goal Settings

Setting Description

Optimize for speed The exploration space point that contains the best worst-case slack
value is selected by DSE as the best run.

Optimize for area The exploration space point that contains the lowest logic cell count is
selected by DSE as the best run.

Optimize for failing paths The exploration space point that contains the least amount of failing
paths is selected by DSE as the best run.

Optimize for negative slack and failing
path

The exploration space point that contains the best average negative
worst-case slack and lowest number of failing paths is selected by DSE
as the best run.

Altera Corporation 9–13
June 2004 Preliminary

DSE Flow Options

The optimization goal is independent of the exploration space. An
optimization goal that looks for the best performance, bases its
best/worst decisions on the exploration space that produces the highest
performance and not one with the smallest logic resource utilization.

Search Method

The Search Method setting allows you to control the breadth of the search
performed by DSE. DSE provides three search methods: exhaustive
search of exploration space, accelerated search of exploration space, and
distributed search of exploration space. These three search methods are
described in Table 9–4.

DSE Flow
Options

You can control the run time of the design exploration with the options
described in this section.

Continue Exploration Even if Base Compile Fails

DSE continues even if an error occurs during the design compilation. For
example, an error occurs in DSE if timing settings are not applied to your
design. Turn off this option to make DSE continue with the exploration
instead of halting if an error occurs.

Run Quartus Assembler During Exploration

By default, DSE does not generate programming files for each
compilation during exploration. Turn on Run Quartus Assembler
During Exploration to generate programming files for each compilation.

Table 9–4. Search Methods

Search Method Description

Exhaustive search of exploration space Applies all settings available in the exploration space to all seeds
specified. This search method yields the optimal settings for your
design, but requires the most time.

Accelerated search of exploration space Finds the best exploration space for your design based on the initial
seed specified. This sub-space is then applied to all subsequent
seeds specified.

Distributed search of exploration space Equivalent to the exhaustive search of exploration space except that
this search method uses cluster computing technology to decrease
DSE run time.

9–14 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Archive All Compiles

Turn on Archive All Compiles to create a Quartus Archive File (.qar) for
each compilation. These archive files are saved to the dse directory in the
design's working directory.

Save Exploration Space to File

Turn on Save Exploration Space to File to write out a <project name>.dse
file that contains all options explored by DSE. You can use or modify this
file to perform a custom exploration.

Stop Flow After Time

Turn on Stop Flow After Time to stop further exploration after a specified
number of days, hours, and/or minutes.

1 Exploration time might exceed the specified value because DSE
does not stop in the middle of a compile.

Stop Flow After Gain

Turn on Stop Flow After Gain to stop further exploration after a specified
percentage gain.

Altera Corporation 9–15
June 2004 Preliminary

DSE Advanced Information

DSE Advanced
Information

This section covers advanced features that are available in DSE. These
features are made available to increase the processing efficiency of design
space exploration as well as the further customization of the design space.

Computer Load Sharing in DSE Using Distributed Exploration
Searches

When the Search Method is set to Distributed Search of Exploration
Space, DSE uses cluster computing technology to decrease exploration
search time. DSE uses multiple client computers to compile points in the
specified exploration space. Two modes of operation are available when
using the Distributed DSE option. The first mode uses the Platform LSF
grid computing technology to distribute exploration space points to a
computing network. In the second mode, DSE acts as a master and
distributes exploration space points to client computers. Both modes use
an Exhaustive Search of Exploration Space search method.

Distributed DSE Using LSF

The easiest way to use distributed DSE technology is to submit the
compilations to a pre-configured LSF cluster at your local site. For more
information on LSF software, see www.platform.com, or contact your
system administrator. Turn on Use LSF resources to enable this feature.

Distributed DSE Using a Quartus II Master Process

Before DSE can use machines in the local area network to compile points
in the exploration space, you need to create Quartus II software slave
instances on the machines. In most cases, creating a slave instance on a
machine is simple. Enter the following command at a command prompt
on a client machine:

 quartus_sh --qslave r
Repeating this on several machines creates a cluster of Quartus II
software slaves for DSE to use. Once you have created a set of Quartus II
software slaves on the network, add the names of each slave machine in
Enter Clients dialog box. This dialog box appears after selecting
Exhaustive Search of Exploration Space. Figure 9–3 shows an example
of client entries for a distributed search.

9–16 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Figure 9–3. Client Entry in DSE

At the start of an exploration, DSE assumes the role of a Quartus II
software master process and submits points to the slaves on the list to
compile. If the list is empty, DSE issues an error and the search stops.

1 For more information on running and configuring Quartus
slaves, type quartus_sh --help=qslave r at the command
prompt.

The version of the Quartus II software that you use for the Quartus II
software slaves must be the same as the version of the Quartus II software
you use to run DSE. To see the version of the Quartus II software you are
using to run DSE, choose About DSE (Help menu). Unexpected results
can occur if you mix Quartus II software versions when using the
Distributed DSE search feature.

Creating Custom Spaces for DSE

You can use custom spaces to explore combinations of options that are
outside the predefined exploration spaces in the Exploration Space list.
An exploration space is defined in an XML file. The following is a
description of the tags used to create a custom space for DSE to process.

Altera Corporation 9–17
June 2004 Preliminary

DSE Advanced Information

A custom space is defined by three pairs of major tags, which are:

● <DESIGNSPACE> and </DESIGNSPACE>
● <POINT> and </POINT>
● <PARAM> and </PARAM>

DESIGNSPACE Tag

The <DESIGNSPACE> tag defines the start of the exploration space of a
custom space. The end tag is </DESIGNSPACE>. This tag defines the end
of the exploration space. These are both required tags for all custom
spaces.

POINT Tag

The POINT tag pair must occur within the DESIGNSPACE tag pair. The
<POINT <name>=<stage> enabled=”<value>”> tag defines the start of the
exploration space point of a custom space. The end tag is </POINT>. This
tag defines the end of the exploration space point. The POINT also allows
you to specify “stage” and whether a particular point is active for a
particular DSE exploration.

The “<stage>” value in the POINT tag can be one of the following:

■ map—indicating an Analysis & Synthesis setting change for that
particular point

■ fit—indicating a Fitter setting change for that particular point
■ seed—indicating a Fitter seed change
■ logiclock—indicating a LogicLock property change

The <value> value in the POINT tag can either be "1," indicating that the
exploration space point is active, or "0" for an inactive point. An example
of a POINT tag is as follows:

<POINT space=”map” enabled=”1”>
...
</POINT>

The preceding point indicates a point that has Analysis & Synthesis
setting changes and is active.

9–18 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

PARAM Tag

The PARAM tag pair must occur within the POINT tag pair. The <PARAM
name=”<parameter>”> tag defines the start of a parameter to be modified
for that particular exploration space point. The end tag is </PARAM>. This
tag defines the end of the parameter. The Analysis & Synthesis settings
and the “<parameter>” values are shown in Table 9–5. Table 9–6 shows the
Fitter settings. An example of a POINT tag is shown below:

<PARAM name=”ADV_NETLIST_OPT_SYNTH_GATE_RETIME”> ON
</PARAM>

The point in the example above indicates that the Analysis & Synthesis
setting gate-level retiming is turned on for the exploration space point.

Table 9–5. Analysis & Synthesis Settings Note (1)

Analysis & Synthesis Settings Description Value

STRATIX_OPTIMIZATION_TECHNIQUE Type of optimization technique to use
during Analysis & Synthesis stage of a
Quartus II software compilation for a
Stratix device.

SPEED,
AREA,
BALANCED

CYCLONE_OPTIMIZATION_TECHNIQUE Type of optimization technique to use
during Analysis & Synthesis stage of a
Quartus II software compilation for a
Cyclone device.

SPEED,
AREA,
BALANCED

ADV_NETLIST_OPT_SYNTH_GATE_RETIME Gate-level register retiming OFF, ON

ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP WYSIWYG primitive resynthesis OFF, ON

DSE_SYNTH_EXTRA_EFFORT_MODE Controls the Quartus II software
synthesis effort.

MODE_1,
MODE_2,
MODE_3

Note to Table 9–5:
(1) Not all Analysis & Synthesis settings are available for all device families.

Table 9–6. Fitter Settings (Part 1 of 2) Note (1)

Fitter Settings Description Value

AUTO_PACKED_REGISTERS_STRATIX Register packing for
Stratix devices

NORMAL, MINIMIZE_AREA,
MINIMIZE_AREA_WITH_CHAINS

AUTO_PACKED_REG_CYCLONE Register packing for
Cyclone devices

OFF, MINIMIZE_AREA,
MINIMIZE_AREA_WITH_CHAINS

INNER_NUM PowerFit fitter effort
level

{integer value}

Altera Corporation 9–19
June 2004 Preliminary

DSE Advanced Information

The custom space example below shows a simple custom exploration
space that performs a seed sweep with various Analysis & Synthesis
settings and Fitter settings.

Simple Custom Space
<DESIGNSPACE>
<POINT space="map">
</POINT>
<POINT space="fit">
</POINT>
<POINT space="map" enabled="1">
 <PARAM name="CYCLONE_OPTIMIZATION_TECHNIQUE">SPEED</PARAM>
 <PARAM name="ADV_NETLIST_OPT_SYNTH_GATE_RETIME">ON</PARAM>
 <PARAM name="ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP">ON</PARAM>
 <PARAM name="STRATIX_OPTIMIZATION_TECHNIQUE">SPEED</PARAM>
 </POINT>
<POINT space="fit" enabled="1">
 <PARAM name="PHYSICAL_SYNTHESIS_REGISTER_RETIMING">ON</PARAM>
 <PARAM name="PHYSICAL_SYNTHESIS_REGISTER_DUPLICATION">

ON</PARAM>
 <PARAM name="AUTO_PACKED_REG_CYCLONE">OFF</PARAM>
 <PARAM name="AUTO_PACKED_REGISTERS_STRATIX">OFF</PARAM>
 <PARAM name="SEED">3</PARAM>
 <PARAM name="PHYSICAL_SYNTHESIS_COMBO_LOGIC">ON</PARAM>
 </POINT>
</DESIGNSPACE>

The example, “Simple Custom Space”, defines a custom exploration
space that has four points. The first two points in the space are special
points: an empty “map” point and an empty “fit” point. DSE expects the
first two points in any custom exploration space to be an empty map
point and an empty fit point, as seen in this example.

Following the empty map and fit points are one map point and one fit
point that change the Quartus II Fitter settings. The map point sets the
optimization technique to speed, turns on gate level retiming, and turns

PHYSICAL_SYNTHESIS_COMBO_LOGIC Physical synthesis for
combinational logic

OFF, ON

PHYSICAL_SYNTHESIS_REGISTER_
DUPLICATION

Physical synthesis for
register duplication

OFF, ON

PHYSICAL_SYNTHESIS_REGISTER_
RETIMING

Physical synthesis for
register retiming

OFF, ON

Note to Table 9–6:
(1) Not all Fitter settings are available for all device families.

Table 9–6. Fitter Settings (Part 2 of 2) Note (1)

Fitter Settings Description Value

9–20 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

on the WYSIWYG resynthesis. For the fit point, register retiming, register
duplication, and physical synthesis for combinational logic is turned on;
register packing is turned off; and a seed value of three is used.

The example, “Custom Space XML Schema”, contains an XML schema
that describes the XML format for custom exploration space files. You can
use an advanced XML editor or XML verification tool to validate any
custom exploration files against this schema.

Altera Corporation 9–21
June 2004 Preliminary

Conclusion

Custom Space XML Schema
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="DESIGNSPACE">
<xs:annotation>

<xs:documentation>The root element of a design space
description</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="POINT"/>

</xs:sequence>
<xs:attribute name="project" type="xs:string" use="optional"/>
<xs:attribute name="revision" type="xs:string" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="POINT">

<xs:annotation>
<xs:documentation>A point in the design space</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element ref="PARAM"/>

</xs:sequence>
<xs:attribute name="space" type="xs:string" use="required"/>
<xs:attribute name="enabled" type="xs:boolean" use="optional" default="1"/>

</xs:complexType>
</xs:element>
<xs:element name="PARAM" type="xs:string" nillable="0">

<xs:annotation>
<xs:documentation>A single Quartus II software setting</xs:documentation>

</xs:annotation>
</xs:element>

</xs:schema>

Conclusion DSE automates the process of finding the best set of options for your
design. It explores the design space of your design by applying various
optimization techniques and analyzing the results to shorten your
design's timing closure cycle.

9–22 Altera Corporation
Preliminary June 2004

Quartus II Handbook, Volume 2

Altera Corporation 10–1
August 2004 Preliminary

10. LogicLock Design
Methodology

Introduction Available exclusively in the Altera® Quartus® II software, the

LogicLock™ block-based design flow enables you to design, optimize,
and lock down your design one module at a time. With the LogicLock
methodology, you can independently create and implement each logic
module into a hierarchical or team-based design. With this method, you
can preserve the performance of each module during system integration.
Additionally, you can reuse logic modules in other designs, further
leveraging resources and shortening design cycles.

The Quartus II software version 4.1 supports the LogicLock block-based
design flow for the following devices:

■ Stratix® II, Stratix, Stratix GX, MAX II®, and Cyclone™

■ APEX® and APEX II

■ Excalibur™

■ Mercury™ (Mercury devices only support locked and fixed regions)

1 This chapter assumes that you are familiar with the basic
functionality of the Quartus II software. See the “LogicLock
Module” in the Quartus II Help for instructions on using the
LogicLock feature in a sample design.

f For more information and guidelines for hierarchical design flow, see the
Hierarchical Block-Based & Team-Based Design Flows chapter in Volume 1 of
the Quartus II Handbook.

Improving Design Performance

You can use the LogicLock flow for performance optimization and
preservation. You can use the LogicLock flow to place modules, entities,
or any group of logic into regions in a device’s floorplan. Because
LogicLock assignments are generally hierarchical, you have more control
over the placement and performance of modules and groups of modules.

In addition to hierarchical blocks, you can use the LogicLock feature on
individual nodes, e.g., to make a wildcard path-based LogicLock
assignment on a critical path. This technique is useful if the critical path
spans multiple design blocks.

qii52009-2.1

10–2 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

1 Although LogicLock constraints can improve performance, they
can also degrade performance if they are not applied correctly.

Preserving Module Performance

The LogicLock design flow allows you to lock the placement and routing
of nodes in a region of a device so that the placement of logic in the region
remains constant. The Quartus II software then places the LogicLock
region into the top-level design with these constraints.

Designing with
the LogicLock
Feature

To design with the LogicLock feature, create a LogicLock region in a
supported device and then assign logic to the region. The LogicLock
region can contain any contiguous, rectangular block of device resources.
After you have optimized the logic placed within the boundaries of a
region to achieve the required performance, back-annotate the region’s
contents to lock the logic placement and routing. Then, when you
integrate the region with the rest of the design, the performance is
preserved.

This section explains the basics of designing with the LogicLock feature,
including:

■ Creating LogicLock Regions
■ Floorplan Editor View
■ LogicLock Region Properties
■ Hierarchical (Parent/Child) LogicLock Regions
■ Assigning LogicLock Region Content
■ Tcl Scripts
■ Quartus II Block-Based Design Flow
■ Additional Quartus II LogicLock Design Features

Creating LogicLock Regions

There are four ways to create a LogicLock region:

■ In the LogicLock Regions window (Assignments menu)
■ Using the Create New Region button in the Timing Closure

Floorplan
■ Using the Compilation Hierarchy window
■ Using a Tool Command Language (Tcl) script

LogicLock Regions Window

The LogicLock window is comprised of the LogicLock Regions window
and LogicLock Region Properties dialog box. Use the LogicLock
Regions window to create LogicLock regions and assign nodes and

Altera Corporation 10–3
August 2004 Preliminary

Designing with the LogicLock Feature

entities to them. The dialog box provides a summary of all LogicLock
regions in your design. You can modify a LogicLock region’s size, state,
width, height, and origin as well as whether the region is Soft or
Reserved, in this window. When the region is back-annotated, the
placement of the nodes within a region are relative to the region’s origin,
and the region’s node placement during subsequent compilations is
maintained.

1 For Stratix, Stratix GX, Stratix II, MAX II, and Cyclone devices,
the LogicLock region’s origin is located at the bottom-left corner
of the region. For all other supported devices, the origin is
located at the top-left corner of the region.

The LogicLock Regions window displays any LogicLock regions that
contain illegal assignments in red as shown in Figure 10–1. If you make
illegal assignments, you can use the Repair Branch command to reset the
assignments for the currently selected region and its descendents to legal
default values.

f For more information on the Repair Branch command, see the “Repair
Branch” on page 10–22.

Figure 10–1. LogicLock Regions Window

You can customize the LogicLock Regions window by dragging and
dropping the various columns. The columns can also be hidden.

1 The Soft and Reserved columns are not shown by default.

For designs targeting Stratix, Stratix GX, Stratix II, MAX II, and Cyclone
devices, the Quartus II software automatically creates a LogicLock region
that encompasses the entire device. This default region is labelled
Root_region, and it is effectively locked and fixed.

10–4 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Use the LogicLock Region Properties dialog box to obtain detailed
information about your LogicLock region, such as which entities and
nodes are assigned to your region and what resources are required (see
Figure 10–2). The LogicLock Region Properties dialog box shows the
properties of the current selected regions.

