
Using a Web 2.0 Approach for Embedded Microcontroller 
Systems 

 
J. O. Hamblen1 and G. M. E. Van Bekkum1 

1School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA 
 

 
 

Abstract - This paper describes our experiences using a new 
approach for teaching an embedded systems design course 
and the associated laboratory. A cloud-based C/C++ 
compiler and file server are used for software development 
along with a low-cost 32-bit microcontroller board. Student 
resources include an eBook, web-based reference materials 
and assignments, an online user forum, and wiki pages with 
sample microcontroller application code. In laboratory 
assignments, breadboards are used to rapidly build prototype 
systems using the microcontroller, networking, and other I/O 
subsystems using small breakout boards with a wide variety 
of sensors, displays, and drivers. Software development is 
done in any web browser, all student files are stored on the 
web server, and downloading code to the microcontroller 
functions in the same way as a simple USB flash drive. 

Keywords: Embedded Systems, Design Project, Cloud 
Compiler, Microcontroller, Microprocessor 

 

1 Introduction 
     Many schools offer an embedded systems design course. 
They can be found in electrical engineering, computer 
engineering, and in many systems oriented computer science 
undergraduate degree programs. For historical reasons, the 
course title can be somewhat different such as “design with 
microcontrollers” or “microprocessor based design” but they 
all have a lot in common.  
     These courses started out with low-cost 8-bit processors, 
but most of the development effort in industry has moved on 
to System on-a-Chip (SOC) 32-bit devices that contain a 
processor, volatile and non-volatile memory, and a wide  
assortment of I/O interfaces on a single chip. For software 
development in the embedded systems industry, the C/C++ 
family of languages is still the most widely used according to 
annual industry surveys [1]. Many new embedded devices 
now utilize networking even including those with 
microcontrollers. 
     This paper describes our experiences in developing such a 
course, updating it with new technology, placing an increased 
focus on networking, and utilizing an increased number of 
web-based resources. We will focus primarily on the 
technologies used in the associated student instructional 
laboratory for this course. 
 

2 Embedded Systems Laboratory 
    This type of course requires a laboratory and is also an 
ideal place in the undergraduate curriculum to include design 
projects. Textbooks are always a bit problematic for such a 
course as once they include the details needed on a particular 
hardware setup for examples and laboratory assignments they 
quickly become out of date. We developed a textbook for the 
course that includes an overview of embedded systems design 
process with an emphasis on I/O systems, interfacing to 
external devices, and software development. This is where 
most of the development effort is focused for embedded 
products, now that a single chip microcontroller contains the 
processor, memory, and numerous I/O interfaces. The course 
textbook is distributed freely to students in an electronic 
format and is updated each semester. Students are required to 
own a notebook PC at our school and are allowed to use the 
notebook on tests as an eBook reader. Only a small 
percentage of students print or purchase a hardcopy of the 
textbook.  
     We use a microcontroller for the first half of the semester 
in the student laboratory assignments. The textbook covers 
the embedded development process, popular I/O interfaces, 
sensors, drivers, and networking. All materials for the 
laboratory assignments are provided on the web and can be 
updated each semester [2]. 
  
3 Laboratory Equipment and Tools 
   Selection of the hardware and software for a student 
laboratory is always a difficult decision. The desire to use the 
latest technology pushes course instructors to constantly 
update such a course. The cost of new equipment and 
software tools always makes the process more daunting. By 
adopting the some of the newer approaches being used in 
industry, students should be more productive and able to 
produce prototypes of complex embedded devices in less 
time. 
     For every desktop computer, there are around one hundred 
times as many processors found in embedded products 
worldwide. So job opportunities for students are vast in the 
embedded arena.  
     ARM processors are the most widely used processors in 
embedded devices. ARM does not make processor chips, but 
they license their processor design to over one hundred 



