UP3-1C6 Schematic

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP1C6 Cyclone FPGA</td>
<td>1, 2</td>
</tr>
<tr>
<td>Parallel Port</td>
<td>3</td>
</tr>
<tr>
<td>Santa Cruz Connector</td>
<td>4</td>
</tr>
<tr>
<td>PS/2 Connector</td>
<td>5</td>
</tr>
<tr>
<td>FLASH</td>
<td>6</td>
</tr>
<tr>
<td>SDRAM</td>
<td>7</td>
</tr>
<tr>
<td>SRAM</td>
<td>8</td>
</tr>
<tr>
<td>I2C RTC</td>
<td>9</td>
</tr>
<tr>
<td>LCD Display</td>
<td>10</td>
</tr>
<tr>
<td>Level Shifters for Santa Cruz Connector</td>
<td>11</td>
</tr>
<tr>
<td>USB Interface</td>
<td>12</td>
</tr>
<tr>
<td>Serial Port</td>
<td>13</td>
</tr>
<tr>
<td>VGA Interface</td>
<td>14</td>
</tr>
<tr>
<td>Reset Circuit</td>
<td>15</td>
</tr>
<tr>
<td>Master Clock Generation</td>
<td>16</td>
</tr>
<tr>
<td>I2C PROM</td>
<td>17</td>
</tr>
<tr>
<td>Push Buttons and DIP Switches</td>
<td>18</td>
</tr>
<tr>
<td>Configuration PROM</td>
<td>19</td>
</tr>
<tr>
<td>Power Supply Circuit</td>
<td>20</td>
</tr>
</tbody>
</table>

Copyright©2004-2005 System Level Solutions. All rights reserved. SLS, an embedded systems company, the stylized SLS logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of SLS in India and other countries. All other products or service names are the property of their respective holders. SLS products are protected under numerous U.S. and foreign patents and pending applications, mask working rights, and copyrights. SLS warrants performance of its semiconductor products to current specifications in accordance with SLS’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. SLS assumes no responsibility or liability arising out of the application or use of any information, products, or service described herein except as expressly agreed to in writing by SLS. SLS customers are advised to obtain the latest version of specifications before relying on any published information and before orders for products or services.
NOTES:

[1] CONFIGURATION FUNCTION FOR PIN 37 IS DEFINED AS ASDo (ACTIVE SERIAL DATA OUT)

[2] nCEO PIN REMAINS UNCONNECTED BECAUSE THIS BOARD DOES NOT SUPPORT MULTIPLE FPGAs

[3] ALL THE BANKS OF EP1C6 ARE CONFIGURED FOR +3.3-V LVTTL/LVCMOS I/O STANDARD
NOTES:

[1] C2_PPT SIGNAL OF PARALLEL PORT REMAINS OPEN ON THIS BOARD (NOT CONNECTED TO ANY FPGA PIN)
 - IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

[2] IF +5V LOGIC LEVEL IS REQUIRED FOR V_SYNC_SHIFT & H_SYNC_SHIFT SIGNALS THEN STUFF PULL UP
 RESISTORS R367 & R558, OTHERWISE DON'T

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR

- IT IS JUST PULLED HIGH AT +5V AT PPT CONNECTOR
NOTES:

1. PCICLK_OUT (33.3MHz) FOR SNAP IN BOARD IS PROVIDED FROM CLOCK CHIP (PI6C106)
2. J3.34 IS USED AS A PROTO I/O ACCORDING TO THE NIOS BOARD SCHEMATICS
3. FOR LEVEL SHIFTING, SEE PAGE_10_L.S.S.C_CONN.
Note: For level shifting, see page3_ppt
NOTES:

[1] FOR LEVEL SHIFTING, SEE PAGE9_LCD DISPLAY

[2] BATTERY SOCKET IS USED FOR Li BATTERY (BT1)
NOTES:

[1] HEADER J8 => MODE SELECTION
[2] HEADER J11 => SPEED SELECTION
[3] HEADER J9 => HIGH SPEED
[4] HEADER J10 => LOW SPEED
SERIAL PORT (FULL MODEM)

- **TX_OUT**: 28
- **DTR_OUT**: 24
- **RTS_OUT**: 2
- **RI_IN**: 9
- **CD_IN**: 27
- **RX_IN**: 21
- **RTS_OUT_FPGA**: 13
- **DTR_OUT_FPGA**: 10
- **RI_IN_FPGA**: 12
- **CD_IN_FPGA**: 11
- **RX_IN_FPGA**: 10
- **RSIN4**: 16
- **RSIN5**: 15
- **Q2**: mmt2407
- **D15**: LED
- **R174**: 220
- **C83**: 0.1uF
- **C87**: 0.1uF

Components
- **U21**: MAX 3243
NOTE: FOR LEVEL SHIFTING, SEE PAGE3_PPT
NOTES:

[1] RESET TIME Td = 2.6 x 10E4 (Ct)

[2] FOR LEVEL SHIFTING, SEE PAGE 9 LCD_DISPLAY
NOTES:
[1] BY SELECTING HIGH OR LOW INPUT THROUGH J7, 100 MHz OR 66.6 MHz CAN BE SELECTED RESPECTIVELY
[2] 12pF CAPACITORS ARE USED AS EMI REDUCING CAPACITORS
[3] STUFFING OPTIONS FOR SPREAD INPUT:
STUFFED R374 - DEFAULT HIGH
STUFFED R375 - ENABLE SPREAD#
NOTES:

[1] R158 IS NOT STUFFED (WP PIN IS KEPT FLOATING) FOR NORMAL OPERATIONS
 - STUFF R158 TO ENABLE WRITE PROTECTION IN THE SUPPORTED DEVICE

NOTES:

[1] HERE FOUR USER DEFINABLE PUSH BUTTON SWITCHES ARE SHOWN

[2] THE PUSH BUTTON SWITCH FOR SYSTEM RESET IS SEPARATELY DEFINED ON PAGE 16 (RESET CIRCUIT)

[3] BE CAREFUL WHEN MOUNTING THE DIP SWITCH
BYTE BLASTER II 10 PIN MALE HEADER FOR AS MODE [DCLK(FPGA) => DCLK(CONFIG. PROM)]

BYTE BLASTER II 10 PIN MALE HEADER FOR JTAG CONFIGURATION

CONFIGURATION PROM