1 The LogicLock Region Properties dialog box can be opened by
double-clicking any region in the LogicLock Regions window
or right-clicking the region and selecting Properties.

Figure 10–2. LogicLock Region Properties Dialog Box

To back-annotate the contents of your LogicLock regions, perform these
steps:

1. In the LogicLock Region Properties dialog box, click
Back-Annotate Contents.

Altera Corporation 10–5
August 2004 Preliminary

Designing with the LogicLock Feature

2. Select the contents you wish to back-annotate using the
Back-Annotate Assignments (Advanced type) (Assignment menu)
dialog box (Figure 10–3)

3. Click OK.

Figure 10–3. Back-Annotate Assignments Dialog Box (Advanced Type)

1 You can also back-annotate routing within LogicLock regions
for increased region portability. For more information on back-
annotating routing information, see “Back-Annotating Routing
Information” on page 10–33.

10–6 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

When you back-annotate a region’s contents and demote all cell
assignments, all of the design element nodes appear under Back-
annotated nodes with an assignment to a device resource (e.g., logic
array block [LAB], M512, M4K, M-RAM, digital signal processing [DSP]
block, etc.) under Node Location. Each node’s location is the placement
of the node after the last compilation. If the origin of the region changes,
the node’s location changes to maintain the same relative placement. This
relative placement preserves the performance of the nodes. If cell
assignments are demoted, then the nodes are assigned to LABs rather
than directly to logic cells.

Timing Closure Floorplan Editor

The Timing Closure Floorplan Editor has toolbar buttons with which you
can manipulate LogicLock regions, as shown in Figure 10–4. You can use
the Create New Region button to draw LogicLock regions in the device
floorplan.

1 The Timing Closure Floorplan Editor displays LogicLock
regions when Show User Assignments or Show Fitter
Placements is selected. The type of region determines its
appearance in the floorplan.

The Timing Closure Floorplan Editor differentiates between user
assignments and fitter placements. When the Show User Assignments
option is turned on in the Timing Closure Floorplan, current assignments
made to a LogicLock region are visible. When the Fitter Placement option
is turned on, you can see the properties of the LogicLock region after the
last compilation. User-assigned LogicLock regions appear in the
Floorplan Editor with a dark blue LogicLock border. Fitter-placed regions
appear in the Floorplan Editor with a magenta border.

Altera Corporation 10–7
August 2004 Preliminary

Designing with the LogicLock Feature

Figure 10–4. Floorplan Editor Toolbar Buttons

Hierarchy Window

After you have performed either a full compilation or Analysis &
Elaboration on the design, the Quartus II software displays the hierarchy
of the design in the Compilation Hierarchy window. With the hierarchy
of the design fully expanded, as shown in Figure 10–5, you can
conveniently create a LogicLock region by right clicking on any design
entity in the design and selecting Create New LogicLock Region in the
right button pop-up menu.

User Placed RegionShow User Assignments

Create New LogicLock Region

Fitter Placed RegionShow Fitter Placements

10–8 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Figure 10–5. Hierarchy Window Used to Create LogicLock Regions

Tcl Scripts

You can create LogicLock regions and assign nodes to them with Tcl
commands that you can run from the Tcl Console or at the command
prompt.

f For more information, refer to the Scripting Support chapter in Volume 2
of the Quartus II Handbook.

Altera Corporation 10–9
August 2004 Preliminary

Designing with the LogicLock Feature

Floorplan Editor View

The Timing Closure Floorplan view provides you with current and last
compilation assignments on one screen. You can display device resources
in either of two views: the Field View and the Interior Cells View, as
shown in Figure 10–6. The Field View provides an uncluttered view of the
device floorplan in which all device resources such as ESBs and

MegaLAB™ blocks are outlined. The interior Cells View provides a
detailed view of device resources this includes individual Logic Elements
within a MegaLAB and device pins.

Figure 10–6. Floorplan Editor⎯Timing Closure

(Field View) (Interior Cells View)

10–10 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

LogicLock Region Properties

A LogicLock region is defined by its size (height and width) and location
(where the region is located on the device). You can specify the size
and/or location of a region, or the Quartus II software can generate them
automatically. The Quartus II software bases the size and location of the
region on its contents and the module’s timing requirements. Table 10–1
describes the options for creating LogicLock regions.

1 The Quartus II software cannot automatically define a region’s
size if the location is locked. Therefore, if you want to specify the
exact location of the region, you must also specify the size.
Mercury devices only support locked and fixed regions.

The floorplan excerpt in Figure 10–7 shows the LogicLock region
properties for a design implemented in a Stratix device.

Table 10–1. Types of LogicLock Regions

Properties Values Behavior

State Floating
(default),
Locked

Floating regions allow the Quartus II software to determine the region’s location
on the device. Locked regions represent user-defined locations of a region and
are illustrated with a solid boundary in the graphical floorplans. A locked region
must have a fixed size.

Size Auto
(default),
Fixed

Auto-sized regions allow the Quartus II software to determine the appropriate size
of a region given its contents. Fixed regions have a user-defined shape and size.

Reserved Off (default),
On

The reserved property allows you to define whether you can use the resources
within a region for entities that are not assigned to the region. If the reserved
property is on, only items assigned to the region can be placed within its
boundaries.

Enforcement Hard
(default),
Soft

Soft regions give more deference to timing constraints, and allow some entities to
leave a region if it improves the performance of the overall design. Hard regions
do not allow contents to be placed outside of the boundaries of the region.

Origin Any
Floorplan
Location

The origin defines the top-left corner of the LogicLock region’s placement on the
floorplan. For Stratix, Stratix II, Stratix GX, MAX II, and Cyclone the origin is
located in the lower-left hand corner. The origin is located in the upper-left corner
for other families.

Altera Corporation 10–11
August 2004 Preliminary

Designing with the LogicLock Feature

Figure 10–7. LogicLock Region Properties

Hierarchical (Parent and/or Child) LogicLock Regions

With the LogicLock design flow, you can define a hierarchy for a group of
regions by declaring parent and/or child regions. The Quartus II
software places a child region completely within the boundaries of its
parent region, allowing you to further constrain module locations.
Additionally, Parent and child regions allow you to further improve a
module’s performance by constraining the nodes in the module’s critical
path. Figure 10–8 shows an example child region within a parent region,
including labels for a locked location and floating location in a Stratix
device.

LLR1_CHILD, a child region of
LLR1, is a fixed, locked region

Width of
LLR1_CHILD

LLR3 Origin LLR2 is an auto,
floating region

LLR1 is a fixed, floating region LLR3 is a fixed, locked region

LLR3 Height

10–12 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Figure 10–8. Child Region within a Parent Region

1 The LogicLock region hierarchy does not have to be the same as
the design hierarchy.

A child region’s location can float within its parent or remain locked
relative to its parent’s origin, while a locked parent region’s location is
locked relative to the device. If the child’s location is locked and the
parent’s location is changed, the child’s origin changes but maintains the
same placement relative to the origin of its parent. Either you or the
Quartus II software can determine a child region’s size; however, it must
fit entirely within the parent region.

LLR1_CHILD1 is a fixed,
locked child region

LLR1_CHILD2 is a fixed,
floating child region

Altera Corporation 10–13
August 2004 Preliminary

Designing with the LogicLock Feature

Assigning LogicLock Region Content

Once you have defined a LogicLock region, you must assign resources to
it using the Timing Closure Floorplan, the LogicLock Regions dialog
box, the Assignment Editor, or Tcl scripts with the Quartus II Tcl Console
or the quartus_sh executable.

Using Drag & Drop to Place Logic
You can drag selected logic from the Compilation Hierarchy window,
Node Finder, or a schematic design file and drop it into the Timing
Closure Floorplan or the LogicLock Regions dialog box. Figure 10–9
shows logic that has been dragged from the Compilation Hierarchy
window dropped into a LogicLock region in the Timing Closure
Floorplan.

Figure 10–9. Drag & Drop Logic in the Current Assignments Floorplan

Figure 10–10 shows logic that has been dragged from the Compilation
Hierarchy window and dropped into the LogicLock Regions dialog box.
Logic can also be dropped into the Design Element Assigned dialog box.

Compilation Hierarchy LogicLock Region

10–14 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Figure 10–10. Drag & Drop Logic into the LogicLock Regions Dialog Box

1 You must manually assign pins to a LogicLock region. The
Quartus II software does not include pins automatically when
you assign an entity to a region. The software only obeys pin
assignments to locked regions that border the periphery of the
device. For Stratix, Stratix II, MAX II, and Cyclone devices, the
locked regions must enclose the I/O pins as resources.

Using the Assignment Editor to Place Logic

You can also use the Assignment Editor to assign entities and nodes to a
LogicLock region (see Figure 10–11). To assign content to a LogicLock
region with the Assignment Editor, perform the following steps:

1. Under Assignment Name, select Add to LogicLock Region.

Design Element Assigned dialog boxCompilation Hierarchy

LogicLock Regions

Altera Corporation 10–15
August 2004 Preliminary

Designing with the LogicLock Feature

2. Under Value, specify your LogicLock region name.

3. Under To, specify either nodes or entities that are to reside in the
LogicLock region.

The nodes or entities are then assigned to the selected LogicLock region.

Figure 10–11. Assignment Editor

Tcl Scripts

You can create LogicLock regions and assign nodes to them with Tcl
commands that you can run from the Tcl Console or at the command
prompt. The Tcl command set_logiclock is used to create or change
the attributes of LogicLock regions.

f For more information on creating and using LogicLock regions and
contents, see the Command Line and Tcl API topics in the Quartus II
online Help.

10–16 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Quartus II Block-Based Design Flow

When using the LogicLock design flow, it is recommended that you
divide the design into modules. Then, perform the following steps in the
Quartus II software for each module:

1. Synthesize the module using the Quartus II software or another
synthesis tool.

2. Optimize the module in the Quartus II software.

3. Export the module and the LogicLock constraints.

4. Import all modules and LogicLock constraints into the top-level
project.

5. Compile and verify the top-level design.

Synthesize the Module

You can synthesize the module in the Quartus II software or any
Altera-supported third-party synthesis tool, e.g., the Synplify®,

LeonardoSpectrum™, or FPGA Compiler II software. The software
synthesizes each module into an atom netlist, which represents the logic
in terms of Altera primitives for the target Altera device.

In the atom netlist, the nodes are fixed as Altera primitives; the node
names do not change if the atom netlist does not change. If a node name
does change, any placement information made to that node is invalid and
ignored. Third-party tools generate atom netlists as EDIF Input Files
(.edf) or Verilog Quartus Mapping Files (.vqm).

Optimize the Module

Before optimizing a module in the Quartus II software, create a project
with the module as the top-level entity. You must assign the module to a
single (or multiple) LogicLock region. See the “Constraint Priority” on
page 10–30 for information on the precedence of the LogicLock region
and other constraint settings.

After you have optimized the module so that it meets timing
requirements, lock down the placement of nodes in a LogicLock region by
back-annotating the contents of the region. To make relative location
assignments, you must fix the node names. Fixed node names require an
atom netlist so that the assignments for each node remain valid. The node
placement is fixed relative to the LogicLock region for the module.

Altera Corporation 10–17
August 2004 Preliminary

Designing with the LogicLock Feature

For the Quartus II software to achieve optimal placement, you should
make timing assignments for all clock signals in the design, e.g., tSU, tCO,
and tPD.

To facilitate the LogicLock design flow, the Timing Closure Floorplan
highlights resources that have back-annotated LogicLock regions.
Figure 10–12 shows a back-annotated LogicLock region in the Timing
Closure Floorplan.

Figure 10–12. Back-Annotated LogicLock Region

Export the Module

This section describes how to export a module’s constraints to a format
that can be imported by a top-level design. To be exported, a module
requires design information as an atom netlist (VQM or EDF), placement
information stored in a Quartus Settings File (.qsf), and routing
information stored in a Routing Constraint File (.rcf).

Unused regions are
not highlighted

Used resources in
a LogicLock region
are highlighted

10–18 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Atom Netlist Design Information
The atom netlist contains design information that fully describes the
module’s logic in terms of an Altera device architecture. If the design was
synthesized using a third-party tool and then brought into the Quartus II
software, an atom netlist already exists and the node names are fixed. You
do not need to generate another atom netlist. However, if you use any
Synthesis Netlist Optimizations, or Physical Synthesis Optimizations,
you must generate a Quartus II VQM. because the original atom netlist
may have changed as a result of these optimizations.

1 It is recommended that you turn on the option Prevent further
netlist optimization option when back-annotating a region with
the Synthesis Netlist Optimizations and/or Physical
Synthesis Optimization options turned on. This sets the Netlist
Optimizations to Never Allow option on all nodes in the
region, avoiding the possibility of a node name change when the
region is imported into the top-level design.

If you synthesized the design as a VHDL Design File (.vhd), Verilog
Design File (.v), Text Design File (.tdf), or a Block Design File (.bdf) in the
Quartus II software, you must also create an atom netlist to fix the node
names. During compilation, the Quartus II software creates a VQM File
in the atom_netlists subdirectory in the project directory.

1 If the atom netlist is from a third-party synthesis tools and the
design has a black-boxed library of parameterized modules
(LPM) functions or Altera megafunctions, you must generate a
Quartus II VQM File for the black-boxed modules.

f For instructions on creating an atom netlist in the Quartus II software,
see Saving Synthesis Results for an Entity to a Verilog Quartus Mapping File
in Quartus II Help.

When you export LogicLock regions, the Quartus II software defaults to
exporting your entire design’s LogicLock region assignments. However,
you can export a sub-entity of the compilation hierarchy and all of its
relevant regions. This can be accomplished by right-clicking the entity in
the Compilation Hierarchy and selecting Export Assignments from the
right button pop-up menu.

Placement Information
The QSF contains the module’s LogicLock constraint information,
including clock settings, pin assignments, and relative placement
information for back-annotated regions. To maintain performance, you
must back-annotate the module.

Altera Corporation 10–19
August 2004 Preliminary

Designing with the LogicLock Feature

Routing Information
The RCF contains the module’s LogicLock routing information. To
maintain performance, you must back-annotate the module.

f For instructions on exporting a LogicLock region assignment in the
Quartus II software, see Exporting LogicLock Region Assignments and Other
Entity Assignments in Quartus II Help.

Import the Module

You can specify which QSF is used for a specific instance or entity with
the LogicLock Import File Name option in the Assignment Editor.
Therefore, you can specify different LogicLock region constraints for each
instance of an entity and import them into the top-level design. You can
also specify an RCF file with the LogicLock Routing Constraints File
Name option in the Assignment Editor.

When importing LogicLock regions into the top-level design, you must
specify the QSF and RCF for the modules in the project. If the design
instantiates a module multiple times, the Quartus II software applies the
LogicLock regions multiple times.

1 Before importing LogicLock regions, you must perform
Analysis & Elaboration, or compile the top-level design, so that
the Quartus II software is aware of all instances of the lower-
level modules.

The following sections describe how to specify a QSF for a module and
how to import the LogicLock assignments into the top-level design.

Specify the QSF and Atom Netlist
To specify the QSF and atom netlist to import, perform the following
steps:

1. Specify an atom netlist for the module that you are importing by
either copying the atom netlist to your current working directory or
choosing Add/Remove Project Files (Project menu) and browsing
to the file.

2. Perform Analysis & Elaboration.

3. Expand the design hierarchy on the Compilation Hierarchy tab of
the Project Navigator by clicking the + icon next to the top-level
entity.

4. Right-click on the entity and choose Locate in the Assignment
Editor.

10–20 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

5. Under Assignment Name, choose LogicLock Import File Name.

6. Under Value, type the name and relative path to the QSF, or click
Browse and navigate to the QSF in the Select File dialog box.

Repeat steps 3 through 5 for all entities that require a specific QSF.

You can follow the same procedure for specifying a QSF when specifying
an RCF. Instead of selecting LogicLock Import File Name, select
LogicLock Back Routing Constraints File Name.

Import the Assignments
To import the assignments, choose Import Assignments (Assignments
menu). Figure 10–13 shows the Import Assignment dialog box.

Figure 10–13. Import Assignments Dialog Box

There are a number of options available in the Advanced Import
Assignments dialog box that you can use to control the import of your
LogicLock regions, as shown in Figure 10–14.

Altera Corporation 10–21
August 2004 Preliminary

Designing with the LogicLock Feature

Figure 10–14. Advanced Import Settings Dialog Box

The Quartus II software converts all imported parent or top-level regions
(that do not contain back-annotated routing information) to floating
regions to prevent spurious no-fit errors. This allows the Quartus II
software to move LogicLock regions to areas on the device with free
resources. Child regions are locked or floating relative to their parent
region’s origin as specified in the modules’ original LogicLock
constraints.

1 If you want to lock a LogicLock region to a location, you can
manually lock down the region in the LogicLock Regions dialog
box or the Timing Closure Floorplan.

Each imported LogicLock region has a name that corresponds to the
original LogicLock region name combined with the instance name in the
form of <instance name>|<original LogicLock region name>. For example, if
a LogicLock region for a module is named LLR_0 and the instance name
for the module is Filter:inst1, then he LogicLock region name in the
top-level design is Filter:inst1|LLR_0.

10–22 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Compile & Verify the Top-Level Design

After importing all modules, you can compile and verify the top-level
design. The compilation report shows whether system timing
requirements have been met.

