
Laboratory Exercise 6

The purpose of this exercise is to investigate latches, flip-flops, and counters.

Part I

Altera FPGAs include flip-flops that are available for implementing a user’s circuit. We will show how to make
use of these flip-flops in Parts IV to VII of this exercise. But first we will show how storage elements can be
created in an FPGA without using its dedicated flip-flops.

Figure 1 depicts a gated RS latch circuit. Two styles of Verilog code that can be used to describe this circuit
are given in Figure 2. Part a of the figure specifies the latch by instantiating logic gates, and part b uses logic
expressions to create the same circuit. If this latch is implemented in an FPGA that has 4-input lookup tables
(LUTs), then only one lookup table is needed, as shown in Figure 3a.

R

S

Clk

S_g

Qa (Q)
R_g

Qb

Figure 1. A gated RS latch circuit.

// A gated RS latch
module part1 (Clk, R, S, Q);

input Clk, R, S;
output Q;

wire R g, S g, Qa, Qb /* synthesis keep */ ;

and (R g, R, Clk);
and (S g, S, Clk);
nor (Qa, R g, Qb);
nor (Qb, S g, Qa);

assign Q = Qa;

endmodule

Figure 2a. Instantiating logic gates for the RS latch.

1



// A gated RS latch
module part1 (Clk, R, S, Q);

input Clk, R, S;
output Q;

wire R g, S g, Qa, Qb /* synthesis keep */ ;

assign R g = R & Clk;
assign S g = S & Clk;
assign Qa = !(R g | Qb);
assign Qb = !(S g | Qa);

assign Q = Qa;

endmodule

Figure 2b. Specifying the RS latch by using logic expressions.

Although the latch can be correctly realized in one 4-input LUT, this implementation does not allow its internal
signals, such as R g and S g, to be observed, because they are not provided as outputs from the LUT. To preserve
these internal signals in the implemented circuit, it is necessary to include a compiler directive in the code. In
Figure 2 the directive /* synthesis keep */ is included to instruct the Quartus II compiler to use separate logic
elements for each of the signals R g, S g, Qa, and Qb. Compiling the code produces the circuit with four 4-LUTs
depicted in Figure 3b.

R

S

Clk

S_g

Qa (Q)R_g

Qb

(a) Using one 4-input lookup table for the RS latch.

(b) Using four 4-input lookup tables for the RS latch.

Qa (Q)R

S
Clk 4-LUT

4-LUT

4-LUT

4-LUT

4-LUT

Figure 3. Implementation of the RS latch from Figure 1.

Create a Quartus II project for the RS latch circuit as follows.

1. Create a new project for the RS latch. Select as the target chip the Cyclone II EP2C35F672C6, which is the
FPGA chip on the Altera DE2 board.

2



2. Generate a Verilog file with the code in either part a or b of Figure 2 (both versions of the code should
produce the same circuit) and include it in the project.

3. Compile the code. Use the Quartus II RTL Viewer tool to examine the gate-level circuit produced from the
code, and use the Technology Viewer tool to verify that the latch is implemented as shown in Figure 3b.

4. Create a Vector Waveform File (.vwf) which specifies the inputs and outputs of the circuit. Draw waveforms
for the R and S inputs and use the Simulator to produce the corresponding waveforms for R g, S g, Qa, and
Qb. Verify that the latch works as expected using both functional and timing simulation.

Part II

Figure 4 shows the circuit for a gated D latch.

S

R

Clk

D S_g

R_g

Qa (Q)

Qb

Figure 4. Circuit for a gated D latch.

Perform the following steps:

1. Create a new Quartus II project. Generate a Verilog file using the style of code in Figure 2b for the gated D
latch. Use the /* synthesis keep */ directive to ensure that separate logic elements are used to implement the
signals R, S g, R g, Qa, and Qb.

2. Select as the target chip the Cyclone II EP2C35F672C6 and compile the code. Use the Technology Viewer
tool to examine the implemented circuit.

3. Verify that the latch works properly for all input conditions by using functional simulation. Examine the
timing characteristics of the circuit by using timing simulation.

4. Create a new Quartus II project which will be used for implementation of the gated D latch on the DE2
board. This project should consist of a top-level module that contains the appropriate input and output ports
(pins) for the DE2 board. Instantiate your latch in this top-level module. Use switch SW 0 to drive the D
input of the latch, and use SW1 as the Clk input. Connect the Q output to LEDR0.