semiconductor manufacturers. They would be a natural choice 
for such a course. The Keil tools C/C++ compiler and 
emulator is one of the more popular development platforms 
for ARM processors in industry, but it is still somewhat 
expensive for schools. There are also some open source 
options for ARM C/C++ compilers. 
     We considered several options for the laboratory projects. 
One option we had considered initially was the new Cypress 
PSOC 5 ARM-based processor, but it had production delays 
and was not available in time for our course. We finally chose 
the mbed module seen in Fig. 1[3-5]. The small low-cost 
mbed module contains an NXP LPC1768 SOC processor. The 
new LCP1768 contains an ARM Cortex M3 processor, 64K 
RAM memory, a 512K Flash memory, a network controller, 
and a wide range of I/O interfaces such as USB, SPI, I2C, 
GPIO, ADC, DAC, RS232, and PWM. The price of the mbed 
module is significantly less than most textbooks, so it is even 
possible to consider the option of students purchasing their 
own mbed module. They are currently available for purchase 
from a number of web-based electronics distributors such as 
Digikey and Sparkfun.  

 
Fig. 1. The small low-cost mbed module plugs into a standard 
student breadboard. 

 
     The mbed module grew out of an internal research project 
at ARM to make the embedded development process easier 
both in industry and at schools [4, 5]. The module itself can 
plug into a standard student solderless breadboard. A USB 
cable connects it to a PC and for downloading code during 
software development it functions just like a USB flash drive. 
Power is provided by the USB cable. The USB interface can 
also function as a virtual com port allowing mbed programs to 
perform “printfs” or “scanfs” using any terminal application 
running on the PC. 
     For many years, schools have moved away from using 
solderless breadboards since many new ICs are only available 
in surface mount packages and not the older one tenth inch 
DIP style IC packages that plug directly into breadboards. 
Another problem with breadboarding was the large number of 
wires required to build up a realistic prototype of an 
embedded system. There is some pedagogical value in having 

students actually build up a circuit rather than using a large 
pre-assembled board. A breadboard also allows students to 
add their own custom hardware. 
     In the past couple of years, two factors have combined that 
make breadboards an interesting option to consider again for 
student laboratory work. Modern SOC processors already 
have sufficient internal memory and I/O interfaces on-chip. 
Most external I/O sub systems for embedded devices (i.e., 
sensors, displays, drivers, and networks) now use a serial 
interface that requires only a few wires. Due to a greatly 
increased level of hobbyist activity with the new generation of 
inexpensive single-chip microcontrollers, a large assortment 
of low-cost external I/O devices are commercially available 
pre-assembled on small printed circuit boards (i.e. breakout 
boards) that contain new surface mount ICs. They have pins 
that will plug directly into a standard student breadboard as 
seen in Fig.2. 

 
 

Fig. 2. A surface mount IC on a small breakout board that plugs 
into a student breadboard. 

 
     We compiled an extensive list of over one hundred 
commercial breakout boards with sensors, displays, drivers, 
and I/O connectors and posted it on the mbed wiki site [6]. A 
student breadboard project built with breakout boards is seen 
in Fig. 3. 
 

 
 
Fig. 3. An Internet Clock student project built using mbed and 
breakout boards on a breadboard. The time on the LCD is 
automatically synchronized with a NTP server via the Internet. 

 



     For those that want a pre-assembled board option there are 
also a number of commercial baseboards available for the 
mbed module [7]. The mbed module plugs into the baseboard. 
The baseboard typically provides an Ethernet network 
connector, microSD card slot, and a USB connector perhaps a 
sensor and small prototyping area as seen in Fig.4. On most 
baseboards, the prototyping area is limited. If students are 
going to design and add significant custom hardware in their 
laboratory projects, the breadboard may be a better choice.  

 
Fig. 4. One of the commercial baseboards with network and I/O 
connectors designed for the mbed module. 

 
 

4 Software Development 
   One of the more novel approaches of the mbed project was 
the decision to develop and support a cloud-based compiler 
for C/C++ software development. The compiler can run in 
any web browser as seen in Fig 5.  
 
 

 
 

Fig. 5. The cloud compiler for mbed runs in any web browser. It 
is based on the Keil tools compiler. 

 
 

     Since the mbed module mounts just like a PC USB flash 
drive, it is easy to save new executable files to program the 
device. It runs the file with the newest date whenever you 
push the reset pushbutton on the mbed module. Another 
smaller ARM processor provides the USB flash drive 
interface and controls the main processor chip for debug. The 
firmware in this second interface processor cannot be 
modified by the user.  
     All students in the class can get a free password to setup an 
account on the cloud compiler with space for file storage [7]. 
Course instructors can request and obtain these passwords via 
email. Source files and documentation are saved on the mbed 
server. This means that there is no software to install and 
maintain, and development can move anywhere to any 
machine with a web browser. So students can easily work in 
the lab or at home on their projects. Most students can have a 
“hello world” application running on mbed in under five 
minutes. 
     In addition to the cloud compiler, the API support is also 
innovative. Network drivers, basic file system drivers, and 
easy to use APIs were developed for the NXP1768s on chip 
I/O features. These add higher level support for networking, 
files, PWM, SPI, I2C, Analog I/O, timers, delays, and RS232 
serial ports using simple C++ object oriented library API 
calls.  

 

 

 
Fig. 6. The mbed API web-based documentation for an SPI 
interface and a code example. 

 
 

     Pin names can be used to specify the use of individual pins 
on the mbed module. Most pins can have four different 
programmable functions on the processor. The C++ object 
oriented APIs are able to automatically configure 
multifunction pins based solely on the pin names and the APIs 
used. Most students are able to hookup new I/O device 
hardware without ever checking the detailed data sheet for the 
device.  



     Along with the cloud compiler, the mbed website contains 
a number of helpful resources for students. Each student gets 
a notebook area where they can save documentation about a 
project. The handbook page contains an online API reference 
manual for the mbed I/O functions [9]. The documentation 
page for the SPI library API is seen in Fig. 6. There is an 
active user forum where students can post questions [10]. An 
extensive Wiki site contains documentation and code 
examples provided by users [6]. Code examples and projects 
can be easily imported from other users on the mbed web 
server with a few mouse clicks. 
 
5 Laboratory Assignments and Projects 
      The topics for laboratory work will vary significantly at 
each school depending on the student’s background and the 
goals of each individual course. Our class was oriented to 
embedded systems design and it contained a mixture of EE, 
CmpE, and a few CS undergraduates. Students had previously 
taken a digital logic design class, introduction to computer 
architecture, and C/C++ programming. Each laboratory 
assignment is two weeks for a total effort of around 6 hours. 
Students work in teams of two. Our institution provides 
Tsquare for web-based distribution of course materials and 
grades. Portions of Tsquare are based on the widely used 
Sakai Project. Tsquare was used to distribute mbed 
passwords, announcements, laboratory assignments, course 
materials, and grades.    
      In our course, we use mbed for two laboratory 
assignments followed by a short design project. We started 
out with a basic introductory lab where students used mbed 
for digital I/O, used PWM to dim an LED, added an I/O port 
expander, and used power management to reduce power 
levels by adapting C/C++ examples from the mbed wiki 
pages. For extra credit, they could add a watchdog timer or go 
back and use ARM assembly language instead of C/C++ for 
the basic digital I/O LED blink demo. Using assembly 
language made them appreciate the productivity gains using 
the C/C++ compiler and mbed’s I/O API support. ARM 
assembly language development is possible using standard *.s 
files in the cloud compiler [7].  
     The free evaluation version of the Keil tools compiler can 
also be used for I/O emulation and assembly language 
debugging offline. It is limited to 32K code size. The cloud-
based compiler is based on the Keil tools compiler, so 
projects can be moved offline and back to the cloud compiler. 
     In the second laboratory experiment, students connected a 
number of different interfaces and devices by adapting several 
of the C/C++ cookbook Wiki code examples (i.e., RS-232, 
I2C, SPI, Analog in and out, USB, Ethernet, LCD text 
display, and a DC motor using PWM) and demoed each one 
working to the TA on a breadboard. The mbed’s higher-level 
C/C++ I/O APIs really save some time here. In the class 
lectures at this time, we were talking about different I/O 
interfaces, so the lab was a good fit with the lectures.  
     After two introductory labs using mbed, we allowed 
students the freedom of a team-based design project where 

they could pick the idea. Instructor and TA approval and 
guidance regarding the scope of the project was required. 
Students post their project documentation using the mbed web 
site’s notebook feature and they are encouraged to include 
photos and video clips. It is surprising the array of different 
ideas that were seen, and students also are more motivated 
when working on their own project idea.  
 
