
1

The ARM Architecture

2

Agenda

 Introduction to ARM Ltd

ARM Architecture/Programmers Model

Data Path and Pipelines

AMBA/GPU

IEM

Development Tools

3

ARM Ltd

 Founded in November 1990

 Spun out of Acorn Computers

 Designs the ARM range of RISC processor cores

 Licenses ARM core designs to semiconductor
partners who fabricate and sell to their customers.

 ARM does not fabricate silicon itself

 Also develop technologies to assist with the design-
in of the ARM architecture

 Software tools, boards, debug hardware,
application software, bus architectures,
peripherals etc

4

ARM’s Activities

memorymemory

SoCSoC

Processors

System Level IP:

Data Engines

Fabric

3D Graphics

Physical IP

Software IP

Development Tools

Connected Community

5

ARM Connected Community – 550+

5

6

Nokia N95 Multimedia Computer

Symbian OS™ v9.2
Operating System supporting ARM
processor-based mobile devices,

developed using ARM® RealView®
Compilation Tools

OMAP™ 2420
Applications Processor

ARM1136™ processor-based
SoC, developed using Magma ®

Blast® family and winner of

2005 INSIGHT Award for ‘Most
Innovative SoC’

Connect. Collaborate. Create.

Mobiclip™ Video Codec
Software video codec for ARM

processor-based mobile devices

ST WLAN Solution
Ultra-low power 802.11b/g WLAN

chip with ARM9™ processor-based
MAC

S60™ 3rd Edition

S60 Platform supporting ARM
processor-based mobile devices

7 7

Applications

8

9

Agenda

Introduction to ARM Ltd

 ARM Architecture/Programmers Model

Data Path and Pipelines

AMBA/GPU

IEM

Development Tools

10 10

ARMv4

Architecture Versions

x1-4

ARMv5

ARMv6

ARMv7-Cortex

ARM966E-S™

SC200™ARM7EJ-S™

ARM922T™

SC100™

ARM920T™

ARM7TDMI(S)™

ARM1176JZ(F)-S™

ARM1156T2(F)-S™

ARM1136J(F)-S™

ARM1026EJ-S™

ARM968E-S™

ARM926EJ-S™

ARM946E-S™

x1-4

Cortex-A9

SC300™

Cortex-M1

Cortex™-M3

Cortex-R4

Cortex-R4F

Cortex-A8

ARM11™ MPCore™

11

Relative Performance*

*Represents attainable speeds in 130, 90 or 65nm processes

0

200

400

600

800

1000

1200

Freq (MHz)

C
o

rt
e

x
A

8

A
R

M
1
1
7

6
J
Z

-S

A
R

M
9
2
6

E
J
-S

A
R

M
9
2
0

T

A
R

M
7

T
D

M
I

A
R

M
1
1
3

6
J
-S

A
R

M
1
0
2

6
E

J
-S

0.43

0.36

0.568

0.335

0.235

0.25
0.35

mW/MHz

12

ARM9E Processor Core

 ARM9E is based on the ARM9TDMI core

 Core implementation differences

 Architecture V5TE support

 Single cycle 32x16 multiplier implementation

 EmbeddedICE Logic RT

 ARM926EJ-S / ARM946E-S

 Configurable Instruction and Data caches

 Instruction and Data TCM Interfaces

 AHB bus interface

 ARM926EJ-S has MMU

 ARM946E-S has MPU

 ARM966E-S

 Instruction and Data TCM Interfaces

 No Cache or MPU/MMU

13

Cortex family

Cortex-A8

 Architecture v7A

 MMU

 AXI

 VFP & NEON support

Cortex-R4

 Architecture v7R

 MPU (optional)

 AXI

 Dual Issue

Cortex-M3

 Architecture v7M

 MPU (optional)

 AHB Lite & APB

14

ARM Cortex-M1 Processor

 High frequency, low area microcontroller processor for FPGA

 Between 70MHz – 200MHz (depending on FPGA device)

 Occupies less than 15% area on the most popular FPGA device sizes

 Cortex-M1 upwards compatible with Cortex family on ASIC/ASSP/MCU

 Performance will continue to increase as FPGA technology progresses

 Optimized for synthesis on multiple FPGA types

 Xilinx (e.g. Spartan-3, Virtex-5)

 Altera (e.g. Cyclone-II, Stratix-III)

 Actel (M1 ProASIC3 and M1 Fusion)

15

ARM11 MPCore

 Synthesizable

 1 – 4 MP11 processors

 With associated timers &
interfaces

 With or without VFP11
coprocessor

 ARM v6K compliant

 Configurable interrupt inputs

 0 – 224 in steps of 32

 Programmable distribution to
MP11s

 Support for SMP or AMP

 MESI-based cache coherency

 1 or 2 AXI interfaces to level 2

 64-bit data buses

 IEM Ready

 Program Trace using ETMs

MP11 MP11 MP11 MP11

16

ARM and Thumb Performance

Memory width (zero wait state)

0

5000

10000

15000

20000

25000

30000

32-bit 16-bit 16-bit with

32-bit stack

ARM

Thumb

Dhrystone 2.1/sec
@ 20MHz

17

Thumb-2 Instruction Set

 Second generation of the Thumb architecture
 Blended 16-bit and 32-bit instruction set

 25% faster than Thumb

 30% smaller than ARM

 Increases performance but maintains code
density

 Maximizes cache and tightly coupled memory
usage

EEMBC Analysis - Performance

EEMBC Analysis – Code Size

18

Processor Modes

 The ARM has seven basic operating modes:

 User : unprivileged mode under which most tasks run

 FIQ : entered when a high priority (fast) interrupt is raised

 IRQ : entered when a low priority (normal) interrupt is raised

 Supervisor : entered on reset and when a Software Interrupt

instruction is executed

 Abort : used to handle memory access violations

 Undef : used to handle undefined instructions

 System : privileged mode using the same registers as user mode

19

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ IRQ SVC Undef Abort

User Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

FIQ IRQ SVC Undef Abort

r0

r1

r2

r3

r4

r5

r6

r7

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User IRQ SVC Undef Abort

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

FIQ ModeIRQ Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ SVC Undef Abort

r13 (sp)

r14 (lr)

Undef Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Abort

r13 (sp)

r14 (lr)

SVC Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ Undef Abort

r13 (sp)

r14 (lr)

Abort Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)

r14 (lr)

The ARM Register Set

20

Vector Table

Exception Handling

 When an exception occurs, the ARM:

 Copies CPSR into SPSR_<mode>

 Sets appropriate CPSR bits

 Change to ARM state

 Change to exception mode

 Disable interrupts (if appropriate)

 Stores the return address in LR_<mode>

 Sets PC to vector address

 To return, exception handler needs to:

 Restore CPSR from SPSR_<mode>

 Restore PC from LR_<mode>

This can only be done in ARM state.

Vector table can be at

0xFFFF0000 on ARM720T

and on ARM9/10 family devices

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

21

Program Status Registers

 Condition code flags

 N = Negative result from ALU

 Z = Zero result from ALU

 C = ALU operation Carried out

 V = ALU operation oVerflowed

 Sticky Overflow flag - Q flag

 Architecture 5TE/J only

 Indicates if saturation has occurred

 J bit

 Architecture 5TEJ only

 J = 1: Processor in Jazelle state

 Interrupt Disable bits.

 I = 1: Disables the IRQ.

 F = 1: Disables the FIQ.

 T Bit

 Architecture xT only

 T = 0: Processor in ARM state

 T = 1: Processor in Thumb state

 Mode bits

 Specify the processor mode

2731

N Z C V Q

28 67

I F T mode

1623 815 5 4 024

f s x c

U n d e f i n e dJ

22

Cortex-M3 Programmer’s Model

 Fully programmable in C

 Stack-based exception model

 Only two processor modes

 Thread Mode for User tasks

 Handler Mode for OS tasks and exceptions

 Vector table contains addresses

Process

r8

r9

r10

r11

r12

sp

lr

r15 (pc)

xPSR

r0

r1

r2

r3

r4

r5

r6

r7

Main

sp

23

 ARM instructions can be made to execute conditionally by postfixing them with the
appropriate condition code field.

 This improves code density and performance by reducing the number of
forward branch instructions.

CMP r3,#0 CMP r3,#0
BEQ skip ADDNE r0,r1,r2
ADD r0,r1,r2

skip

 By default, data processing instructions do not affect the condition code flags but
the flags can be optionally set by using “S”. CMP does not need “S”.

loop
…
SUBS r1,r1,#1
BNE loop if Z flag clear then branch

decrement r1 and set flags

Conditional Execution and Flags

24

Load/Store

Miscellaneous

Classes of Instructions (v4T)

Data Operations

MOV PC, Rm

Bcc

BL

BLX

Change of Flow

25

 Branch : B{<cond>} label

 Branch with Link : BL{<cond>} subroutine_label

 The processor core shifts the offset field left by 2 positions, sign-extends it
and adds it to the PC

 ± 32 Mbyte range

 How to perform longer branches?

2831 24 0

Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
1 = Branch with link

232527

Branch instructions

26

Data processing Instructions

 Consist of :

 Arithmetic: ADD ADC SUB SBC RSB RSC

 Logical: AND ORR EOR BIC

 Comparisons: CMP CMN TST TEQ

 Data movement: MOV MVN

 These instructions only work on registers, NOT memory.

 Syntax:

<Operation>{<cond>}{S} Rd, Rn, Operand2

 Comparisons set flags only - they do not specify Rd

 Data movement does not specify Rn

 Second operand is sent to the ALU via barrel shifter.

27

Register, optionally with shift operation

 Shift value can be either be:

 5 bit unsigned integer

 Specified in bottom byte of
another register.

 Used for multiplication by constant

Immediate value

 8 bit number, with a range of 0-255.

 Rotated right through even
number of positions

 Allows increased range of 32-bit
constants to be loaded directly into
registersResult

Operand
1

Barrel
Shifter

Operand
2

ALU

Using a Barrel Shifter:The 2nd Operand

28

Single register data transfer

LDR STR Word

LDRB STRB Byte

LDRH STRH Halfword

LDRSB Signed byte load

LDRSH Signed halfword load

 Memory system must support all access sizes

 Syntax:

 LDR{<cond>}{<size>} Rd, <address>

 STR{<cond>}{<size>} Rd, <address>

e.g. LDREQB

29

Agenda

Introduction to ARM Ltd

ARM Architecture/Programmers Model

 Data Path and Pipelines

AMBA/GPU

IEM

Development Tools

30

Multiplier

The ARM7TDM Core

Instruction

Decoder

Address
Incrementer

nRESET

nMREQ
SEQ

ABORT

nIRQ
nFIQ

nRW
MAS[1:0]

LOCK

nCPI
CPA
CPB

nWAIT
MCLK

nOPC

BIGEND

ISYNC

nTRANS

nM[4:0]

D[31:0]