5. Test the functionality of your circuit by toggling the D and Clk switches and observing the Q output.

Part III

Figure 5 shows the circuit for a master-slave D flip-flop.

3



D Q

Q

Master Slave

D

Clock

Q

Q

D Q

Q

Qm Qs

ClkClk

Figure 5. Circuit for a master-slave D flip-flop.

Perform the following.

1. Create a new Quartus II project. Generate a Verilog file that instantiates two copies of your gated D latch
module from Part II to implement the master-slave flip-flop.

2. Include in your project the appropriate input and output ports for the Altera DE2 board. Use switch SW 0 to
drive the D input of the flip-flop, and use SW1 as the Clock input. Connect the Q output to LEDR0.

3. Use the Technology Viewer to examine the D flip-flop circuit, and use simulation to verify its correct oper-
ation.

4. Download the circuit onto the Altera board and test its functionality by toggling the D and Clock switches
and observing the Q output.

Part IV

Figure 6 shows a circuit with three different storage elements: a gated D latch, a positive-edge triggered D flip-
flop, and a negative-edge triggered D flip-flop.

4



D Q

D Q

D Q

D

Clock

Qc

Qb

Qa

Clk

Clock

D

Figure 6. Circuit and waveforms for Part IV.

Implement and simulate this circuit using Quartus II software as follows:

1. Create a new project.

2. Write a Verilog file that instantiates the three storage elements. For this part you should no longer use the /*
synthesis keep */ directive from Parts I to III. Figure 7 gives a behavioral style of Verilog code that specifies
the gated D latch in Figure 4. This latch can be implemented in one 4-input lookup table. Use a similar style
of code to specify the flip-flops in Figure 6.

3. Compile your code and use the Technology Viewer to examine the implemented circuit. Verify that the
latch uses one lookup table and that the flip-flops are implemented using the flip-flops provided in the target
FPGA.

4. Create a Vector Waveform File (.vwf) which specifies the inputs and outputs of the circuit. Draw the inputs
D and Clock as indicated in Figure 6. Use functional simulation to obtain the three output signals. Observe
the different behavior of the three storage elements.

module D latch (input D, Clk, output Q);
reg Q;
always @ (D or Clk)

if (Clk)
Q = D;

endmodule

Figure 7. A behavioral style of Verilog code that specifies a gated D latch.

5



Part V

Consider the circuit in Figure 8. It is a 4-bit synchronous counter which uses four T-type flip-flops. The counter
increments its count on each positive edge of the clock if the Enable signal is asserted. The counter is reset to 0 by
using the Reset signal. You are to implement a 16-bit counter of this type.

T Q

Clock

T QEnable

Reset

T Q T Q

Figure 8. A 4-bit counter.

1. Write a Verilog file that defines a 16-bit counter by using the structure depicted in Figure 8, and compile
the circuit. How many logic elements (LEs) are used to implement your circuit? What is the maximum
frequency, Fmax, at which your circuit can be operated?

2. Simulate your circuit to verify its correctness.

3. Augment your Verilog file to use the pushbutton KEY0 as the Clock input, switches SW1 and SW0 as
Enable and Reset inputs, and 7-segment displays HEX3-0 to display the hexadecimal count as your circuit
operates. Make the necessary pin assignments and compile the circuit.

4. Implement your circuit on the DE2 board and test its functionality by operating the implemented switches.

5. Implement a 4-bit version of your circuit and use the Quartus II RTL Viewer to see how Quartus II software
synthesized your circuit. What are the differences in comparison with Figure 8?

Part VI

Simplify your Verilog code so that the counter specification is based on the Verilog statement:

Q <= Q + 1;

Compile a 16-bit version of this counter and compare the number of LEs needed and the Fmax that is attainable.
Use the RTL Viewer to see the structure of this implementation and comment on the differences with the design
from Part V.

Part VII

Use an LPM from the Library of Parameterized modules to implement a 16-bit counter. Choose the LPM options
to be consistent with the above design, i. e. with enable and synchronous clear. How does this version compare
with the previous designs?

Copyright c©2005 Altera Corporation.

6