6 Conclusions 
    There were very few software related issues to resolve. 
The cloud compiler with students keeping files on the server 
worked out better than many of our locally running tools and 
no support was required other than initially handing out 
student passwords and enabling network access for the mbed 
modules.  
     One concern we had initially was the support for 
debugging. Hardware breakpoints are not currently supported. 
To debug, the mbed module has four user LEDs, and “printfs” 
can print to a terminal application program running on the PC. 
Most of our problems occurred from students not wiring up 
all of the jumper wires correctly and not issues with 
debugging program code.  
     It is also possible to compile, set breakpoints, and emulate 
code and I/O offline using the Keil Tools compiler. Only a 
couple of students doing low-level hardware coding for their 
design project have needed to use this approach. The editing 
features available in the browser-based cloud compiler are a 
bit limited, but they seem to be rapidly improving with time. 
      Students need to pick a design project idea early in the 
term to allow time for any custom parts that might have to be 
ordered to arrive. It is also a good idea to remind students to 
check and only order parts that are in stock so that they arrive 
in time.  
     

 
 

 
 

Fig 7. A student pong game project using a color LCD breakout 
board. The LCD is similar to those found in many cell phones. 

 



 
 
Fig 8. A two-wheel self-balancing robot project using DC 
motors with H-bridge breakout boards using PWM speed 
control, quadrature encoders, and a MEMs gyro and 
accelerometer breakout board with  a PID control loop. 
 
 
 

 
 

Fig. 9 An mbed-based internet radio built using Ethernet, USB, 
stereo audio jack, and MP3 audio decoder breakout boards. 

 
 
     Supporting all of the different design projects will require 
a larger assortment of sensor, drivers, and breakout boards 
than a more structured lab. The good news is that all of the 
parts unplug and can be reused for next term minus the few 
that get destroyed or lost. Surprisingly, so far with almost a 
hundred students no one has destroyed an mbed module. We 
did have a USB cable short out and lost a couple of the 
breakout boards. 
     Several examples of student design projects are seen in 
Figs. 7, 8, and 9. They include a pong game using a color 
LCD, a self-balancing robot, and an internet radio. All were 
built using the mbed module on a student breadboard using 
only commercially available breakout boards and jumper 
wires.  Examples of many of the design projects from the 
class can be found in the mbed site’s wiki pages under 
Student Projects [11].  

     A wide range of interesting devices were successfully 
prototyped for the design projects and approximately half of 
the projects used the internet.  A number of students have also 
chosen to use mbed again in their team-based senior design 
project after taking the class. 
 
7 References 
[1] M. Barr, “Real men program in C”, Embedded Systems 
Design, 2009 [Online]. Available: http://www.embedded-
systems.com/design/218600142  
 
[2] ECE 4180 Embedded Systems Design [Online] Available: 
http://www.ece.gatech.edu/~hamblen/4180  
 
[3] Ashlee Vance, “You Too Can Join the Internet Of 
Things”, New York Times, September 20, 2010. Available: 
http://bits.blogs.nytimes.com/2010/09/20/you-too-can-join-
the-internet-of-things/   
 
[4] S. Ford, Rapid Prototyping for Microcontrollers,[Online]. 
Available: http://mbed.org/media/press/mbed_whitepaper.pdf 
 
[5] ARM University Program [Online]. Available: 
http://www.arm.com/support/university/ 
 
[6] J. Hamblen, “IC Sensor and Driver Breakout Boards” 
[Online]. Available:  http://mbed.org/cookbook/IC-Sensor-
and-Driver-Breakout-Boards 
  
[7] Mbed Cookbook Wiki [Online]. Available: 
http://mbed.org/cookbook/Homepage 
 
[8] Mbed Educational Program [Online]. Available: 
http://mbed.org/handbook/Education 
 
[9] Mbed Handbook [Online]. Available: 
http://mbed.org/handbook/Homepage  
 
[10] Mbed Forum [Online]. Available: http://mbed.org/forum/ 
 
[11] J. Hamblen, “Mbed Student Projects”, 2011 [Online]. 
Available: http://mbed.org/cookbook/Student-Projects 
  
 