Barrel
Shifter

32 Bit ALU

DBE

Write Data
Register

Read Data
Register

Address Register

Register Bank

A[31:0]ABE

and

Control
Logic

PC Update

Decode Stage

Instruction
Decompression

Incrementer

P
C

A

B

u

s

B

B

u

s

A

L

U

B

u

s

31

ARM9E-S Datapath

Register
Bank

C

B

A

DAIA

Data
Interface

WDATA

Instruction
Address

Logic

Data
Address

Logic

Mul

Mux
Array

ALU

Barrel
Shifter

Instruction Decoder
INSTR

RDATA

32

Pipeline changes for ARM9TDMI

Instruction
Fetch

Shift + ALU Memory
Access

Reg
WriteReg

Read
Reg

Decode

FETCH DECODE EXECUTE MEMORY WRITE

ARM9TDMI

ARM or Thumb
Inst Decode

Reg Select

Reg
Read

Shift ALU
Reg

Write
ThumbARM
decompress

ARM decode
Instruction

Fetch

FETCH DECODE EXECUTE

ARM7TDMI

33

ARM10 vs. ARM11 Pipelines

ARM11

Fetch
1

Fetch
2

Decode Issue

Shift ALU Saturate

Write
back

MAC
1

MAC
2

MAC
3

Address
Data

Cache
1

Data
Cache

2

Shift + ALU
Memory
Access Reg

Write

FETCH DECODE EXECUTE MEMORY WRITE

Reg Read

Multiply

Branch
Prediction

Instruction
Fetch

ISSUE

ARM or
Thumb

Instruction
Decode Multiply

Add

ARM10

34

Full Cortex-A8 Pipeline Diagram

13-Stage Integer Pipeline 10-Stage NEON Pipeline

A
rch

ite
ctu

ra
lre

g
iste

r
file

N
E

O
N

re
g
iste

r
file

35

Agenda

Introduction to ARM Ltd

ARM Architecture/Programmers Model

Data Path and Pipelines

 AMBA/GPU
IEM

Development Tools

36

High Performance
ARM processor

High-bandwidth
on-chip RAM

High
Bandwidth

External
Memory
Interface

DMA
Bus Master

APB
Bridge

Keypad

UART

PIO

TimerAHB

APB

High Performance
Pipelined
Burst Support
Multiple Bus Masters

Low Power
Non-pipelined
Simple Interface

An Example AMBA System

37

HWDATA

Arbiter

Decoder

Master
#1

Master
#3

Master
#2

Slave
#1

Slave
#4

Slave
#3

Slave
#2

Address/Control

Write Data

Read Data

HADDR

HWDATA

HRDATA

HADDR

HRDATA

AHB Structure

38

AHB basic signal timing

HCLK

HADDR

HWRITE

HWDATA

HRDATA

HRESP

HREADY

Address Phase
A

Data Phase A
Address Phase B

A

A

A

A

Data Phase B

C

C

B

B

B

B

OKAY A OKAY B

39

Mali200 + GP2 SoC Integration

Mali 200

MMUAXI

APB

Clock

Reset

IRQs

IDLEs

 Shipped as synthesizable
Verilog

 Mali 200 + GP2 requires a
single instant in the SoC,
with a small number of
connections to be made.

 IDLES can be used for
gating the Mali200 and GP2
core clock

Mali GP2

AXI Fabric

40

Typical GPU SoC Design

ARM1176JZF

L230

Mali 200 Mali GP2

CLCD
PL111

PL301 High-performance matrix

SDRAMC
PL340

APB Peripheral Sub-System

D I

APB

MS

Sys
Ctrl

nRst

M

PL390

GIC

Int

DDR
PHY

 Designed and optimised for AMBA: provides easier integration with ARM cores and fabric IP

 Unified Memory Architecture

Local AXI Interconnect

Mali
MMU

41

Agenda

Introduction to ARM Ltd

ARM Architecture/Processors/Programmers Model

Data Path and Pipelines

AMBA/GPU

 IEM

Development Tools

42

Task
completed

Clocking

 Systems are usually designed for maximum speed but this
might only be utilized for certain tasks

CLK

Task
deadline

CLK

Task
completed

Task
launch

IDLE TIME

43

Voltage

 Lowering clock frequency introduces more slack into register-to-register
timing

 Slack can be utilized by lower voltage for system causing Tc to increase
but energy usage to decrease

L

clk

Tc

clk

Tc

Vddmax

Freqmax

Tc

clk

slack

Vddmax

Freq

Tc

clk

slack

Vdd

Freq

44

IEM Software

 IEM-enabled OS

 Analyses historical performance required for tasks

 Policies and algorithms

 Performance targets forward to IEM hardware as percentage

of maximum

45

IEM Infrastructure

ARM processor

OS +
IEM s/w

App

Intelligent

Energy

Controller

(IEC)

* Hardware Performance Monitor (optional)

HPM *

Power

Supply

Unit

(PSU)

Vsoc

Dynamic

Voltage

Controller

(DVC)

V
o

lta
g

e
&

F
re

q
A

rb
ite

r

Voltage & Freq Arbiter

Vcore

Dynamic

Clock

Generator

(DCG)

