CmpE 2510 Program 3

Due Date: Wednesday, Feb 19

	Write a MIPS program using SPIM, which computes the square root of a floating point number read as input. The detailed operations required are included in the attached C program. It is not necessary to understand in detail how the square root algorithm works, since you need only to implement each of the C statements in MIPS assembly language.

	Only the print statements to input the number and output the answer are required in your final program. The additional print statements may be useful in debugging your program since they display results after each operation. A screen dump of the program computing the square root of 2.0 and 4.0 is included to provide test debug cases for your program. C prints the integer values in hex with the "%lx" format string. In SPIM these could be printed in decimal.

�
main ()

{

union lorf

{

/* same location in memory - can be type float, x.f or integer x.l */

 float f;

 long l;

} x;

float y0,y1,y2,y3;

long xexp;

/* x.l is 32-bit integer value of floating point number's bits, x.f */

/* using x.l allows AND or OR operations on floating point number's bits */

/* x.f is the 32-bit floating point number */

/* Program divides exponent by two and computes fraction value by using */

/* Newton Raphson interation. Then it combines exponent and fraction */

/* to obtain result */

/* Reads in value to compute square root of */

printf("Enter number to compute square root of ");

scanf("%f",&x.f);

/* Prints out value as integer */

printf("x.l=%lx\n",x.l);

/* Prints out floating point value */

printf("x.f=%f\n",x.f);

/* Extract exponent with mask */

xexp = (x.l & 0x7F800000);

/* Prints out exponent field as integer */

printf("xexp=%lx\n",xexp);

/* Scale fraction value to <=1.0 and >=0.5 by fixing exponent */

x.l = (x.l & 0x807FFFFF)+ 0x3F000000;

printf("x.l=%lx\n",x.l);

printf("x.f=%f\n",x.f);

/* Linear equation for first fraction estimate of sqaure root */

y0 = .41731+.59016*x.f;

printf("y0=%f\n",y0);

/* Newton Raphson Iteration Equation for Square Root Fraction Part */

y1 = .5*(y0+(x.f/y0));

printf("y1=%f\n",y1);

y2 = .5*(y1+(x.f/y1));

printf("y2=%f\n",y2);

y3 = .5*(y2+(x.f/y2));

printf("y3=%f\n",y3);

if ((xexp & 0x00800000) == 0x00800000)

{ /* Correction factor if exponent is odd */

printf("odd exponent\n");

xexp = xexp + 0x00800000;

y3 = y3/1.41421356;

} /* Exponent = Exponent/2 - must subtract bias first and add back later */

xexp = (((xexp - 0x3F800000) >> 1) + 0x3F800000) & 0x7F800000;

printf("xexp=%lx\n",xexp);

x.f = y3;

x.l = (x.l & 0x807FFFFF) + xexp;

/* Put exponent and fraction back together to form answer */

printf(" square root is %e\n",x.f);

}�
