SCORE:________

Name:__________________________________________

ECE 4100/6100 Advanced Computer Architecture

Test II – Summer 2004
1. (20 points) A program executes a loop twenty times. If a 2-bit predictor is assigned to this loop and no aliasing occurs in the BHT with another branch, calculate the prediction accuracy. Assume all of the predictors are initialized to not taken the 00 state at power up and this is the first time the loop is executed and the first time this 2-bit predictor is accessed after power up. The conditional branch is at the bottom of the loop.
2 initial incorrect + 1 final =  17/20
Branch Prediction Rate = ___85_________%

What would happen if static branch prediction (like the PIV) was used to initially set the 2-bit predictor to the taken 11 state initially after power up whenever it first sees a conditional branch that jumps backwards? (Note: This would likely require some extra hardware in the BHT, but just assume it can do it)
Only final prediction would be incorrect = 19/20
Branch Prediction Rate = ___95_________%

2. (20 points) A single-issue processor has a pipeline CPI of 1.5 and a cache miss rate of 5% per instruction and a 4Ghz clock. A dual-issue version of the processor from another company has a pipeline CPI of 0.8 and a clock rate of 3Ghz, but with a cache miss rate of 7%. The main memory access time is 10ns for a miss. Compute the MIPS performance of the two processors including both pipeline and cache CPI effects.

CPIs = 1.5 +.05*10ns/.25ns = 3.5 overall
CPId = .8 +.07*10ns/.33ns = 2.9 overall

4Ghz/3.5 = 1142 MIPS
3Ghz/2.9 = 1034 MIPS
Single-Issue execution rate 
= ____1142______ MIPS

Dual-Issue execution rate 
= ____1034______ MIPS
3.  (30 points) Show how the following program with execute on this dual-issue dynamically scheduled processor with speculation for two loop iterations. Fill in the information and clock cycles in the table below. The machine has six reservation stations on each functional unit, branch prediction, two CDBs, and a reorder buffer that holds 16 instructions. The I cache can read a pair of instructions per clock assuming that they are from sequential even and odd addresses. Assume in-order commit and two integer ALUs for L/S/Bxx. The floating point units must wait several clocks as seen in the table below before handling another operation (i.e. not fully pipelined).
Loop:
L.D

F0, 0(R1)


MUL.D
F4, F0, F2


S.D

F4, 0(R1)


DADDIU
R1, R1#-8


BNE

R1, R2, Loop

Instruction
Execute Stage Clocks

Integer Ops
1

FP Multiply
5

FP Add
2

Load

1

Store

1

	Iteration
	Instruction
	Issue 
	Execute
	Read
	Write CDB
	Commits

	1
	L.D
	1
	2
	3
	4
	5

	1
	MUL.D
	1
	5-9
	
	10
	11

	1
	S.D
	2
	3
	
	
	12

	1
	DADDUI
	2
	3
	
	4
	12

	1
	BNE
	3
	5
	
	
	13

	2
	L.D
	4
	5
	6
	7
	13

	2
	MUL.D
	4
	11-15
	
	16
	17

	2
	S.D
	5
	17
	
	
	18

	2
	DADDUI
	5
	6
	
	7
	18

	2
	BNE
	6
	8
	
	
	19

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	


What would happen differently in this program, if the processor did not speculate?

The processor would have to stall until each branch is complete – slowing down the code be several clocks.
4. (20 points) Assume you are using a vector processor with Vxxx instructions like those from our class examples. The machine has a maximum vector length of 64 and vector registers V0..V7. Convert to C code shown below to vector instructions. The A, B, and C arrays are in memory and the new value of the A array must be returned to memory by your code. Assume a special instruction LVL x is used to load the vector length of x. Assume R1, R2, and R3 point to the first elements of A, B and C. 
For (i=1, i<=25, i++)
 A[i] = A[i] + (B[i] * C[i]);
;Vector code for above.

LVL 
25
L.V
V1, R2

L.V
V2, R3

L.V
V0, R1

VMUL
V3,V1,V2
VADD V0,V0,V3

S.V
V0, R1

Explain what would happen if the loop needed to be executed 1000 times (full code is not required)? 
Would need to loop 1000/MVL times and then run clean-up code 1000 Mod MVL vector length at the end.

5. (10 points) The P6 and PIV processors execute X86 CISC instructions that require several operations. This makes them a bit complicated to pipeline and handle hazards. How did Intel’s designers solve this problem?

The are decoded into several simple RISC like operations called micro-ops
Along this same idea/issue, what did the PIV designers do to speed up this process a bit?

The execution trace cache holds decoded micro-ops so they can skip X86 to micro-op decode when it’s in the cache.