Clock
System clocks
Resets

Performance requests Current level

46

IEM

 Intelligent Energy Manager works by changing voltage and clock rate to

match the performance required to complete the task

 Can yield a quadratic saving in energy usage for a given task

 Better than just clock gating/scaling

 Saving in leakage current from voltage reduction

P = Cvdd
2f + vddIleak

where is the dynamic component due to switching

where is the static component due to leakage

where E = ENERGY

Cvdd
2f

vddIleak

E = ∫Pdt

47

Agenda

Introduction to ARM Ltd

ARM Architecture/Programmers Model

Data Path and Pipelines

AMBA/GPU

IEM

 Development Tools

48

ARM Debug Architecture

ARM
core

ETM

TAP
controller

Trace PortJTAG port

Ethernet

Debugger (+ optional

trace tools)

 EmbeddedICE Logic

 Provides breakpoints and processor/system
access

 JTAG interface (ICE)

 Converts debugger commands to JTAG
signals

 Embedded trace Macrocell (ETM)

 Compresses real-time instruction and data
access trace

 Contains ICE features (trigger & filter logic)

 Trace port analyzer (TPA)

 Captures trace in a deep buffer

EmbeddedICE
Logic

49

Keil Development Tools for ARM

 Includes ARM macro assembler, compilers (ARM RealView C/C++
Compiler, Keil CARM Compiler, or GNU compiler), ARM linker, Keil uVision
Debugger and Keil uVision IDE

 Keil uVision Debugger accurately simulates on-chip peripherals (I2C, CAN,
UART, SPI, Interrupts, I/O Ports, A/D and D/A converters, PWM, etc.)

 Evaluation Limitations

 16K byte object code + 16K data limitation

 Some linker restrictions such as base addresses for code/constants

 GNU tools provided are not restricted in any way

 http://www.keil.com/demo/

50

Keil Development Tools for ARM

51

52

University Resources

http://www.arm.com/community/university/

University@arm.com

53

Beagle Board

54

$149

> 1000 participants
and growing

Open access to
hardware

documentation

Wikis, blogs,
promotion of
community

activity

Free
software

Freedom to
innovate

Personally
affordable

Active &
technical

community

Opportunity
to tinker and

learn

Instant access to
>10 million lines

of code

Addressing
open source
community

needs

Targeting community development

55

OMAP3530 Processor

 600MHz Cortex-A8

 NEON+VFPv3

 16KB/16KB L1$

 256KB L2$

 430MHz C64x+ DSP

 32K/32K L1$

 48K L1D

 32K L2

 PowerVR SGX GPU

 64K on-chip RAM

POP Memory

 128MB LPDDR RAM

 256MB NAND flash USB Powered
 2W maximum consumption

 OMAP is small % of that
 Many adapter options

 Car, wall, battery, solar, …

Peripheral I/O

 DVI-D video out

 SD/MMC+

 S-Video out

 USB 2.0 HS OTG

 I2C, I2S, SPI,

MMC/SD

 JTAG

 Stereo in/out

 Alternate power

 RS-232 serial

3”

Fast, low power, flexible expansion

56

Peripheral I/O

 DVI-D video out

 SD/MMC+

 S-Video out

 USB HS OTG

 I2C, I2S, SPI,

MMC/SD

 JTAG

 Stereo in/out

 Alternate power

 RS-232 serial

3”

Other Features

 4 LEDs

 USR0

 USR1

 PMU_STAT

 PWR

 2 buttons

 USER

 RESET

 4 boot

sources

 SD/MMC

 NAND flash

 USB

 Serial

On-going collaboration at BeagleBoard.org

 Live chat via IRC for 24/7 community support

 Links to software projects to download

And more…

57

Project Ideas Using Beagle

 OS Projects

 OS porting to ARM/Cortex (TI OMAP), such as open source FreeBSD

 MythTV system

 “Super-Beagle” – stack of Beagles as compute engine and task
distribution

 NEON Optimization Projects

 Codec optimization in ffmpeg (pick your favorite codec)

 Voice and image recognition

 Open-source Flash player optimizations (swfdec)

58

Fin