Additional Quartus II LogicLock Design Features

To complement the LogicLock Regions dialog box and Device Floorplan
view, the Quartus II software has additional features to help you design
with the LogicLock feature.

Tooltips

When you move the mouse so that the pointer is over a LogicLock region
name in the Hierarchy window of the Project Navigator or LogicLock
Regions dialog box, or over the top bar of the LogicLock region in the
Timing Closure Floorplan, the Quartus II software displays a tooltip
with information about the properties of the LogicLock region.

1 Placing the mouse over Fitter Placed LogicLock Regions
displays the maximum routing delay within the LogicLock
region. You must first turn on the Show Critical Paths (see
“Show Critical Paths” on page 10–24) command before the
delay information becomes available.

Repair Branch

When you retarget your design to either a larger or smaller device, there
is a chance that your LogicLock regions no longer contain valid values for
location or size in the new device, resulting in an illegal LogicLock region.
The Quartus II software identifies illegal LogicLock regions in the
LogicLock Regions dialog box by coloring the name of the region
containing the error red.

To correct the illegal LogicLock region, use the Repair Branch command.
Right click the desired LogicLock region’s name and select Repair Branch
(Right button pop-up menu).

If more then one illegal LogicLock region exists, you can repair all regions
by right clicking the first line in the LogicLock window that contains the
text LogicLock Regions and selecting Repair Branch.

Altera Corporation 10–23
August 2004 Preliminary

Designing with the LogicLock Feature

Reserve LogicLock Region

The Quartus II software honors all entity and node assignments to
LogicLock regions. Occasionally, entities and nodes do not occupy an
entire region, which leaves some of the region’s resources unoccupied. To
increase the region’s resource utilization and performance, the Quartus II
software’s default behavior fills the unoccupied resources with other
nodes and entities that have not been assigned to any other region. You
can prevent this behavior by turning on Reserve unused logic cells on
the Contents tab of the LogicLock Region Properties dialog box. When
this option is turned on, your LogicLock region only contains the entities
and nodes that you have specifically assigned to your LogicLock region.

In a team-based design environment, this option is extremely helpful in
device floorplanning. When this option is turned on, each team can be
assigned a portion of the device floorplan where placement and
optimization of each submodule occurs. Device resources can be
distributed to every module without affecting the performance of other
modules.

Prevent Assignment to LogicLock Regions Option

Turning on the Prevent Assignment to LogicLock Regions options
exclude any arbitrary entity or node from being a member of any
LogicLock region. However, it does not prevent the entity or node from
entering into LogicLock regions. The fitter places the entity or node
anywhere on the device as if no regions exist. For example, if an entire
module is assigned to a LogicLock region, when this option is turned on,
you can exclude a specific sub-entity or node from the region.

1 The Prevent Assignment to LogicLock Regions option for a
given entity or node is found in the Assignment Editor under
Assignment Name.

LogicLock Regions Connectivity

The Timing Closure Floorplan Editor allows you to see connections
between various LogicLock regions that exist within a design. The
connection between the regions is drawn as a single line between the
LogicLock regions. The thickness of this line is proportional to the
number of connections between the regions.

Rubber Banding

When the Rubber Banding option is turned on, the Quartus II software
shows existing connections between LogicLock regions and nodes during
movement of LogicLock regions within the Floorplan Editor.

10–24 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Show Critical Paths

You can display the critical paths within a LogicLock region by turning
the Show Critical Paths option On. This option is used in conjunction
with the Critical Paths Settings option that allows you to display either
one or more of the following paths: pin-to-pin, pin-to-register, register-to-
pin, or register-to-register, as shown in Figure 10–15.

Figure 10–15. Show Critical Paths & Critical Paths Settings

Show Connection Count

You can determine the number of connections between LogicLock
regions by turning the Show Connection Count option On.

Analysis & Synthesis Resource Utilization by Entity

The Compilation Report contains an Analysis & Synthesis Resource
Utilization by Entity section, which reports accurate resource usage
statistics, including entity-level information. This feature is useful when
manually creating LogicLock regions.

Path-Based Assignments

You can assign paths to LogicLock regions based on source and
destination nodes, allowing; you to easily group critical design nodes into
a LogicLock region. The path’s source and destination nodes must be a
valid register-to-register path, meaning that the source and destination
nodes must be registers. Figure 10–16 shows the Path-Based Assignment
dialog box.

1 Both “*” and “?” wildcard characters are allowed for both the
source and destination nodes. When creating path-based
assignments you can have the option of excluding certain nodes
with the Name exclude field in the Path dialog box.

Show Critical Paths

Critical Paths Settings

Altera Corporation 10–25
August 2004 Preliminary

Designing with the LogicLock Feature

Figure 10–16. Path-Based Assignment Dialog Box

1 The Path-Based Assignment dialog box is launched from the
Contents Tab of the LogicLock Regions dialog box.

You can also use the Quartus II Timing Analysis Report to create path-
based assignments. To create path-based assignments, follow these steps:

1. Expand the Timing Analyzer section in the Compilation Report.

2. Select any of the clocks in the section that is labelled “Clock
Setup:<clock name>”

3. Locate a path that you would like to assign to a LogicLock region.
Drag this path from the Report window and drop it in the <<new>>
section of the LogicLock Region window.

This operation creates a path-based assignment from the source register
to the destination register as shown in the Timing Analysis Report.

10–26 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Quartus II Revisions Feature

When you create, modify, or import LogicLock regions into a top-level
design, you may need to experiment with different configurations to
achieve your desired results. The Quartus II software provides the
Revisions feature that allows for a convenient way to organize the same
project with different settings until an optimum configuration is found.

Use the Revisions dialog box (Project menu) to create and set revisions.
Revision can be based on the current design or any previously created
revisions. A description can also be entered for each revision created. This
is a convenient way to organize the placement constraints created for
your LogicLock regions.

LogicLock Assignment Precedence

Conflicts might arise during the assignment of entities and nodes to
LogicLock regions. For example, an entire top-level entity might be
assigned to one region and a node within this top-level entity assigned to
another region. To resolve conflicting assignments, the Quartus II
software maintains an order of precedence for LogicLock assignments.
The Quartus II software’s order of precedence is as follows from highest
to lowest:

1. Exact node-level assignments

2. Path-based and wildcard assignments

3. Hierarchical assignments

However, conflicts might also occur within path-based and wildcard
assignments. Path-based and wildcard assignment conflicts arise when
one path-based or wildcard assignment contradicts another path-based
or wildcard assignment. For example, a path-based assignment is made
containing a node labeled X and assigned to LogicLock region
PATH_REGION. A second assignment is made using wildcard assignment
X* with node X being placed into region WILDCARD_REGION. As a result
of these two assignments, node X is assigned to two regions:
PATH_REGION and WILDCARD_REGION.

To resolve this type of conflict, the Quartus II software keeps the order in
which the assignments were made and treats the last assignment created
with the highest priority.

Altera Corporation 10–27
August 2004 Preliminary

Designing with the LogicLock Feature

1 Open the Priority dialog box by selecting Priority on the
Contents tab of the LogicLock properties dialog box. You can
change the priority of path-based and wildcard assignments by
using the Up or Down buttons in the Priority dialog box. To
prioritize assignments between regions, you must select
multiple LogicLock regions. Once the regions have been
selected, you can open the Priority dialog box from the
LogicLock Properties window.

LogicLock Regions versus Soft LogicLock Regions

Normally all nodes assigned to a particular LogicLock region always
resides within the boundaries of that region. Soft LogicLock regions can
enhance design performance by removing the fixed rectangular
boundaries of LogicLock regions. When you assign a LogicLock region as
being “Soft,” Quartus II software attempts to place as many nodes
assigned to the region as close together as possible, and has the added
flexibility of moving nodes outside of the soft region to meet your
design’s performance requirement. This allows the Quartus II Fitter
greater flexibility in placing nodes in the device to meet your
performance requirements.

When you assign nodes to a soft LogicLock region, they can be placed
anywhere in the device, but if the soft region is the child of a region, the
nodes will not be assigned outside the boundaries of the parent region. If
a non-soft parent does not exist (in a design targeting a Stratix, Stratix GX,
Stratix II, MAX II, or Cyclone device), the region floats within the
Root_region, i.e., the boundaries of the device. You can turn On the Soft
Region option on the Location tab of the LogicLock Region Properties
dialog box.

1 Soft regions can have an arbitrary hierarchy that allows any
combination of parent and child to be a soft region. The Reserved
option is not compatible with soft regions.

Soft LogicLock regions cannot be back-annotated because the Quartus II
software may have placed nodes outside of the LogicLock region
resulting in undefinable location assignments relative to the region’s
origin and size.

Soft LogicLock regions are available for all device families that support
floating LogicLock regions.

10–28 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Virtual Pins

When you compile a design in the Quartus II software, all I/O ports are
directly mapped to pins on the targeted device. This I/O port mapping
may create problems for a modular/hierarchical design because lower-
level modules may have more I/O ports than pins available on the
targeted device, or the I/O ports may not directly feed a device pin, but
may drive other internal nodes. The Quartus II software supports virtual
pins to accommodate this situation. Virtual pin assignments tell the
Quartus II software which I/O ports of the design module become
internal nodes in the top-level design. These assignments prevent the
number of I/O ports in the lower-level module from exceeding the total
number of available device pins. Every I/O port that is designated as a
virtual pin gets mapped to an LCELL register in the device. Figure 10–17
shows the virtual input and output pins in the Floorplan Editor.

Figure 10–17. Virtual I/O Pins in the Quartus II Floorplan Editor

1 Bidirectional, registered I/O pins, and I/O pins with output
enable signals cannot be virtual pins. All virtual pins must map
to device I/O pins in the top-level design.

In the top-level design, these virtual pins are connected to an internal
node in another module. Making assignments to virtual pins allow you to
place them within the same location or region on the device as the
corresponding internal node would exist in the top-level module. This
feature also has the added benefit of providing accurate timing
information during lower-level module optimization.

Virtual Input

Virtual Output

Altera Corporation 10–29
August 2004 Preliminary

Designing with the LogicLock Feature

To accommodate designs with multiple clock domains, you can specify
individual clock signals by turning to Virtual Pin Clock option on for each
virtual pin.

1 Virtual pin and virtual pin clock assignments are made through
the Assignment Editor. Figure 10–18 shows assigning virtual
pins using the Assignment Editor.

Figure 10–18. Using the Assignment Editor to Assign Virtual Pin

1 Setting Filter Type to Pins: Virtual allows the Node Finder to
display all assigned virtual pins in the design.

10–30 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

LogicLock
Restrictions

This section discusses restrictions that you should consider when using
the LogicLock design flow, including:

■ Constraint priority
■ Placing LogicLock regions
■ Placing memory, pins and other device features into LogicLock

regions

Constraint Priority

During the design process, it is often necessary to place restrictions on
nodes or entities in the design. Often, these restrictions conflict with the
node or entity assignments for a LogicLock region. To avoid conflicts, you
should consider the order of precedence given to constraints by the
Quartus II software during fitting. The following assignments have
priority over LogicLock region assignments:

■ Assignments to device resources and location assignments
■ Fast input register and fast output register assignments
■ Local clock assignments for Stratix devices
■ Custom region assignments
■ I/O standard assignments

The Quartus II software removes nodes and entities from LogicLock
regions if any of these constraints are applied to them.

Placing LogicLock Regions

A fixed region must contain all of the resources required for the module.
Although the Quartus II software can automatically place and size
LogicLock regions to meet resource and timing requirements, you can
manually place and size regions to meet your design needs. To do so,
follow these guidelines:

■ LogicLock regions with pin assignments must be placed on the
periphery of the device, adjacent to the pins. (For Stratix, Stratix GX,
Stratix II, MAX II, and Cyclone devices, you must also include the
I/O block.)

■ Floating LogicLock regions cannot overlap.
■ It is recommended that you not create fixed and locked regions that

overlap.
■ After back-annotating a region, the software can place the region

only in areas on the device with exactly the same resources.

Altera Corporation 10–31
August 2004 Preliminary

LogicLock Restrictions

1 These guideline are particularly important if you want to import
multiple instances of a module into a top-level design, because
you must ensure that the device has two or more locations with
exactly the same device resources. If the device does not have
another area with exactly the same resources, the Quartus II
software generates a fitting error during compilation of the top-
level design.

Figure 10–19 shows a floorplan with two instantiations of the same
module. Both modules have the same LogicLock constraints and require
exactly the same resources. The Quartus II software places the two
LogicLock regions in different areas in the devices that have the same
resources.

Figure 10–19. Floorplan of Two Instances of a LogicLock Region

Notes for Figure 10–19:
(1) The back-annotated regions LLR1_Inst1 and LLR1_Inst2 have the same resources.

LLR1_Inst1

LLR1_Inst2

10–32 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Placing Memory, Pins & Other Device Features into LogicLock
Regions

A LogicLock region includes all device resources within its boundaries.
You can assign pins to LogicLock regions; however, this placement puts
location constraints on the region. When the Quartus II software places a
floating auto-sized region, it places the region in an area that meets the
requirements of the LogicLock region’s contents.

1 Pin assignments to LogicLock regions honor only fixed and
locked regions. Pins assigned to floating regions do not
influence the region’s placement.

Only one LogicLock region can claim a device resource. If the boundary
includes part of a device resource, such as a DSP block, the Quartus II
software allocates the entire resource to the LogicLock region.
Figure 10–20 shows two overlapping regions in the same Stratix DSP
block. The Quartus II software can assign this resource to only one of the
LogicLock regions. The region’s resource requirements determine which
region gets the assignment. If both regions require a DSP block, the
Quartus II software issues a fitting error.

Figure 10–20. Overlapping LogicLock Regions in a Stratix DSP Block

LogicLock Region 1 and LogicLock Region 2 are locked, fixed regions

This entire DSP block is assigned to only one of the LogicLock regions

Altera Corporation 10–33
August 2004 Preliminary

Back-Annotating Routing Information

Back-Annotating
Routing
Information

LogicLock regions not only allow you to preserve the placement of logic,
from one compilation to the next, but also allow you to retain the routing
inside the LogicLock regions. With both placement and routing locked,
you have an extremely portable design module that can be used many
times in a top-level design without requiring further optimization.

1 Back-annotate routing only if necessary because this can prevent
the Quartus II Fitter from finding an optimal fit for your design.

You can back-annotate the routing by selecting Routing in the
Back-Annotate Assignments dialog box (Assignments menu) (see
Figure 10–3 on page 10–5).

1 If you are not using an atom netlist, you must turn On the Save
a node-level netlist into a Verilog Quartus Mapping File
option On in the Back-Annotate Assignments dialog box if
back-annotation of routing is selected. Writing out a VQM file
causes the Quartus II software to enforce persistent naming of
nodes when saving the routing information between source and
destination logic. The VQM is then be used as the design’s
source.

Back-annotated routing information is valid only for regions with fixed
sizes and locked locations. The Quartus II software ignores the routing
information for LogicLock regions you specify as floating and
automatically sized.

The Disable Back-Annotated Node locations option in the LogicLock
Region Properties dialog box is not available if the region contains both
back-annotated routing and back-annotated nodes.

Exporting Back-Annotated Routing in LogicLock Regions

You can export the LogicLock region routing information by turning On
the Export Back-annotated routing option On in the Export Assignments
dialog box (Assignments menu). This generates a QSF and a RCF in the
specified directory. The QSF file contains all LogicLock region properties
as specified in the current design. The RCF contains all the necessary
routing information for the exported LogicLock regions.

This RCF only works with the atom netlist for the entity being exported.

Only regions that have back-annotated routing information have their
routing information exported when you export the LogicLock regions.
All other regions are exported as regular LogicLock regions.

10–34 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

To determine if a LogicLock region contains back-annotated routing, see
the Content Status box shown on the Contents tab of the LogicLock
Region Properties dialog box. If routing has been back-annotated, the
status is “Nodes and Routing Back-Annotated”, shown in Figure 10–21.

Figure 10–21. LogicLock Status

The Quartus II software also reports whether routing information has
been back-annotated in the Timing Closure Floorplan (Assignments
menu). LogicLock regions with back-annotated routing have an “R” in
the top-left hand corner of the region as shown in Figure 10–22).

Altera Corporation 10–35
August 2004 Preliminary

Back-Annotating Routing Information

Figure 10–22. Back-Annotation of Routing

Importing Back-Annotated Routing in LogicLock Regions

To import LogicLock region routing information, turn the
Back-annotated routing option on in the Advanced Import Assignments
dialog box (Assignments menu). Figure 10–23 shows this dialog box. The
Quartus II software imports and applies all LogicLock region
assignments for the appropriate instances automatically.

1 An RCF must be explicitly defined using the LogicLock
Back-annotated Routing Import File Name option for the
Quartus II software to import routing information for your
design.

LogicLock region with back-annotated routing

LogicLock region without back-annotated routing

10–36 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Figure 10–23. Import LogicLock Regions

The Quartus II software imports LogicLock regions with back-annotated
routing as regions locked to a location and of fixed size.

You can import back-annotated routing if only one instance of the
imported region exists in the top level of the design. If more than one
instance of the imported region exists in the top level of the design, the
routing constraint is ignored and the LogicLock region is imported
without back-annotation of routing. This is because routing resources
from one part of the device may not be exactly the same in another area
of the device.

1 When importing the RCF for a lower-level entity you must use
the same atom netlist, i.e., the VQM, that was used to generate
the RCF file. This ensures that the node names annotated in the
RCF match those in the atom netlist.

Scripting
Support

You can run procedures and make settings described in this chapter in a
Tcl script. You can also run some procedures at a command prompt. For
detailed information about scripting command options, refer to the
Quartus II Command-Line and Tcl API Help browser. To run the Help
browser, type the following command at the command prompt:

quartus_sh --qhelp r

f For more information about Tcl scripting, see the Tcl Scripting chapter in
Volume 2 of the Quartus II Handbook. For more information about
command-line scripting, see the Command-Line Scripting chapter in
Volume 2 of the Quartus II Handbook.

Altera Corporation 10–37
August 2004 Preliminary

Scripting Support

Initializing and Uninitializing a LogicLock Region

You must initialize the LogicLock data structures before creating or
modifying any LogicLock regions and before executing any of the Tcl
commands listed below.

Use the following Tcl command to initialize the LogicLock data
structures:

initialize_logiclock

Use the following command to uninitialize the LogicLock data structures
before closing your project:

uninitialize_logiclock

Creating or Modifying LogicLock Regions

Use the following Tcl command to create or modify a LogicLock region:

set_logiclock -auto_size true -floating true -region \
<my_region-name>

1 In the above example the region’s size will be set to auto and the
state set to floating.

If you specify a region name that does not exist in the design, the
command creates the region with the specified properties. If you specify
the name of an existing region, the command changes all properties you
specify, and leaves unspecified properties unchanged.

f For more information about creating LogicLock regions, see “Creating
LogicLock Regions” on page 10–2.

Obtaining LogicLock Region Properties

Use the following Tcl command to obtain LogicLock region properties.
This example returns the height of the region named my_region.

get_logiclock -region my_region -height

Assigning LogicLock Region Content

Use the following Tcl commands to assign or change nodes and entities in
a LogicLock region. This example assigns all nodes with names matching
fifo* to the region named my_region.

10–38 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

set_logiclock_contents -region my_region -to fifo*

You can also make path-based assignments with the following Tcl
command:

set_logiclock_contents -region my_region -from \
fifo -to ram*

f For more information about assigning LogicLock Region Content, refer
to “Assigning LogicLock Region Content” on page 10–13.

Prevent Further Netlist Optimization

Use this Tcl code to prevent further netlist optimization for nodes in a
back-annotated LogicLock region. In your code, specify the name of your
LogicLock region.

foreach node [get_logiclock_contents -region \
<region name> -node_locations] {

set node_name [lindex $node 0]

set_instance_assignment -name
ADV_NETLIST_OPT_ALLOWED "NEVER ALLOW" -to $node_name
}

The get_logiclock_contents command is in the logiclock
package.

f For more information about preventing further netlist optimization,
refer to “Prevent Further Netlist Optimization” on page 10–38.

Save a Node-level Netlist into a Persistent Source File (.vqm)

Make the following assignments to cause the Quartus II Fitter to save a
node-level netlist into a VQM file:

set_global_assignment \
-name LOGICLOCK_INCREMENTAL_COMPILE_ASSIGNMENT ON
set_global_assignment \
-name LOGICLOCK_INCREMENTAL_COMPILE_FILE <file name>

Any path specified in the file name must be relative to the project
directory. For example, specifying atom_netlists/top.vqm places
top.vqm in the atom_netlists subdirectory of your project directory.

A VQM file is saved in the directory specified at the completion of a full
compilation.

Altera Corporation 10–39
August 2004 Preliminary

Scripting Support

f For more information about saving a node-level netlist, see“Atom Netlist
Design Information” on page 10–18.

Exporting LogicLock Regions

Use the following Tcl command to export LogicLock region assignments.
This example exports all LogicLock regions in your design to a file called
export.qsf.

logiclock_export -file_name export.qsf

f For more information about exporting LogicLock Regions see “Export
the Module” on page 10–17.

Importing LogicLock Regions

Use the following Tcl commands to import LogicLock region
assignments. This example ignores any pin assignments in the imported
region.

set_instance_assignment -name LL_IMPORT_FILE \
my_region.qsf

logiclock_import -no_pins

Running the import command imports the assignment types for each
entity in the design hierarchy. The assignments are imported from the file
specified in the LL_IMPORT_FILE setting.

f For more information about importing LogicLock Regions, see “Import
the Module” on page 10–19.

Setting LogicLock Assignment Priority

Use the following Tcl code to set the priority for LogicLock region's
members. this example reverses the priorities of the LogicLock region in
your design.

set reverse [list]
foreach member [get_logiclock_member_priority] {

set reverse [insert $reverse 0 $member]
{
set_logiclock_member_priority $reverse

f For more information about Setting the LogicLock Assignment Priority,
see “Constraint Priority” on page 10–30.

10–40 Altera Corporation
Preliminary August 2004

Quartus II Handbook, Volume 2

Assigning Virtual Pins

Use the following Tcl command to turn on the virtual pin setting for a pin
called my_pin:

set_instance_assignment -name VIRTUAL_PIN ON -to my_pin

f For more information about Assigning Virtual Pins, see “Virtual Pins” on
page 10–28.

Back-Annotating LogicLock Regions

Use the following command line option to back-annotate a design called
my_project and demote assignments to LAB-level assignments.

quartus_cdb --back_annotate=lab my_project

f For more information about Tcl scripting, see the Tcl Scripting chapter in
Volume 2 of the Quartus II Handbook. For more information about
command-line scripting, see the Command-Line Scripting chapter in
Volume 2 of the Quartus II Handbook.

Conclusion The LogicLock block-based design flow shortens design cycles because it
allows design and implementation of design modules to occur
independently, and preserves performance of each design module during
system integration. You can export modules, making design reuse easier.

You can include a module in one or more projects while maintaining
performance, and reducing development costs and time-to-market.
LogicLock region assignments give you complete control over logic and
memory placement so that you can use LogicLock region assignments to
improve the performance of non-hierarchical designs.

Altera Corporation 11–1
June 2004

11. Timing Closure in
HardCopy Devices

Introduction Timing analysis is performed on an FPGA design to determine that the
design’s performance meets the required timing goals. This analysis
includes system clock frequency (fMAX), setup and hold timing for the
design’s top-level input ports, as well as clock-to-output timing for all
top-level output ports. Measuring these parameters against performance
goals ensures that the FPGA design functions as planned in the end target
system.

After the FPGA design is stabilized, fully tested in-system, and satisfies
the HardCopy® design rules, the design can be migrated to a HardCopy
device. Altera® performs the same rigorous timing analysis on the
HardCopy device during its implementation, ensuring that it meets the
same timing goals. Because the critical timing paths of the HardCopy
version of a design are different from the corresponding paths in the
FPGA version, meeting the same timing goals is particularly important.

Timing improvements in HardCopy as compared to the equivalent FPGA
devices exist for several reasons. While maintaining the same rich set of
features as the corresponding FPGA, HardCopy devices have a highly
optimized die size to make them as small as possible. Because of the
customized interconnect structure that makes this optimization possible,
the delay through each signal path is less than the original FPGA design.
Quartus® II software versions 4.0 and later determine routing and
associated buffer insertion for the design and provides the Timing
Analyzer with more accurate information on the delays than was possible
in the previous version of the Quartus II software.

The differences in the timing between HardCopy devices and FPGAs is
inconsequential as long as the HardCopy device is checked against a
specification that fully defines the timing of the design. After this timing
goal is fully defined, the HardCopy device is guaranteed to function
correctly.

This chapter describes how to meet the required timing performance of
HardCopy devices and improve it.

Timing Closure Many of today's developers are faced with the difficult task of meeting
the timing goals of systems designed with an ASIC, which can consume
many valuable months of intensive engineering effort. The slower
development process exists because, in today's silicon technology

qii52010-2.0

11–2 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

(0.18 µm and 0.13 µm), the delay associated with interconnect dominates
the delay associated with the transistors used to make the logic gates.
Consequently, ASIC performance is sensitive to the physical
placement-and-routing of the logic blocks that make up the design.

On migration, the HardCopy device is structurally identical to its FPGA
counterpart; there is no re-synthesis or library re-mapping required. Since
the interconnect lengths are much smaller in the HardCopy device than
they are in the FPGA, the place-and-route engine compiling the
HardCopy design has a considerably less difficult task than it does in an
equivalent ASIC development. Coupled with detailed timing constraints,
the place-and-route is timing driven.

Figure 11–1 illustrates the design flow for estimating performance and
optimizing the designs. You can target your designs to
HARDCOPY_FPGA_PROTOTYPE devices, and pass the design
information to the placement and timing analysis engine to estimate the
performance of HardCopy Stratix® devices. In the event that the required
performance is not met, you can modify or add placement and
LogicLock™ constraints. If the performance goals are still not met, then
change your RTL source, optimize the FPGA design, and estimate timing
iteratively.

Figure 11–1. Design Flow for Estimating Performance & Optimizing the Design

Altera Corporation 11–3
June 2004

Location Constraints

Placement Constraints

The Quartus II software version 4.0 and later supports placement
constraints and LogicLock regions for HardCopy Stratix devices.
Figure 11–2 shows an iterative process to modify the placement
constraints until the best placement for the HardCopy Stratix device is
obtained to achieve the best performance.

Figure 11–2. Placement Constraints Flow for HardCopy Stratix Devices

Location
Constraints

Location Array Block (LAB) Assignments

Location constraints for HardCopy Stratix devices are supported. To
achieve better performance, you can make LAB-level assignments after
migrating the HARDCOPY_FPGA_ PROTOTYPE project, and before
compiling the design for a HardCopy Stratix device. One important
consideration for LAB reassignments is that the entire contents of a LAB
is moved to another empty LAB. If you want to move the logic contents
of LAB "A" to LAB "B," the entire contents of LAB A is moved to an empty
LAB B. For example, the logic contents of LAB_X33_Y65 can be moved to
an empty LAB at LAB_X43_Y56.

11–4 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

LogicLock Assignments

LogicLock

Quartus II software enables a block-based design approach using
LogicLock. With LogicLock, designers can create and implement each
logic module independently, and then integrate all of the optimized
modules into the top-level design.

f For more information about the LogicLock design methodology, see the
LogicLock Design Methodology chapter in Volume 2 of the Quartus II
Handbook.

LogicLock constraints are supported when you are migrating the project
from a HARDCOPY_FPGA_PROTOTYPE project to a HardCopy Stratix
project. If the LogicLock region was specified as "Size=Fixed" and
"Location=Locked" in the HARDCOPY_FPGA_PROTOTYPE project, it is
converted to have "Size=Auto" and "Location=Floating", as shown in
“Examples of Supported LogicLock Constraints”. This modification is
necessary because the floorplan of a HardCopy Stratix device is different
from that of an equivalent Stratix device. If this modification did not
occur, LogicLock assignments would lead to no-fits due to bad
placement. Making the regions auto-size and floating maintains your
module or entity LogicLock assignments, allowing you to easily adjust
the LogicLock regions as required to improve the performance.

Examples of Supported LogicLock Constraints
LogicLock Region Definition in the HARDCOPY_FPGA_PROTOTYPE
QSF File:

set_global_assignment -name LL_HEIGHT 15 -entity risc8 -section_id test

set_global_assignment -name LL_WIDTH 15 -entity risc8 -section_id test

set_global_assignment -name LL_STATE LOCKED -entity risc8 -section_id test

set_global_assignment -name LL_AUTO_SIZE OFF -entity risc8 -section_id test

LogicLock Region Definition in the Migrated HardCopy Stratix QSF File:

set_global_assignment -name LL_HEIGHT 15 -entity risc8 -section_id test

set_global_assignment -name LL_WIDTH 15 -entity risc8 -section_id test

set_global_assignment -name LL_STATE FLOATING -entity risc8 -section_id test

set_global_assignment -name LL_AUTO_SIZE ON -entity risc8 -section_id test

Altera Corporation 11–5
June 2004

Minimizing Clock Skew

Tutorial

To learn more about the LAB and LogicLock assignments, perform the
tutorial available on www.altera.com/literature. The tutorial illustrates
the performance improvement by LAB and LogicLock assignments. To
know more about the performance improvements in general for FPGA
designs, refer to the following application notes:

Design Optimization for Altera Devices
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Timing Closure Floorplan
http://www.altera.com/literature/hb/qts/qts_qii52006.pdf

LogicLock Design Methodology
http://www.altera.com/literature/hb/qts/qts_qii52009.pdf

Minimizing
Clock Skew

The clock is an important component that affects design performance in
any digital integrated circuit. The discussion in the remainder of this
section pertains to HardCopy APEX™ 20KE, HardCopy APEX 20KC, and
HardCopy Stratix devices.

The architecture of the HardCopy HC20K device is based on the
APEX 20KE and APEX 20KC FPGA devices and the HardCopy Stratix
devices are based on the Stratix FPGA devices. The same dedicated clock
trees (CLK[3..0]) that exist in APEX 20KE and APEX 20KC devices or
(CLK[15..0]) that exist in Stratix devices also exist in the corresponding
HardCopy device. These clock trees are carefully designed and optimized
to minimize the clock skew over the entire device. The clock trees are
balanced by maintaining the same loading at the end of each point of the
clock trees, regardless of what resources (logic elements [LEs], embedded
system blocks [ESBs], and input/output elements [IOEs]) are used in any
design. The insertion delay of the HardCopy-dedicated clock trees is
marginally faster than in the corresponding APEX 20KE, APEX 20KC, or
Stratix FPGA device because of the smaller footprint of the HardCopy
silicon.

Because there is a large area overhead for these global signals that may
not be used on every design, the FAST bidirectional pins (FAST[3..0])
of the HardCopy APEX 20KE and HardCopy APEX 20KC or the
dedicated fast regional I/O pins of HardCopy Stratix do not have
dedicated pre-built clock or buffer trees in HardCopy devices. If any of
the FAST/dedicated fast regional signals are used as clocks, a clock tree is
synthesized by the place-and-route tool after the placement of the design
has occurred. The skew and insertion delay of these synthesized clock
trees are carefully controlled, ensuring that the timing requirements of the

11–6 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

design are met. You can also use the FAST signals of HardCopy APEX or
the dedicated fast regional I/O pins of HardCopy Stratix as high fan-out
reset or enable signals. For these cases, skew is usually less important
than insertion delay. To reiterate, a buffer tree is synthesized after the
design placement.

The clock or buffer trees that are synthesized for the FAST pins of
HardCopy APEX 20KE and HardCopy APEX 20KC or the dedicated fast
regional I/O pins of HardCopy Stratix are built from special cells in the
HardCopy base design. These cells do not exist in the FPGA. They are
used in the HardCopy design exclusively to meet timing and testing
goals. They are not available to make any logical changes to the design as
implemented in the FPGA. These resources are called the strip of
auxiliary gates (SOAG). There is one of these strips per MegaLAB™
structure in HardCopy devices. Each SOAG consists of a number of
primitive cells, and there are approximately 10 SOAG primitive cells per
logic array block (LAB). Several SOAG primitives can be combined to
form more complex logic, but the majority of SOAG resources are used
for buffer tree, clock tree, and delay cell generation. Figure 11–3 shows the
SOAG architectural feature.

Figure 11–3. SOAG Architectural Feature

f For detailed information on the HardCopy device architecture, including
SOAG resources, see the HardCopy APEX 20K Device Family Data Sheet
chapter in Volume 1 of the HardCopy Device Handbook.

MegaLAB Block

SOAG

ESB

LE LAB

I/O Cells

PLLs

Altera Corporation 11–7
June 2004

Checking the HardCopy Device Timing

Checking the
HardCopy
Device Timing

To ensure that the timing of the HardCopy device meets performance
goals, detailed static timing analysis must be run on the HardCopy
design database. For this timing analysis to be meaningful, all timing
constraints and timing exceptions that were applied to the design for the
FPGA implementation must also be used for the HardCopy
implementation. If no timing constraints, or only partial timing
constraints, were used for the FPGA design, a full set of constraints must
be specified for the HardCopy design by filling in the unspecified
constraints with default values. If this is not done, there is no way of
knowing if the HardCopy device meets the required timing of the end
target system. The timing constraints can be captured through the Timing
Wizard in the Altera Quartus II software. The following constraints must
be included:

■ Clock Definitions
■ Primary Input Pin Timing
■ Primary Output Pin Timing
■ Combinatorial Timing
■ Timing Exceptions

Clock Definitions

These definitions are used to describe the parameters of all different clock
domains in a design. Clock parameters that must be defined are
frequency, time at which the clock edge rises, time at which the clock edge
falls, clock uncertainty (or skew), and clock name. Figures 11–4 and 11–5
show these clock attributes.

Figure 11–4. Clock Attributes

Period = 12.0 ns

0.0 3.0 8.0 15.0

Rising Edge
of Clock (3.0 ns)

Falling Edge
of Clock (3.0 ns)

11–8 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Figure 11–5. Clock Skew

Primary Input Pin Timing

This constraint must be specified for every primary input pin in the
design (and for the input path of every bidirectional pin). The input pin
timing can be captured in two ways. The first is to describe what
maximum on-chip delay is acceptable (i.e., the setup time of a primary
input to any register in the design relative to a specific clock). Figure 11–6
depicts a generic circuit with an on-chip setup-time constraint, which
may be different for each clock domain.

Figure 11–6. On-Chip Setup-Time Constraint

The minimum on-chip delay from any primary input pin must be
specified to describe input hold-time requirements. Figure 11–7 depicts a
generic circuit with an on-chip hold-time constraint.

Clock Skew

tsu for a Primary Input Pin

Data
Path
Delay

Clock
Delay

data

clk

tsu

Altera Corporation 11–9
June 2004

Checking the HardCopy Device Timing

Figure 11–7. On-Chip Hold-Time Constraint

The second way to capture the input pin timing is to describe the external
timing environment, which is the maximum and minimum arrival times
of the external signals that drive the primary input pins of the HardCopy
device or FPGA. Figure 11–8 shows the external timing constraint that
drives the primary input pin. This external input delay time can be used
by the static timing analysis tool to check that there is enough time for the
data to propagate to the internal nodes of the device. If there is not
enough time, then a timing violation occurs.

Figure 11–8. External Timing Constraint Driving a Primary Input Pin

Primary Output Pin Timing

This constraint must be specified for every primary output pin in the
design (and for the output path of every bidirectional pin). The output pin
timing is captured in two ways. The first is to describe what maximum
(and minimum) on-chip clock-to-output (tCO) delay is acceptable (i.e., the
time it takes from the active edge of the clock to the data arriving at the
primary output pin). Figure 11–9 depicts a generic circuit with an on-chip
tCO time constraint. Also, there can be a minimum tCO requirement.

tH for a Primary Input

Data
Path
Delay

Clock
Delay

data

clk

tH

dff

D Q

dff

D Q

External Input Delay

External Device

Primary Input to
PLD/HardCopy

Device

Data Path
Delay

Data Path
Delay

11–10 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Figure 11–9. On-Chip Clock-to-Output (TCO) Time Constraint

The second way to capture output pin timing is to describe the external
timing environment, which is the maximum and minimum delay times of
external signals that are driven by the primary output pins of the
HardCopy device or FPGA. Figure 11–10 shows the external timing
constraint driven by the primary output pin. The static timing analysis
tool uses this information to check that the on-chip timing of the output
signals is within the desired specification.

Figure 11–10. External Timing Constraint for a Primary Output Pin

Combinatorial Timing

Combinatorial timing occurs when there is a path from a primary input
pin to a primary output pin. This type of circuit does not contain any
registers. Therefore, it does not require a clock for constraint specification.
The maximum and minimum delay from the primary input pin to the
primary output pin is all that is needed. Figure 11–11 shows a generic
circuit where a combinatorial timing arc constraint must be placed.

tCO for a Primary Output

Clock
Delay

Data Path
Delay

output

clk

tCO

dff

D Q

dff

D Q

External Output Delay

External Device

Data Path
Delay

Primary Output from
FPGA/HardCopy

Device

Data Path
Delay

Altera Corporation 11–11
June 2004

Correcting Timing Violations

Figure 11–11. Combinatorial Timing Constraint

Timing Exceptions

Some circuit structures warrant special consideration. For example, when
a design has more than one clock domain and the clock domains are not
related, all timing paths between the two clock domains can be ignored.
All timing paths using the static timing analysis tool can be ignored by
specifying false paths for all signals that go from one clock domain to the
other clock domain(s). Additionally, there are circuits that are not
intended to operate in a single-clock cycle. These circuits require that you
specify multi-cycle clock exceptions.

After the information is captured, it can be used by Altera to directly
check all timing of the HardCopy device before tape out occurs. If any
timing violations are found in the HardCopy device due to
over-aggressive timing constraints, they must either be fixed by Altera, or
waived by the customer.

f For more information on timing analysis, see the Quartus II Timing
Analysis chapter and the Synopsys PrimeTime Support chapter in Volume 3
of the Quartus II Handbook.

Correcting
Timing
Violations

After the customized metal interconnect is generated for the HardCopy
device, Altera checks the timing of the design with an industry standard
static timing analysis tool, PrimeTime. Timing violations are reported by
this tool, and they are subsequently corrected.

Hold-Time Violations

Because the interconnect in a HardCopy device is customized for a
particular application, it is possible that hold-time (tH) violations exist in
the HardCopy device after place-and-route occurs. A hold violation exists
if the sum of the delay in the clock path between two registers plus the
micro hold time of the destination register is greater than the delay of the
data path from the source register to the destination register. The
following equation describes this relationship.

tH Slack = Data Delay − Clock Delay − Micro tH

input Data Path
Delay

Combinatorial Delay Arc

output

11–12 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

If a negative slack value exists, there is a hold-time violation. Any
hold-time violation present in the HardCopy design database after the
interconnect data is generated is removed by inserting the appropriate
delay in the data path. The inserted delay is large enough to guarantee no
hold violations under fast, low-temperature, high-voltage conditions.

Table 11–1 shows an example report of a Synopsys PrimeTime static
timing analysis of a typical HardCopy design. This report shows that the
circuit has a hold-time violation and a negative slack value. Table 11–2
shows the timing report for the same path after the hold violation has
been fixed. The instance and cell names shown in these reports are
generated as part of the HardCopy implementation process, and are
based on the physical location of those elements in the device.

Table 11–1. Static Timing Analysis Before Hold-Time Violation Fix (Part 1 of 2)

Startpoint:GR23_GC0_L19_LE1/um6
(falling edge-triggered flip-flop clocked by CLK0')
Endpoint: GR23_GC0_L20_LE8/um6
(falling edge-triggered flip-flop clocked by CLK0')
Path Group: CLK0
Path Type:min

Point Incr Path Reference to
Figure 11–12

clock CLK0' (fall edge) 0.00 0.00

clock network delay (propagated) 2.15 2.15 (1)

GR23_GC0_L19_LE1/um6/clk (c1110) 0.00 2.15 f (2)

GR23_GC0_L19_LE1/um6/regout (c1110) 0.36 * 2.52 r (2)

GR23_GC0_L19_LE1/REGOUT (c1000_2d7a8) 0.00 2.52 r (2)

GR23_GC0_L20_LE8/LUTD (c1000_56502) 0.00 2.52 r (3)

GR23_GC0_L20_LE8/um1/datad (indsim) 0.01 * 2.52 r (3)

GR23_GC0_L20_LE8/um1/ndsim (indsim) 0.01 * 2.53 f (3)

GR23_GC0_L20_LE8/um5/ndsim (mxcascout) 0.00 * 2.53 f (3)

GR23_GC0_L20_LE8/um5/cascout (mxcascout) 0.06 * 2.59 f (3)

GR23_GC0_L20_LE8/um6/dcout (c1110) 0.00 * 2.59 f (3)

data arrival time 2.59

clock CLK0' (fall edge) 0.00 0.00

clock network delay (propagated) 2.17 2.17 (4)

clock uncertainty 0.25 2.42 (5)

Altera Corporation 11–13
June 2004

Correcting Timing Violations

Figure 11–12 shows the circuit described by the Table 11–1 static timing
analysis report.

Figure 11–12. Circuit with a Hold-Time Violation

Placing the values from the static timing analysis report into the
hold-time slack equation results in the following:

tH Slack = Data Delay − Clock Delay − Micro tH

tH Slack = (2.15+ 0.36 + 0.08) − (2.17 + 0.25) − 0.37

tH Slack = -0.20 ns

GR23_GC0_L20_LE8/um6/clk (c1110) 2.42 f (6)

library hold time 0.37 * 2.79

data required time 2.79

data required time 2.79

data arrival time -2.59

slack (VIOLATED) -0.20

Table 11–1. Static Timing Analysis Before Hold-Time Violation Fix (Part 2 of 2)

Startpoint:GR23_GC0_L19_LE1/um6
(falling edge-triggered flip-flop clocked by CLK0')
Endpoint: GR23_GC0_L20_LE8/um6
(falling edge-triggered flip-flop clocked by CLK0')
Path Group: CLK0
Path Type:min

Point Incr Path Reference to
Figure 11–12

(2)

Clock
Delay

Clock
Delay

Data Path
Delay

clk

tCO

(3)

0.36

tH

0.37

2.15

0.08

(6)

(1)

(4) (5)2.17 (+0.25)

11–14 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

This result shows that there is negative slack in this path, meaning that
there is a hold-time violation of 0.20 ns.

After fixing the hold violation, the timing report for the same path is
regenerated (see Table 11–2). The netlist changes are in bold italic type.

Table 11–2. Static Timing Analysis After Hold-Time Violation Fix (Part 1 of 2)

Startpoint: GR23_GC0_L19_LE1/um6
(falling edge-triggered flip-flop clocked by CLK0')
Endpoint: GR23_GC0_L20_LE8/um6
(falling edge-triggered flip-flop clocked by CLK0')
Path Group: CLK0
Path Type: min
Static Timing Analysis After Hold-Time Violation Fix

Point Incr Path Reference to
Figure 11–13

clock CLK0' (fall edge) 0.00 0.00 (1)

clock network delay (propagated) 2.15 2.15 (1)

GR23_GC0_L19_LE1/um6/clk (c1110) 0.00 2.15 f (2)

GR23_GC0_L19_LE1/um6/regout (c1110) 0.36 * 2.52 r (2)

GR23_GC0_L19_LE1/REGOUT (c1000_2d7a8) 0.00 2.52 r (2)

thc_916/A (de105) 0.01 * 2.52 r (3)

thc_916/Z (de105) 0.25 * 2.78 r (3)

GR23_GC0_L20_LE8/LUTD (c1000_56502) 0.00 2.78 r (3)

GR23_GC0_L20_LE8/um1/datad (indsim) 0.01 * 2.78 r (3)

GR23_GC0_L20_LE8/um1/ndsim (indsim) 0.01 * 2.79 f (3)

GR23_GC0_L20_LE8/um5/ndsim (mxcascout) 0.00 * 2.79 f (3)

GR23_GC0_L20_LE8/um5/cascout (mxcascout) 0.06 * 2.85 f (3)

GR23_GC0_L20_LE8/um6/dcout (c1110) 0.00 * 2.85 f (3)

data arrival time 2.85

clock CLK0' (fall edge) 0.00 0.00

clock network delay (propagated) 2.17 2.17 (4)

clock uncertainty 0.25 2.42 (5)

GR23_GC0_L20_LE8/um6/clk (c1110) 2.42 f (6)

library hold time 0.37 * 2.79

data required time 2.79

Altera Corporation 11–15
June 2004

Correcting Timing Violations

Figure 11–13 shows the circuit described by the Table 11–2 static timing
analysis report.

Figure 11–13. Circuit Including a Fixed Hold-Time Violation

Placing the values from the static timing analysis report into the
hold-time slack equation results in the following.

tH Slack = Data Delay − Clock Delay − Micro tH

tH Slack = (2.15+ 0.36 + 0.26 + 0.08) − (2.17 + 0.25) - 0.37

tH Slack = +0.06 ns

In this timing report, the slack of this path is reported as 0.06 ns.
Therefore, this path does not have a hold-time violation. The path was
fixed by the insertion of a delay cell (del05) into the data path, which
starts at the REGOUT pin of cell GR23_GC0_L19_LE1 and finishes at the
LUTD input of cell GR23_GC0_L20_LE8. The instance name of the delay
cell in this case is thc_916.

1 A clock_uncertainty of 0.25 ns is specified in this timing report,
and is used to add extra margin during the hold-time
calculation, making the design more robust. This feature is a
part of the static timing analysis tool, not of the HardCopy
design.

data required time 2.79

data arrival time -2.85

slack (MET) +0.06

Table 11–2. Static Timing Analysis After Hold-Time Violation Fix (Part 2 of 2)

(2)

Clock
Delay

Data Path
Delay

clk

tCO

(4)(3)

0.36

tH

0.37

2.15

0.080.26

(7)

(1)
I ODelay

(5) (6)2.17 (+0.25)

Clock
Delay

11–16 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

The delay cell is created out of the SOAG resources that exist in the
HardCopy base design.

Setup-Time Violations

A setup violation exists if the sum of the delay in the data path between
two registers plus the micro setup time (tSU) of the destination register is
greater than the sum of the clock period and the clock delay at the
destination register. The following equation describes this relationship:

tSU Slack = Clock Period + Clock Delay − (Data Delay + Micro tSU)

If there is a negative slack value, it means that there is a setup-time
violation. There are several potential mechanisms that can cause a
setup-time violation. The first is when the synthesis tool is unable to meet
the required timing goals. However, a HardCopy design does not rely on
any resynthesis to a new cell library; the synthesis results that were
generated as part of the original FPGA design are maintained, meaning
that the HardCopy implementation of a design uses exactly the same
structural netlist as its FPGA counterpart. For example, if you used a
particular synthesis option to ensure that a particular path only contained
a certain number of logic levels, the HardCopy design will contain exactly
the same number of logic levels for that path. Consequently, if the FPGA
was free of setup-time violations, no setup-time violations occur in the
HardCopy device as a result of the netlist structure.

The second mechanism that can cause setup-time violations is differing
placement of the resources in the netlist for the HardCopy device
compared to the original FPGA. This scenario is extremely unlikely as the
place-and-route tool used during the HardCopy implementation
performs timing-driven placement. In extreme cases, some manual
placement modification might be necessary. The placement is performed
at the LAB and ESB level, meaning that the placement of logic cells inside
each LAB is fixed, and is identical to the placement of the FPGA. IOEs
have fixed placement to maintain the pin and package compatibility of
the original FPGA.

The third, and most likely, mechanism for setup-time violations occurring
in the HardCopy device is a signal with a high fan-out. In the FPGA, high
fan-out signals are buffered by large drivers that are an integral part of the
programmable interconnect structure. Consequently, a signal that was
fast in the FPGA can be initially slower in the HardCopy version, which
is before any buffering is inserted into the HardCopy design to increase
the speed of the slow signal. The place-and-route tool detects these

Altera Corporation 11–17
June 2004

Correcting Timing Violations

signals and automatically creates buffer trees using SOAG resources,
ensuring that the heavily loaded, high fan-out signal is fast enough to
meet performance requirements.

Table 11–3 shows the timing report for a path that contains a high fan-out
signal before the place-and-route process. Table 11–4 shows the timing
report for a path that contains a high fan-out signal after the
place-and-route process. Before the place-and-route process, there is a
large delay on the high fan-out net that is driven by the pin
GR12_GC0_L2_LE4/REGOUT. This delay is due to the large capacitive
load that the pin has to drive. For more information on this timing report,
see Figure 11–14.

Table 11–3. Timing Report Before the Place-&-Route Process (Part 1 of 2)

Startpoint: GR12_GC0_L2_LE4/um6
(falling edge-triggered flip-flop clocked by clkx')
Endpoint: GR4_GC0_L5_LE2/um6
(falling edge-triggered flip-flop clocked by clkx')
Path Group: clkx
Path Type: max

Point Incr Path Reference to
Figure 11–14

clock clkx' (fall edge) 0.00 0.00 (1)

clock network delay (propagated) 2.18 2.18 (1)

GR12_GC0_L2_LE4/um6/clk (c1110) 0.00 2.18 f (2)

GR12_GC0_L2_LE4/um6/regout (c1110) (2)

GR12_GC0_L2_LE4/REGOUT (c1000_7f802) <- (2)

GR4_GC0_L5_LE0/LUTC (c1000_0029a) (3)

GR4_GC0_L5_LE0/um4/ltb (lt53b) 2.36 9.18 f (3)

GR4_GC0_L5_LE0/um5/cascout (mxcascout) 0.07 9.24 f (3)

GR4_GC0_L5_LE0/um2/COMBOUT (icombout) 0.09 9.34 r (3)

GR4_GC0_L5_LE0/COMBOUT (c1000_0029a) 0.00 9.34 r (3)

GR4_GC0_L5_LE2/LUTC (c1000_0381a) 0.00 9.34 r (3)

GR4_GC0_L5_LE2/um4/ltb (lt03b) 0.40 9.73 r (3)

GR4_GC0_L5_LE2/um5/cascout (mxcascout) 0.05 9.78 r (3)

GR4_GC0_L5_LE2/um6/dcout (c1110) 0.00 9.78 r (3)

data arrival time 9.79 (3)

clock clkx’ (fall edge) 7.41 7.41

11–18 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Figure 11–14 shows the circuit described by the Table 11–3 static timing
analysis report.

Figure 11–14. Circuit that has a Setup-Time Violation

1 The timing numbers in this report are based on pre-layout
estimated delays.

Placing the values from the static timing analysis report into the
setup-time slack equation results in the following.

tSU Slack = Clock Period + Clock Delay − (Data Delay + Micro tSU)

tSU Slack = 7.41 + (2.18 - 0.25) - (2.18 + 4.64 + 2.97 + 0.18)

tSU Slack = -0.63 ns

This result shows that there is negative slack for this path, meaning that
there is a setup-time violation of 0.63 ns.

clock network delay (propagated) 2.18 9.59 (4)

clock uncertainty -0.25 9.34 (5)

GR4_GC0_L5_LE2/um6/clk (c1110) 9.34 f

Point Incr Path Reference to
Figure 11–14

library setup time -0.18 9.16 (6)

data required time 9.16

data required time 9.16

data arrival time -9.79

slack (VIOLATED) -0.63

Table 11–3. Timing Report Before the Place-&-Route Process (Part 2 of 2)

(2)

Clock
Delay

Clock
Delay

Data Path
Delay

clk

tCO

(3)

4.64

tSU

0.18

2.18

2.97

(6)

(1)

(4) (5)2.18 (-0.25)

Altera Corporation 11–19
June 2004

Correcting Timing Violations

After place-and-route, a buffer tree is constructed on the high fan-out net
and the setup-time violation is fixed. The timing report for the same path
is shown in Table 11–4. The changes to the netlist are in bold italic type.
For more information on this timing report, see Figure 11–15.

