ECE3710C/D: Circuits and Electronics

M/W 6:05 – 6:55 PM IC 105
Instructor Douglas DesCamps
Office Hours M/W 7-8PM
Email: gtg051d@prism.gatech.edu
Textbook: Electrical Engineering by Hambley

Course Prerequisite: Phys 2122. Not for electrical or computer engineering students.

Course Objective: An introduction to electrical circuit elements and electronic devices and a study of circuits containing such devices. Both analog and digital systems are considered.

Homework: May consult other students. No homework will be collected. Quizzes will cover and reinforce concepts covered in the homework.

Exams: You may bring a one-sided 8.5” x 11” sheet to the exams. This sheet must be hand written. No printed sheets or photocopies will be allowed. An additional sheet may be added for each consecutive exam.

Final Exam: The final exam will be a three hour exam. The final will be held at 6:00PM, April 26, 2004.

Grading:
Quizzes 10%
Exam 1 20% Feb 4
Exam 2 20% Feb 25
Exam 3 20% Mar 31
Final Exam 30% Apr 26

Make-up exams: There will be no makeup exams unless coordinated in advance with a valid reason or a note from the Georgia Tech Health Center.

Honor Code: Violations of the honor policy will result in automatic course failure. Refer to the school honor policy for further information.

Professionalism: Students are expected to maintain professionalism at all times. Unprofessional conduct will be reflected in the student’s final grade.

In Conclusion: (a quote from my good friend and brilliant engineer, Alan Michaels)

“The number one concern is that you learn a working engineer’s vocabulary to relate electrical engineering to your field of expertise and are subsequently able to apply it to the EIT exam and general performance in coming years as a helluva engineer ☺”
TOPIC OUTLINE

DC Circuit Analysis

Independent and Dependent Sources
 Kirchhoff’s Laws
 Node Analysis
 Loop Analysis
 Thevenin’s and Norton’s Theorems

AC Circuit Analysis
 Energy Storage in Capacitors and Inductors
 Sinusoidal Analysis and Impedance
 Resonance

Power in AC
 Effective Values
 Real, Reactive, and Apparent Power
 Power Factor
 Three-Phase Power

Introduction to Electronics
 Ideal Diodes
 p-n Junction Transistors
 BJT Switching and Amplifiers
 Junction Field-Effect Transistors
 JFET Switches and Amplifiers

Digital Electronics
 Introduction to Digital Electronics
 Logic Circuits
 Boolean Representation and DeMorgan’s Theorems
 Sequential Systems

Analog Electronics
 Operational Amplifiers
 Operational Amplifier Circuits
 Filters and Communication Systems
 Transformers