Table 11–4. Timing Report After the Place-and-Route Process (Part 1 of 2)

Startpoint: GR12_GC0_L2_LE4/um6
(falling edge-triggered flip-flop clocked by clkx')
Endpoint: GR4_GC0_L5_LE2/um6
(falling edge-triggered flip-flop clocked by clkx')
Path Group: clkx
Path Type: max

Point Incr Path Reference to
Figure 11–15

clock clkx' (fall edge) 0.00 0.00

clock network delay (propagated) 2.73 2.73 (1)

GR12_GC0_L2_LE4/um6/clk (c1110) 0.00 2.73 f (2)

GR12_GC0_L2_LE4/um6/regout (c1110) 0.69 * 3.42 r (2)

GR12_GC0_L2_LE4/REGOUT (c1000_7f802) <- 0.00 3.42 r (2)

N1188_iv06_1_0/Z (iv06) 0.06 * 3.49 f (3)

N1188_iv06_2_0/Z (iv06) 0.19 * 3.68 r (3)

N1188_iv06_3_0/Z (iv06) 0.12 * 3.80 f (3)

N1188_iv06_4_0/Z (iv06) 0.10 * 3.90 r (3)

N1188_iv06_5_0/Z (iv06) 0.08 * 3.97 f (3)

N1188_iv06_6_2/Z (iv06) 1.16 * 5.13 r (3)

GR4_GC0_L5_LE0/LUTC (c1000_0029a) 0.00 5.13 r (4)

GR4_GC0_L5_LE0/um4/ltb (lt53b) 1.55 * 6.68 f (4)

GR4_GC0_L5_LE0/um5/cascout (mxcascout) 0.06 * 6.74 f (4)

GR4_GC0_L5_LE0/um2/COMBOUT (icombout) 0.09 * 6.84 r (4)

GR4_GC0_L5_LE0/COMBOUT (c1000_0029a) 0.00 6.84 r (4)

GR4_GC0_L5_LE2/LUTC (c1000_0381a) 0.00 6.84 r (4)

GR4_GC0_L5_LE2/um4/ltb (lt03b) 0.40 * 7.24 r (4)

GR4_GC0_L5_LE2/um5/cascout (mxcascout) 0.05 * 7.28 r (4)

GR4_GC0_L5_LE2/um6/dcout (c1110) 0.00 * 7.28 r (4)

data arrival time 7.28 (4)

Point Incr Path Reference to
Figure 11–15

11–20 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

The GR12_GC0_L2_LE4/REGOUT pin now has the loading on it reduced
by the introduction of several levels of buffering (in this case, six levels of
inverters). The inverters have instance names similar to
N1188_iv06_1_0, and are of type iv06, as shown in the static timing
analysis report. As a result, the original setup-time violation of -0.63 ns
turned into a slack of +2.42 ns, meaning the setup-time violation is fixed.
The circuit that the static timing analysis report shows is illustrated in
Figure 11–15. The buffer tree (buffer) is shown as a single cell.

Figure 11–15. Circuit Post Place-&-Route

Placing the values from the static timing analysis report into the
setup-time slack equation results in the following:

tSU Slack = Clock Period + Clock Delay − (Data Delay + Micro tSU)

tSU Slack = 7.41 + (2.74 - 0.25) − (2.73 + 0.69 + 1.71 + 2.15 + 0.20)

tSU Slack = +2.42 ns

clock clkx' (fall edge) 7.41 7.41

clock network delay (propagated) 2.74 10.15 (5)

clock uncertainty -0.25 9.90 (6)

GR4_GC0_L5_LE2/um6/clk (c1110) 9.90 f

library setup time -0.20 * 9.70 (7)

data required time 9.70

data required time 9.70

data arrival time -7.28

slack (MET) 2.42

Table 11–4. Timing Report After the Place-and-Route Process (Part 2 of 2)

(2)

(5) (6)

Clock
Delay

Clock
Delay

Data Path
Delay

clk

tCO

(4)(3)

0.69

tSU

0.20

2.73

2.151.71

2.74 (-0.25)

(7)

(1)
Buffer

Altera Corporation 11–21
June 2004

Timing ECOs

This result shows that there is positive slack for this path, meaning that
there is now no setup-time violation.

Timing ECOs In an ASIC, small incremental changes to a design database are termed
engineering change orders (ECOs). In the HardCopy design flow, ECOs
are performed after the initial post-layout timing data is available.

Static timing analysis is run on the design and a list of paths with timing
violations are generated. The netlist is then automatically updated with
changes that correct these timing violations (i.e., the addition of delay
cells to fix hold-time violations). After the netlist update, the
place-and-route database is updated to reflect the netlist changes. The
impact on this database is minimized by maintaining all of the
pre-existing placement-and-routing, and only changing the routing
where new cells are inserted.

The parasitic (undesirable, but unavoidable) resistances and capacitances
of the customized interconnect are extracted and then used in conjunction
with the static timing analysis tool to re-check the timing of the design.
Only a single iteration of this process is typically required to fix all timing
violations. The entire ECO stage takes less than a day to complete.
Figure 11–16 shows this flow in more detail, along with the typical
duration of each stage.

11–22 Altera Corporation
June 2004

Quartus II Handbook, Volume 2

Figure 11–16. ECO Flow Diagram

Conclusion When migrating a design from an FPGA implementation to a HardCopy
implementation, it is critical to maintain performance even though all
timing within the design does not remain exactly the same. These timing
differences are inevitable. However, they are rendered inconsequential to
the device’s behavior in the end-system environment if the HardCopy
device meets the system timing constraints. As a standard and automated
part of the HardCopy design conversion process, this rendering is
achieved through the exhaustive timing analysis that the design
undergoes in conjunction with sophisticated timing-driven
place-and-route. Static timing analysis can reveal timing violations that
are then fixed automatically as part of the HardCopy design process.

Altera Corporation 12–1
February 2004 Preliminary

12. Synplicity Amplify
Physical Synthesis Support

Introduction Synplicity has developed the Amplify Physical Optimizer physical
synthesis software to help designers meet performance and time-to-
market goals. You can use this software to create location assignments
and optimize critical paths outside the Quartus® II software design
environment. The Amplify Physical Optimizer design software, which
runs on the Synplify Pro synthesis engine, creates a Tcl script with hard
location assignments and LogicLock™ regions to control logic placement
in the Quartus II software. Depending on the design, the Amplify
Physical Optimizer software can improve Altera® device performance
over Synplify Pro-compiled designs by reducing the number of logic
levels and the interconnect delays in critical paths. Moreover, the Amplify
Physical Optimizer software allows designers to compile multiple
implementations in parallel to reduce optimization time.

f For more information on the Synplify Pro software, see the Synplicity
Synplify & SynplifyPro Support chapter in Volume 1 of the Quartus II
Handbook.

This chapter explains the physical synthesis concepts, including an
overview of the Amplify Physical Optimizer software and Quartus II
flow.

Software
Requirements

The examples in this document were generated using the following
software versions:

■ Quartus II, version 4.0
■ Amplify Physical Optimizer, version 3.2

Amplify Physical
Synthesis
Concepts

The Amplify Physical Optimizer physical synthesis tool uses information
about the interconnect architectures of Altera devices to reduce
interconnect and logic delays in the critical paths. Timing-driven
synthesis tools cannot accurately predict how place-and-route tools
function; therefore, determining the real critical path with the synthesis
tool is a difficult task.

qii52011-1.0

12–2 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

Synthesis tools create technology-level netlist files that work with
floorplans using place-and-route tools. Synthesis tools also define netlist
names that are used in place-and-route, which means hard location
assignments may not apply in the next revision of the resynthesized
netlist as nodes names might have been renamed or removed.

Physical synthesis allows you to create floorplans at the register transfer
level (RTL) of a design, giving you the ability to perform logic tunneling
and replication. Physical synthesis also gives you the flexibility to make
changes at the RTL level, allowing these changes to reflect in previously
planned paths.

Physical synthesis uses knowledge of the FPGA device architecture to
place paths into customized regions. This process will minimize
interconnect delays as interconnect and placement information
influences the synthesis process of the design.

When the Amplify Physical Optimizer software synthesizes a design, it
creates a .vqm atom-netlist and Tcl script files, which are read by the
Quartus II software. You can create a Quartus II project with the VQM
netlist as the top-level module and source the Tcl script generated by the
Amplify Physical Optimizer software. The Tcl script sets the design's
device, timing constraints (Timing Driven Compilation [TDC] value,
multicycle paths, and false paths), and any other constraints specified by
the Amplify Physical Optimizer software. After you source the Tcl script,
you can compile the design in the Quartus II software.

f See “Forward Annotating Amplify Physical Optimizer Constraints into
the Quartus II Software” on page 12–12 for more information on setting
up a Quartus II project with Amplify Physical Optimizer Tcl script files.

After the Quartus II software compiles the design, the software performs
a timing analysis on the design. The timing analysis reports all timing-
related information for the design. If the design does not meet the timing
requirements, you can use the timing analysis numbers as a reference
when running the next iteration of physical synthesis through the
Amplify Physical Optimizer software. This same timing analysis
information is also reported in a file called <project name>.tan.rpt in the
design directory.

Amplify-to-
Quartus II Flow

If timing requirements are not met with the Amplify Physical Optimizer
flow, you should first place and route the design in the Quartus II
software without physical constraints. After compilation, you can
determine which critical paths should be optimized in the Amplify
Physical Optimizer tool in the next iteration. Figure 12–1 shows the
Amplify Physical Optimizer design flow.

Altera Corporation 12–3
February 2004 Preliminary

Amplify-to-Quartus II Flow

Figure 12–1. Software Design Flow

Initial Pass: No Physical Constraints

The initial iteration involves synthesizing the design in the Amplify
Physical Optimizer software without physical constraints.

Before beginning the physical synthesis flow, run an initial pass in the
Amplify Physical Optimizer without physical constraints. At the
completion of every Quartus II compilation, the Quartus II Timing
Analyzer performs a comprehensive static timing analysis on your design
and reports your design’s performance and any timing violations. If the
design does not meet performance requirements after the first pass,
additional passes can be made in the Amplify software.

VHDL

Amplify
Software

Physical
Optimization

Verilog HDL

Quartus II
Software

Timing
Requirements

Satisfied?

Configure
Device

Yes

No

12–4 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

Create New Implementations

To set the Amplify Physical Optimizer software options, perform the
following steps:

1. Compile the design with the Resource Sharing and FSM Compiler
options selected and the Frequency setting specified in MHz. For
optimal synthesis, the Amplify software includes the retiming,
pipelining, and FSM Explorer options. For designs with multiple
clocks, set the frequency of individual clocks with Synthesis
Constraints Optimization Environment (SCOPE).

2. Select New Implementation. The Options for Implementation
dialog box appears.

3. Specify the part, package, and speed grade of the targeted device in
the Device tab.

4. Turn on the Map Logic to Atoms option in the Device Mapping
Options dialog box.

5. Turn off the Disable I/O Insertion and Perform Cliquing options.

6. Specify the name and directory in the Implementation Results tab.
The result format should be VQM, and you should select Optional
Output Files as the Write Vendor Constraint File option so that the
software can generate the Tcl script containing the project
constraints.

7. Specify the number of critical paths and the number of start and end
points to report in the Timing Report tab. Figure 12–2 shows the
main Amplify Physical Optimizer project window.

These steps create a directory where the results of this pass are recorded.
Ensure that the Amplify Physical Optimizer software implementation
options are set as described in the initial pass.

Altera Corporation 12–5
February 2004 Preliminary

Using the Amplify Physical Optimizer Floorplans

Figure 12–2. Amplify Physical Optimizer Project Window

Iterative Passes: Optimizing the Critical Paths

In the iterative passes, you optimize the design by placing logic in the
device floorplan within the Amplify software. Amplify's floorplan is a
high-level view of the device architecture. The floorplan view is
dependent upon the target device family. When the Amplify Physical
Optimizer re-optimizes the current critical path, additional critical paths
may be created. Continue to add new constraints to the existing floorplan
until it meets the performance requirements. The design may need
several iterations to meet these performance requirements. Since
optimizing critical paths involves trying different implementations, the
creation of various Amplify project implementations will help in
organizing the placement of logic in the floorplan.

Using the
Amplify Physical
Optimizer
Floorplans

When designs do not meet performance requirements with the initial
pass through the Amplify Physical Optimizer software, you can create
location assignments to reduce interconnect and logic delays to improve
your design's performance.

You must determine which paths to constrain based on the critical paths
from the previous implementation. When Quartus II projects are
launched with the Amplify Tcl script, the Quartus II software generates a
<project name>.tan. rpt file that lists the critical paths for the design. You

12–6 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

can then create custom structure regions for critical paths. After critical
paths are implemented in a floorplan with the Amplify Physical
Optimizer software, you must resynthesize the design. The software will
then attempt to optimize the critical paths and reduce the number of logic
levels. After the Amplify Physical Optimizer software resynthesizes the
design, the Quartus II software must compile the new implementation. If
the design does not meet timing requirements, perform another physical
synthesis iteration.

Use the following steps to create a floorplan in the Amplify Physical
Optimizer software:

1. Click the New Physical Constraint File icon at the top of the
Amplify Physical Optimizer window.

2. Click Yes on the Estimation Needed dialog box; the floorplan
window will appear (see Figure 12–3).

Figure 12–3. Stratix 1S20 Floorplan in the Amplify Physical Optimizer Software

Floorplan View

RTL View

Altera Corporation 12–7
February 2004 Preliminary

Using the Amplify Physical Optimizer Floorplans

The floorplan view is located at the top of the screen and the RTL view is
at the bottom of the screen.

You can specify modules or individual paths in the Amplify Physical
Optimizer software. Using modules can quickly resolve timing problems.

Use the following steps in the software to create a floorplan module:

1. Create a region in the Amplify Physical Optimizer device floorplan
window and select the module in the RTL view of the design.

2. Drag the module to the new region. The software will then report
the utilization of the region.

3. Resynthesize the design in the software to reoptimize the critical
path after the modules have location constraints.

4. Write out the placement constraints into the VQM netlist and the Tcl
script.

Repeat the above procedure to create as many regions as required.

Multiplexers

To create a floorplan for critical paths with one or more multiplexers,
create multiple regions and assign the multiplexer to one region and the
logic to another. Figure 12–4 shows placing critical paths with
multiplexers.

Figure 12–4. Placing Critical Paths with Multiplexers

If the critical path contains a multiplexer feeding a register, create a region
and place the multiplexer along with the entire critical path in the region.
See Figure 12–5.

Logic

Region 2

Region 1

Region 3

Device Column

Place multiplexer in
Region 2 or Region 3.

Place logic portion
in Region 1.

FIFO, RAM,
or Black Box

12–8 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

Figure 12–5. Critical Paths with Multiplexers Feeding Registers

If the critical path is too large for the region, divide the critical path and
ensure that the multiplexer and register are in the same region.
Figure 12–6 shows large critical paths with multiplexers feeding registers.

Figure 12–6. Large Critical Paths with Multiplexers Feeding Registers

Independent Paths

Designs may have two or more independent critical paths. To create an
independent path in the Amplify Physical Optimizer software, follow the
steps below:

1. Create a region and assign the first critical path to that region.

2. Create another region, leaving one MegaLAB structure between the
first and second regions.

Logic

Critical Path

Include this multiplexer in the same
region as the critical path to
extract the enable flip flop.

Logic

Critical Path Too
Large for One LAB

Include this multiplexer in the same
region as the register to

extract the enable flip flop.

Altera Corporation 12–9
February 2004 Preliminary

Using the Amplify Physical Optimizer Floorplans

3. Assign the second critical path to the second region.

Feedback Paths

If critical paths have the same start and end points, follow the steps below
in the Amplify Physical Optimizer software (see Figure 12–7):

1. Select the register and instance not directly connected to the register.

2. Select Filter Schematic twice (right-click menu).

3. Highlight the line leading out of the register and either press P or
right-click the line. Select Expand Paths. Assign this logic to a
region.

Figure 12–7. Critical Paths with the Same Starting or Ending Points

Starting and Ending Points

Figure 12–8 shows a critical path that has multiple starting and ending
points. Use Find to display all the starting and ending points in the RTL
view in Amplify. Expand the paths between those points. If there is
unrelated logic between the multiple starting points and ending points,
assign the starting points and ending points to the same region. Similarly,
if there is unrelated logic between starting points and multiple ending
points, assign the starting points and ending points to the same region.

C1 C2 C3 C4

If the critical path does not include I/O pins,
create region in columns C2 or C3.

12–10 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

Figure 12–8. Critical Paths with Multiple Starting or Ending Points

If the two critical paths share a register at the starting or ending point,
assign one critical path to one region, and assign the other critical path to
an adjacent region. Figure 12–9 shows two critical paths that share a
register.

Figure 12–9. Two Critical Paths Sharing a Register

If the fanout is on the shared region, replicate the register and assign both
registers to two regions (see Figure 12–10). This is done by dragging the
same register to the required regions. Entities and nodes are also
replicated by performing the same procedure.

Combinational
Logic

Combinational
Logic

Combinational
Logic

A B

Combinational
Logic

Combinational
Logic

Combinational
Logic

Logic 1 Register
2

Register
1

Region 1

Critical Path 1 End Point

Region 2

Logic 2
Register

3

Critical Path 2 Start Point

Region 1
Critical
Path 1

Region 2
Critical
Path 2

Altera Corporation 12–11
February 2004 Preliminary

Using the Amplify Physical Optimizer Floorplans

Figure 12–10. Fanout on a Shared Region

Utilization

Designs with device utilizations of 90% or higher may have difficulties
during fitting in the Quartus II software. If the device has several finite
state machines, you should implement the state machines with sequential
encoding, as opposed to one-hot encoding.

To check area utilization, check the Amplify Physical Optimizer log file
and .srr file for region utilization, after the mapping stage is complete.
You can also update the utilization estimates by using the estimate region
feature by selecting Estimate Area (Run menu).

Detailed Floorplans

If the critical path does not meet timing requirements after physical
optimization, you can create new regions to achieve timing closure. It is
recommended that regions do not overlap. Regions should either be
entirely contained in another region or remain entirely outside of it. Select
the logic requiring optimization from the existing region. Deselect the
logic and assign it to the new region. Run the Amplify Physical Optimizer
software on the design with the modified physical constraints. Then place
and route the design.

Logic
reg_2reg_1

Critical Path 1 End Point

Logic

Logic

Logic

reg_3

Critical Path 2 Start Point

Region 1
Critical
Path 1

Region 2
Critical
Path 2

Logic reg_2
reg_1

Critical Path 1 End Point

Logic

Logic

Logic

reg_3

Critical Path 2 Start Point (reg_2 replicate)

reg_2 Replicate

12–12 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

Forward Annotating Amplify Physical Optimizer Constraints into
the Quartus II Software

The Amplify Physical Optimizer software simplifies the forward
annotating of both timing and location constraints into the Quartus II
software through the generation of three Tcl scripts. At the completion of
a physical synthesis run, in the Amplify Physical Optimizer software, the
following Tcl scripts are generated:

■ <project name>_cons.tcl
■ <project name>.tcl
■ <project name>_rm.tcl

Table 12–1 provides a description of each script's purpose.

To forward annotate Amplify Physical Optimizer's constraints into the
Quartus II software you must use quartus_cmd. The quartus_cmd
command must be used as Amplify Physical Optimizer's Tcl scripts are
not compatible with quartus_sh. The following command will execute
the <project name>_cons, which will create a Quartus II project with all
Amplify Physical Optimizer constraints forward annotated, and will
perform a compilation.

<commnd prompt>quartus_cmd my_project_cons.tcl r

1 You must execute the <project name>_cons.tcl first.

After compilation, you may customize the project either in the Quartus II
GUI or sourcing a custom Tcl script.

f See the Tcl Scripting chapter in Volume 2 of the Quartus II Handbook for
more information on creating and understanding Tcl scripts in the
Quartus II software.

Table 12–1. Amplify Physical Optimizer Tcl Script Description

Tcl File Description

<project name>_cons This Tcl script will create and compile a Quartus II
project. The <project name>.tcl will automatically
be sourced when this script is sourced.

<project name> This script contains forward annotation of constraint
information including clock frequency, duty cycle,
location, etc.

<project name>_rm This script removes any previous constraints from
the project. The removed constrainst is saved in
<project name>_prev.tcl

Altera Corporation 12–13
February 2004 Preliminary

Using the Amplify Physical Optimizer Floorplans

Altera Megafunctions Using the MegaWizard Plug-In Manager
with the Amplify Software

When you use the Quartus II MegaWizard® Plug-In Manager to set up
and parameterize a megafunction, it creates either a VHDL or Verilog
HDL wrapper file. This file instantiates the megafunction (a black box
methodology) or, for some megafunctions, generates a fully
synthesizeable netlist for improved results with EDA synthesis tools such
as Synplify (a clear box methodology).

Clear Box Methodology

The MegaWizard Plug-In Manager-generated fully synthesizeable netlist
is referred to as a clear box methodology because the Amplify Physical
Optimizer software can "see" into the megafunction file. The clear box
feature enables the synthesis tool to report more accurate timing
estimates and take better advantage of timing driven optimization.

This clear box can be turned on by checking the Generate Clearbox body
(for EDA tools only) option in the MegaWizard Plug-In Manager (Tools
menu) for certain megafunctions. If this option does not appear, then
clear box models are not supported for the selected megafunction.
Turning on this option will cause the MegaWizard Plug-In Manager to
generate a synthesizable clear box netlist instead of the megafunction
wrapper file described in “Black Box Methodology” on page 12–14.

Using MegaWizard Plug-In Manager-generated Verilog HDL Files for
Clear Box Megafunction Instantiation
If you check the <output file>_inst.v option on the last page of the wizard,
the MegaWizard Plug-In Manager generates a Verilog HDL instantiation
template file for use in your Synplify design. This file can help you
instantiate the megafunction clear box netlist file, <output file>.v, in your
top-level design. Include the megafunction clear box netlist file in your
Amplify Physical Optimizer project and the information gets passed to
the Quartus II software in the Amplify Physical Optimizer-generated
VQM output file.

Using MegaWizard Plug-In Manager-generated VHDL Files for Clear
Box Megafunction Instantiation
If you check the <output file>.cmp and <output file>_inst.vhd options on
the last page of the wizard, the MegaWizard Plug-In Manager generates
a VHDL component declaration file and a VHDL instantiation template
file for use in your design. These files help to instantiate the megafunction
clear box netlist file, <output file>.vhd, in your top-level design. Include
the megafunction clear box netlist file in your Amplify Physical
Optimizer project and the information gets passed to the Quartus II
software in the Amplify Physical Optimizer-generated VQM output file.

12–14 Altera Corporation
Preliminary February 2004

Quartus II Handbook, Volume 2

Black Box Methodology

The MegaWizard Plug-In Manager-generated wrapper file is referred to
as a black-box methodology because the megafunction is treated as a
"black box" in the Amplify Physical Optimizer software. The black box
wrapper file is generated by default in the MegaWizard Plug-In
Manager (Tools menu) and is available for all megafunctions.

The black-box methodology does not allow the synthesis tool any
visibility into the function module thus not taking full advantage of the
synthesis tool's timing driven optimization. For better timing
optimization, especially if the black box does not have registered inputs
and outputs, add timing models to black boxes.

f For more information on instantiating MegaWizard Plug-In Manager
modules or black boxes see the Synplicity Synplify & SynplifyPro Support
chapter in Volume 1 of the Quartus II Handbook.

Conclusion Physical synthesis uses improved delay estimation to optimize critical
paths. The Amplify Physical Optimizer software uses the hierarchical
structure of logic and interconnect in Altera devices so that designers can
direct a critical path to be placed into several well-defined blocks. The
Amplify Physical Optimizer-to-Quartus II software flow is one of the
steps to solving the problem of achieving timing closure through physical
synthesis.

Altera Corporation Index–1

Index

A
Amplify

Physical Optimizer Constraints
Forward Annotating 12–12

Physical Synthesis Concepts 12–1
to-Quartus II Flow 12–2
Using Amplify Physical Optimizer

Floorplans 12–5
Using the Amplify Physical Optimizer

Floorplans 12–5
Arithmetic 3–3
Assignment

Back-Annotating 8–18
Location 5–12

Assignment Editor 5–7
Category 1–2
Customizable Columns 1–12
Features 1–3
Settings Made Outside User Interface 1–1
Using 1–1
Using to Place Logic 10–14

Assignments
1–8

Dynamic Syntax Checking 1–9
Exporting 1–8, 1–13, 1–14
Import 1–13, 1–16, 10–20
Importing 1–16
Path-Based 10–24
Revisions 4–1

Atom Netlist
Design Information 10–18
Specify 10–19

B
Back-Annotating 10–40
Back-Annotation 10–33
Bar

Category 1–2
Edit 1–3
Information 1–2, 1–6

Node Filter 1–2, 1–5, 1–10
Black Box Methodology 12–14

C
Clear Box Methodology 12–13
Clock

Definitions 11–7
Minimizing Skew 11–5

Clock Speed
Improving in Design 6–53

Clocks
Using Fast Regional in Stratix Devices 6–26

Clock-to-Output Time
Improving 6–27, 6–51

cmdline Package 3–11
Collection Commands 3–15
Columns

Customizable 1–7
Combinational

Timing 11–10
Combinational Logic

Physical Synthesis 8–10
Command

Line
Accessing Arguments 3–11
Options 2–9, 2–11, 3–9
Scripting Help 2–7

Nested 3–3
Prompt 4–8

Command Prompt 5–12
Compilation

Initial Settings 6–3
Restore Original Results 4–5
Settings

Initial 6–2
Time 6–11
Timing Driven 6–3, 6–21

Compile Archive 9–14
Compiliation

Time

Index–2 Altera Corporation

Quartus II Handbook, Volume 2

Optimization Techniques 6–55
Constraint Priority 10–30
Constraints

Location 11–3
Placement 11–3
Remove Fitter 6–16

Control Structures 3–4
Create New Implementations 12–4
Critical Path

Reducing Delay 6–38
Custom Region 6–36
Custom Space 9–11

Simple 9–19
XML Schema 9–21

D
Databases

Exporting 4–7, 4–10
Importing 4–7, 4–10
Version-Compatible 4–7, 4–10

Delays
Programmable 6–23

Design
Analysis 6–6
Compile 3–13
Compile & Verify 10–22
Creating Different Versions 4–4
File

Check Syntax 2–11
Fit Quickly 2–13
Fit Using Multiple Seeds 2–13
Flow 1–10, 2–3, 5–1

Complete Design Files 5–4
No Design Files 5–2
Partial Design Files 5–4

Improving Performance 6–30
Optimization

for Altera Devices 11–5
Improve Resource Utilization 6–13

Optimization for Altera Devices 6–1
Optimize 6–3
Optimizing Compilation Time 6–55
Using Revisions 4–1

DESIGNSPACE 9–17
Device

Using Larger 6–20

Device Resources
Reserve 6–42

Device Settings 6–2
Drag & Drop

Using to Place Logic 10–13
DSE

Advanced Information 9–15
Advanced Search Options 9–7
Archive Compiles 9–14
Command Line Options 9–2
Computer Load Sharing 9–15
Concepts 9–1
Creating Custom Spaces 9–16
Distributed Using LSF 9–15
Distributed Using Quartus II Master

Process 9–15
Exploration 9–1, 9–2, 9–6
Exploration Settings 9–4
Exploration Space 9–8
Flow 9–4
Flow Options 9–13
General Information 9–2
LogicLock Region Restructuring 9–8
Optimization 9–7
Performance Options 9–7
Performing Advanced Search 9–7
Project Settings 9–6
Seed & Seed Sweeping 9–1
Support for Altera device Families 9–5

DSP Blocks
Retarget 6–19

E
EDA

Tool Assignments 3–1, 3–18
Edit Bars 1–2
Executables

Supporting Tcl 2–11, 3–8, 3–9
Exploration

Base Compile Failure 9–13
Run Quartus Assembler 9–13
Space 9–8
Stop Flow After Gain 9–14
Stop Flow After Time 9–14

Exploration Space
Area Optimization Search 9–10

Altera Corporation Index–3

Custom Space 9–11
Extra Effort Search 9–9
Physical Synthesis Search 9–10
Retiming Search 9–10
Save to File 9–14

F
Fan-In

Estimating 6–44
Fan-Out Control

Duplicate Logic 6–32
Fast Regional Clocks

Using in Stratix Devices 6–26
Feedback Paths 12–9
Floorplan

Timing Closure 7–1
Floorplans

Detailed 12–11
fMAX

Improving 6–40
Timing Analysis Report 7–19
Timing Optimization Techniques 6–27, 6–62

G
Global Control Signals

Dedicated Inputs 6–41

H
Hierarchy

Assignments 5–1, 6–33
Flatten 6–31
Window 10–7

I
I/O

Assignment
Analysis 5–2, 5–13
Anaylsis 5–1
Anaysis

Tcl Command 5–13
Creating 5–1, 5–6
Design Flow 5–1
Inputs Used for Analysis 5–6

Placement 5–10
Planning 5–1
Running Analysis 5–9
Understanding Analysis Report 5–9

Timing 6–5, 6–7
Optimization Techniques 6–21, 6–61
Using a PLL to Improve 6–26

Incremental Fitting 6–57
Independent Paths 12–8
Information 1–2
Initial Pass

No Physical Constraints 12–3
Interactive Shell Mode 2–12
Iterative Passes

Optimizing the Critical Paths 12–5

L
LCELL Buffers

Using to Reduce Required Resources 6–48
Lists 3–4
Location Assignments 5–12
Logic Lock

Region
Properties 10–10

LogicLock 11–4
Additional Quartus II Design

Features 10–22
Assignemnt Precedence 10–26
Assignments 6–32, 11–4

Location & Back Annotation 6–35
Back Annotation 6–36
Constraint Priority 10–30
Design Features 10–2
Design Flow 10–16, 10–40
Design Hierarchy 10–7
Design Methodology 10–1, 11–5
Drag & Drop 10–13
DSE 9–8
Examples of Supported Constraints 11–4
Importing Functions 3–21
Improving Design Performance 10–1
Manual Placement 6–36
Path Assignments 6–34
Region

Assigning Content 10–13, 10–37
Back-Annotating 10–40

Index–4 Altera Corporation

Quartus II Handbook, Volume 2

Exporting 10–33
Importing 10–35

Back-Annotating Routing
Information 10–33

Connectivity 7–12, 10–23
Creating 10–2, 10–37
Exporting 10–39
Hierarchical 10–11
Importing 10–39
Initializing 10–37
Modifying 10–37
Obtaining Properties 10–37
Placing 10–30
Placing Memory 10–32
Placing Other Device Features 10–32
Placing Pins 10–32
Prevent Assignment Option 10–23
Properties 10–2
Reserve 10–23
Specify Size and Location 10–10
Tcl Command 10–8
Tcl Scripts 10–16
Uninitializing 10–37
Viewing Routing Congestion 7–15
Window 10–2

Regions 6–57
Back Annotating 6–35
Back-Annotated 6–59
Custom 6–36
Hierarchical 6–33
Soft LogicLock Regions 10–27

Regions 5–2
Restrictions 10–30
Revisions Feature 10–26
Setting Assignment Priority 10–39
Tooltips 10–22

M
Macrocell Usage

Resolving Issues 6–46
Makefile

Implementation 2–14
Mapped Netlist

Generating 5–8, 5–12
Maximum Frequency

Improving 6–53

Memory Blocks
Retarget 6–18

Messages
Error 5–11
Status 5–11

Modular Executables 2–7
Makefile 2–14
Report Files 2–6

Module
Export 10–17
Import 10–19
Optimize 10–16
Synthesize 10–16

Module Performance
Preserving 10–2

Multiplexers 12–7

N
Netlist

Optimization 8–1, 10–38
Applying Options 8–15

Node Filter 1–2
Node-level Netlist

Save into Persistent Source File 10–38

O
Optimization

Techniques
Resource Utilization 6–13

Techniques, LUT-Based Devices 6–12
Optimization Techniques 8–2
Optimize Source Code 6–19, 6–39
Optimize Synthesis for Speed 6–30, 6–31
Optimizing

Critical Path 6–38
Critical Paths 12–5
Placement

Cyclone Devices 6–39
Mercury, APEX II, APEX 20KE/C

Devices 6–39
Stratix Family Devices & Cyclone II

Devices 6–38
Optimzation Advisor 6–12
Output Pins

Estimate Fan-In When Assigning 6–44

Altera Corporation Index–5

P
Parallel Expanders

Used Within a LAB 6–45
PARAM 9–18
Path

Assignments 6–34
Feedback 12–9
Independent 12–8

Physical Synthesis
Combinational Logic 8–10
Optimization 8–17
Optimzation 6–28
Preserving Results 8–14
Register Retiming 8–13
Report 8–13
Search 9–10

Physical Synthesis Optimization 8–9
Pin

Assiginment
Output Enable 6–43

Assignment
Control Signal 6–43
Guidelines 5–6
Location 5–7
Modify 6–20
Outputs Using Parallel Expander 6–44

Assignment Guidelines & Procedures 6–42
Assignments

Floorplan Editor 5–8
Reserving 5–6, 5–11
Timing

Primary Input 11–8
Primary Output 11–9

Pin Assignment
Minimize Fitting Issues 6–42

Pipling
Complex Register Logic 6–53

Placement 5–10, 10–18
Placement Time

Reduce Using Incremental Fitting 6–57
PLL

Using to Shift Clock Edges 6–26
POINT 9–17
Project Management 4–1
Projects

Archiving 4–5, 4–9
Creating 3–12
Making Assignments 3–12

Restoring Archived 3–12, 4–9
Propagation Delay

Improving 6–52

Q
QFlow Script 2–16
QSF

Specify 10–19
Quartus II

Megafunctions
Using MegaWizard Plug-In Manager with

Amplify 12–13
MegaWizard Plug-In

Manager-generated Verilog HDL Files for
Clear Box Megafunction
Instantiation 12–13

MegaWizard Plug-In
Manager-generated VHDL Files for Clear

Box Megafunction
Instantiation 12–13

Modular Executables 2–1, 2–2, 2–17
quartus_sh --flow

Compilation 2–7

R
Register Packing 6–13
Register Retiming

Gate-Level 8–4
Physical Synthesis for Registers 8–13
Trade-Off tSU/tCO with fMAX 8–8

Registers
Fast Input, Output & Output Enable 6–22

Repair Branch 10–22
Report Data

Extracting 3–14
Reserving Pins 5–11
Resource Utilization 6–6

Analysis & Synthesis by Entity 10–24
Optimization Techniques 6–13, 6–41, 6–60
Resolving Issues 6–20
Resolving Problems 6–45

Resynthesis
Perform WYSIWYG for Area 6–16
WYSIWYG Primitive 8–2

Revision
Comparing 4–3

Index–6 Altera Corporation

Quartus II Handbook, Volume 2

Creating 4–1, 4–2, 4–8, 4–10
Deleting 4–2, 4–9
Getting List 4–9
Managing 4–8
Setting Current 4–8

Routing 10–19
Congestion 6–59, 7–15
Resolving Issues 6–47

Routing Time
Reducing 6–59

Rubber Banding 10–23

S
Scripting Support 3–6, 3–10, 3–13, 4–8, 5–11,

6–59, 8–16, 10–36
Seed 6–30

Sweep 9–9
Extra Effort Search 9–9

Sweeping 9–1
Settings 6–30

Fitter Effort 6–4, 6–56
Initial Compilation 6–60
Physical Synthesis Effort 6–56
Smart Compilation 6–3

Setup Time
Improving 6–50

Show
Connection Count 10–24
Critical Paths 10–24

Signature Mode 9–12
Source Code

Optimize 6–19, 6–39
Optimizing Using Pipelining

Technique 6–53
Spreadsheet 1–2
Starting and Ending Points 12–9
State Machine Encoding

Change 6–17, 6–31
Synthesis

Netlist Optimization 6–28, 8–2, 8–4
Optimize for Area 6–16, 6–17
Optimize for Speed 6–31
Options, Other 6–32
Reduce Netlist Optimization Time 6–55
Reducing 6–55
Set Effort to High 6–31

Specify State Machine Encoding 6–17
Synthesis Netlist

Optimization 8–16
Preserving Optimization Results 8–8

Synthesis Netlist Optimization 6–55

T
TCL

Interface 1–13
Tcl

API Reference 2–9, 3–6
Assignment 6–60
Back-Annotate Command 8–18
Command 3–13, 3–15, 5–12
Console Window 3–10
Defined 3–1
Evaluate 2–12, 3–10
Getting Help 2–17, 3–25
Help 3–2
List 3–4
Loading Packages 3–8
Packages 2–9, 3–6, 3–25
Procedure 3–5
Quartus II Legacy Support 3–10, 3–28
Quartus II Legacy Support 3–2
Script

Run 2–11, 4–8
Scripting Basics 3–2
Scripts 3–11, 3–13, 10–8, 10–15
Shell in Interactive Mode 3–22
Tk

GUI Help Interface 3–2, 3–28
Time Groups

Using 1–11
Timing

Checking the HardCopy Device 11–7
Correcting Violations 11–11
ECOs 11–21
Exceptions 11–11
fMAX Optimization Techniques 6–27
Hold-Time Violations 11–11
Improving Propagation Delay 6–52
Optimization Techniques 6–12, 6–49

Macrocell-Based CPLDs 6–41
Setup-Time Violations 11–16

Timing Closure 11–1

Altera Corporation Index–7

Design Anaysis 7–23
Floorplan 5–8, 7–1, 11–5

Assigning LogicLock Region
Content 10–13

Design Anaysis 7–1
Viewing Assignments 7–3
Viewing Critical Paths 7–5
Views 7–1

Floorplan Editor 10–6
LogicLock Regions Connectivity 10–23
Physical Timing Estimates 7–11
View 10–9

Floorplan Views 7–1
in HardCopy Devices 11–1

Timing Requirements 6–2
Tooltips 10–22

U
Using 1–11
Utilization 6–6, 12–11

Resolving Resource Issues 6–20

V
Variables 3–3
Verilog HDL Files

Clear Box Megafunction Instantiation 12–13
VHDL Files

Clear Box Megafunction Instantiation 12–13
Virtual Pins 10–28

Assigning 10–40

Index–8 Altera Corporation

Quartus II Handbook, Volume 2

	Quartus II Handbook, Volume 2
	Design Implementation & Optimization
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Typographic Conventions

	Section I. Scripting & Constraint Entry
	Revision History
	1. Assignment Editor
	Introduction
	Using the Assignment Editor
	Effects of Settings Made Outside the Assignment Editor User Interface
	Category, Node Filter, Information, Edit Bars & Spreadsheet
	Category Bar
	Node Filter Bar
	Information Bar
	Edit Bar

	Assignment Editor Features
	Using the Enhanced Spreadsheet Interface
	Dynamic Syntax Checking
	Node Filter Bar
	Using Time Groups
	Customizable Columns
	Tcl Interface

	Exporting and Importing Assignments
	Exporting Assignments
	Importing Assignments

	Conclusion

	2. Command-Line Scripting
	Introduction
	The Benefits of Modular Executables
	Introductory Example
	Design Flow
	Text-Based Report Files
	Compilation with quartus_sh --flow

	Command-Line Scripting Help
	Command-Line Option Details
	Option Precedence

	Command-Line Scripting Examples
	Check Design File Syntax
	Create a Project & Synthesize a Netlist Using Netlist Optimizations
	Attempt to Fit a Design as Quickly as Possible
	Fit a Design Using Multiple Seeds
	Makefile Implementation
	The QFlow Script

	More Help with Quartus II Modular Executables
	Conclusion

	3. Tcl Scripting
	Introduction
	What is Tcl?
	Tcl Scripting Basics
	Hello World Example
	Variables
	Nested Commands
	Arithmetic
	Lists
	Control structures
	Procedures

	Quartus II Tcl API Reference
	Quartus II Tcl Packages
	Loading Packages

	Executables Supporting Tcl
	Command-Line Options (-s, -t, etc)
	Run a Tcl Script
	Interactive Shell Mode
	Evaluate as Tcl
	Using the Quartus II Tcl Console Window

	Examples
	Accessing Command-Line Arguments
	Using the cmdline Package
	PCreating Projects & Making Assignments
	Compiling Designs
	The ::quartus::flow Package

	Extracting Report Data
	Using Collection Commands
	The foreach_in_collection command
	The get_collection_size command

	Timing Analysis
	EDA Tool Assignments
	Importing LogicLock Functions
	Using the Quartus II Tcl Shell in Interactive Mode

	Getting Help on Tcl & Quartus II Tcl APIs
	The Tcl/Tk GUI Help Interface

	Quartus II Legacy Tcl Support
	References

	4. Quartus II Project Management
	Introduction
	Using Revisions with Your Design
	Creating and Deleting Revisions
	Comparing Revisions

	Creating Different Versions of Your Design
	Archiving Projects

	Version- Compatible Databases
	Scripting Support
	Managing Revisions
	Creating Revisions
	Setting the Current Revision
	Getting a List of Revisions
	Deleting Revisions

	Archiving Projects
	Restoring Archived Projects
	Importing and Exporting Version-Compatible Databases

	Conclusion

	Section II. Device & Board Utilities
	Revision History
	5. I/O Assignment Planning & Analysis
	Introduction
	I/O Assignment Planning & Analysis
	I/O Assignment Planning & Analysis Design Flows
	Design Flow without Design Files
	Design Flow with Complete or Partial Design Files

	Inputs Used for I/O Assignment Analysis
	Creating I/O Assignments
	Reserving Pins
	Location Assignments
	Assignments with the Floorplan Editor
	Generating a Mapped Netlist

	Running the I/O Assignment Analysis
	Understanding the I/O Assignment Analysis Report
	Suggested & Partial Placement
	Detailed Error/Status Messages

	Scripting Support
	Reserving Pins
	Location Assignments
	Generating a Mapped Netlist
	Tcl Command
	Command Prompt

	Running the I/O Assignment Analysis

	Conclusion

	Section III. Area Optimization & Timing Closure
	Revision History
	6. Design Optimization for Altera Devices
	Introduction
	Initial Compilation
	Device Setting
	Timing Requirements Settings
	Smart Compilation Setting
	Timing Driven Compilation Settings
	Fitter Effort Setting
	I/O Assignments

	Design Analysis
	Resource Utilization
	I/O Timing (including tPD)
	fMAX Timing
	Compilation Time

	Optimization Techniques for LUT-Based (FPGA and MAX II) Devices
	Optimization Advisors

	Resource Utilization Optimization Techniques (LUT-Based Devices)
	Use Register Packing
	Remove Fitter Constraints
	Perform WYSIWYG Resynthesis for Area
	Optimize Synthesis for Area
	Optimize for Area, Not Speed
	Change State Machine Encoding
	Flatten the Hierarchy

	Retarget Memory Blocks
	Retarget DSP Blocks
	Optimize Source Code
	Modify Pin Assignments or Choose a Larger Package
	Use a Larger Device
	Resolving Resource Utilization Issues Summary

	I/O Timing Optimization Techniques (LUT-Based Devices)
	Timing-Driven Compilation
	Fast Input, Output, & Output Enable Registers
	Programmable Delays
	Using Fast Regional Clocks in Stratix Devices
	Using PLLs to Shift Clock Edges
	Improving Setup & Clock-to-Output Times Summary

	fMAX Timing Optimization Techniques (LUT-Based Devices)
	Synthesis Netlist Optimizations and Physical Synthesis Optimizations
	Seed
	Optimize Synthesis for Speed
	Optimize for Speed, Not Area
	Flatten the Hierarchy
	Set the Synthesis Effort to High (where applicable)
	Change State Machine Encoding
	Duplicate Logic for Fan-Out Control
	Other Synthesis Options

	LogicLock Assignments
	Hierarchy Assignments
	Path Assignments

	Location Assignments & Back Annotation
	Custom Regions
	Back Annotation and Manual Placement
	Optimizing Placement for Stratix II, Stratix, Stratix GX, & Cyclone II Devices
	Optimizing Placement for Cyclone Devices
	Optimizing Placement for Mercury, APEX II, & APEX 20KE/C Devices

	Optimize Source Code
	Improving fMAX Summary

	Optimization Techniques for Macrocell- Based (MAX 7000 and MAX 3000) CPLDs
	Resource Utilization Optimization Techniques (Macrocell- based CPLDs)
	Use Dedicated Inputs for Global Control Signals
	Reserve Device Resources
	Pin Assignment Guidelines & Procedures
	Control Signal Pin Assignments
	Output Enable Pin Assignments
	Estimate Fan-In When Assigning Output Pins
	Outputs Using Parallel Expander Pin Assignments

	Resolving Resource Utilization Problems
	Resolving Macrocell Usage Issues
	Resolving Routing Issues
	Using LCELL Buffers to Reduce Required Resources

	Timing Optimization Techniques (Macrocell- based CPLDs)
	Improving Setup Time
	Improving Clock-to-Output Time
	Improving Propagation Delay (tPD)
	Improving Maximum Frequency (fMAX)
	Optimizing Source Code-Pipelining for Complex Register Logic

	Compilation Time Optimization Techniques
	Reducing Synthesis and Synthesis Netlist Optimization Time
	Reducing Placement Time
	Fitter Effort Setting
	Physical Synthesis Effort Settings
	Incremental Fitting
	LogicLock Regions

	Reducing Routing Time
	Routing Congestion
	LogicLock Regions

	Scripting Support
	Initial Compilation Settings
	Resource Utilization Optimization Techniques (LUT-Based Devices)
	I/O Timing Optimization Techniques (LUT-Based Devices)
	FMAX Timing Optimization Techniques (LUT-Based Devices)

	Conclusion

	7. Timing Closure Floorplan
	Introduction
	Design Analysis Using the Timing Closure Floorplan
	Timing Closure Floorplan Views
	Viewing Assignments
	Viewing Critical Paths
	Physical Timing Estimates
	LogicLock Region Connectivity
	Viewing Routing Congestion
	I/O Timing Analysis Report File
	fMAX Timing Analysis Report File

	Conclusion

	8. Netlist Optimizations and Physical Synthesis
	Introduction
	Synthesis Netlist Optimizations
	WYSIWYG Primitive Resynthesis
	Gate-Level Register Retiming
	Allow Register Retiming to Trade-Off tSU/tCO with fMAX

	Preserving Your Synthesis Netlist Optimization Results

	Physical Synthesis Optimizations
	Physical Synthesis for Combinational Logic
	Physical Synthesis for Registers - Register Duplication
	Physical Synthesis for Registers - Register Retiming
	Physical Synthesis Report
	Preserving Your Physical Synthesis Results

	Applying Netlist Optimization Options
	Scripting Support
	Synthesis Netlist Optimizations
	Physical Synthesis Optimizations
	Back-Annotating Assignments

	Conclusion

	9. Design Space Explorer
	Introduction
	DSE Concepts
	Exploration Space & Exploration Point
	Seed & Seed Sweeping

	DSE Exploration

	DSE General Information
	DSE Flow
	DSE Support for Altera Device Families
	DSE Exploration

	DSE Project Settings
	DSE Project Settings
	Search for Best Area or Performance Options
	Advanced Search Option

	Performing an Advanced Search in Design Space Explorer
	Allow LogicLock Region Restructuring
	Exploration Space
	Seed Sweep
	Extra Effort Search
	Physical Synthesis Search
	Retiming Search
	Area Optimization Search
	Custom Space
	Signature Mode

	Optimization Goal
	Search Method

	DSE Flow Options
	Continue Exploration Even if Base Compile Fails
	Run Quartus Assembler During Exploration
	Archive All Compiles
	Save Exploration Space to File
	Stop Flow After Time
	Stop Flow After Gain

	DSE Advanced Information
	Computer Load Sharing in DSE Using Distributed Exploration Searches
	Distributed DSE Using LSF
	Distributed DSE Using a Quartus II Master Process

	Creating Custom Spaces for DSE
	DESIGNSPACE Tag
	POINT Tag
	PARAM Tag

	Conclusion

	10. LogicLock Design Methodology
	Introduction
	Improving Design Performance
	Preserving Module Performance

	Designing with the LogicLock Feature
	Creating LogicLock Regions
	LogicLock Regions Window
	Timing Closure Floorplan Editor
	Hierarchy Window
	Tcl Scripts

	Floorplan Editor View
	LogicLock Region Properties
	Hierarchical (Parent and/or Child) LogicLock Regions
	Assigning LogicLock Region Content
	Using the Assignment Editor to Place Logic

	Tcl Scripts
	Quartus II Block-Based Design Flow
	Synthesize the Module
	Optimize the Module
	Export the Module
	Import the Module
	Compile & Verify the Top-Level Design

	Additional Quartus II LogicLock Design Features
	Tooltips
	Repair Branch
	Reserve LogicLock Region
	Prevent Assignment to LogicLock Regions Option
	LogicLock Regions Connectivity
	Rubber Banding
	Show Critical Paths
	Show Connection Count
	Analysis & Synthesis Resource Utilization by Entity
	Path-Based Assignments
	Quartus II Revisions Feature
	LogicLock Assignment Precedence
	LogicLock Regions versus Soft LogicLock Regions
	Virtual Pins

	LogicLock Restrictions
	Constraint Priority
	Placing LogicLock Regions
	Placing Memory, Pins & Other Device Features into LogicLock Regions

	Back-Annotating Routing Information
	Exporting Back-Annotated Routing in LogicLock Regions
	Importing Back-Annotated Routing in LogicLock Regions

	Scripting Support
	Initializing and Uninitializing a LogicLock Region
	Creating or Modifying LogicLock Regions
	Obtaining LogicLock Region Properties
	Assigning LogicLock Region Content
	Prevent Further Netlist Optimization
	Save a Node-level Netlist into a Persistent Source File (.vqm)
	Exporting LogicLock Regions
	Importing LogicLock Regions
	Setting LogicLock Assignment Priority
	Assigning Virtual Pins
	Back-Annotating LogicLock Regions

	Conclusion

	11. Timing Closure in HardCopy Devices
	Introduction
	Timing Closure
	Placement Constraints

	Location Constraints
	Location Array Block (LAB) Assignments
	LogicLock Assignments
	LogicLock

	Tutorial

	Minimizing Clock Skew
	Checking the HardCopy Device Timing
	Clock Definitions
	Primary Input Pin Timing
	Primary Output Pin Timing
	Combinatorial Timing
	Timing Exceptions

	Correcting Timing Violations
	Hold-Time Violations
	Setup-Time Violations

	Timing ECOs
	Conclusion

	12. Synplicity Amplify Physical Synthesis Support
	Introduction
	Software Requirements
	Amplify Physical Synthesis Concepts
	Amplify-to- Quartus II Flow
	Initial Pass: No Physical Constraints
	Create New Implementations

	Iterative Passes: Optimizing the Critical Paths

	Using the Amplify Physical Optimizer Floorplans
	Multiplexers
	Independent Paths
	Feedback Paths
	Starting and Ending Points
	Utilization
	Detailed Floorplans
	Forward Annotating Amplify Physical Optimizer Constraints into the Quartus II Software
	Altera Megafunctions Using the MegaWizard Plug-In Manager with the Amplify Software
	Clear Box Methodology
	Black Box Methodology

	Conclusion

	Index

