
1

The ARM Architecture



2

Agenda

 Introduction to ARM Ltd

ARM Architecture/Programmers Model

Data Path and Pipelines

AMBA

Development Tools



3

ARM Ltd

 Founded in November 1990

 Spun out of Acorn Computers

 Designs a range of RISC processor cores

 Licenses ARM core designs to semiconductor
partners who fabricate and sell to their customers.

 ARM does not fabricate silicon itself

 ARM is not the only company to design cores

 Develops technologies to assist with the design-in of
the ARM architecture

 Software tools, application software

 Development boards, debug hardware

 Bus architectures, peripherals, etc.



4

ARM’s Activities

memorymemory

SoCSoC

Processors
System Level IP:
Data Engines
Fabric
3D Graphics

Physical IP

Software IP

Development Tools

Connected Community



5

ARM Connected Community – 550+

5



6 6

The ARM Business Model

ARM

License fee

IP

ARM creates
IP through
design
activity

Partner

Product
e.g., chip

Partner
combines ARM
IP and Partner IP/
technology
into product

OEM
Customer

Royalty

Unit price

OEM builds
ARM core-
based product
from Partner
into end-
system
product

Business Development / Segment Marketing



7

Nokia N95 Multimedia Computer

Symbian OS™ v9.2
Operating System supporting
ARM processor-based mobile

devices, developed using ARM®
RealView® Compilation Tools

OMAP™ 2420
Applications Processor

ARM1136™ processor-based
SoC, developed using Magma ®

Blast® family and winner of

2005 INSIGHT Award for ‘Most
Innovative SoC’

Connect. Collaborate. Create.

Mobiclip™ Video Codec
Software video codec for ARM

processor-based mobile devices

ST WLAN Solution
Ultra-low power 802.11b/g WLAN

chip with ARM9™ processor-based
MAC

S60™ 3rd Edition

S60 Platform supporting ARM
processor-based mobile devices



8 8

Applications



9



10

Agenda

Introduction to ARM Ltd

 ARM Architecture/Programmers Model

Data Path and Pipelines

AMBA

Development Tools



11 11

ARMv4

Architecture Versions

x1-4

ARMv5

ARMv6

ARMv7-Cortex

ARM966E-S™

SC200™ARM7EJ-S™

ARM922T™

SC100™

ARM920T™

ARM7TDMI(S)™

ARM1176JZ(F)-S™

ARM1156T2(F)-S™

ARM1136J(F)-S™

ARM1026EJ-S™

ARM968E-S™

ARM926EJ-S™

ARM946E-S™

x1-4

Cortex-A9

SC300™

Cortex-M1

Cortex™-M3

Cortex-R4

Cortex-R4F

Cortex-A8

ARM11™ MPCore™



12

Cortex family

Cortex-A8

 Architecture v7A
 MMU
 AXI
 VFP & NEON

support

Cortex-R4
 Architecture v7R
 MPU (optional)
 AXI
 Dual Issue

Cortex-M3

 Architecture v7M
 MPU (optional)
 AHB Lite & APB



13

Relative Performance*

*Represents attainable speeds in 130, 90 or 65nm
processes

0

200

400

600

800

1000

1200

Freq (MHz)

C
o

rt
e

x
A

8

A
R

M
1
1

7
6

J
Z

-S

A
R

M
9

2
6

E
J

-S

A
R

M
9

2
0

T

A
R

M
7

T
D

M
I

A
R

M
1
1

3
6

J
-S

A
R

M
1

0
2

6
E

J
-S

0.43

0.36

0.568

0.335

0.235

0.25
0.35

mW/MHz



14

Data Sizes and Instruction Sets

 The ARM is a 32-bit architecture.

 When used in relation to the ARM:

 Byte means 8 bits

 Halfword means 16 bits (two bytes)

 Word means 32 bits (four bytes)

 Most ARM’s implement two instruction sets

 32-bit ARM Instruction Set

 16-bit Thumb Instruction Set

 Jazelle cores can also execute Java bytecode



15

ARM and Thumb Performance

Memory width (zero wait state)

0

5000

10000

15000

20000

25000

30000

32-bit 16-bit 16-bit with

32-bit stack

ARM

Thumb

Dhrystone 2.1/sec
@ 20MHz



16

Thumb-2 Instruction Set

 Second generation of the Thumb architecture
 Blended 16-bit and 32-bit instruction set

 25% faster than Thumb

 30% smaller than ARM

 Increases performance but maintains code
density

 Maximizes cache and tightly coupled memory
usage

EEMBC Analysis - Performance

EEMBC Analysis – Code Size



17

Processor Modes

 The ARM has seven basic operating modes:

 User : unprivileged mode under which most tasks run

 FIQ : entered when a high priority (fast) interrupt is raised

 IRQ : entered when a low priority (normal) interrupt is raised

 Supervisor : entered on reset and when a Software Interrupt

instruction is executed

 Abort : used to handle memory access violations

 Undef : used to handle undefined instructions

 System : privileged mode using the same registers as user mode



18

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ IRQ SVC Undef Abort

User Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

FIQ IRQ SVC Undef Abort

r0

r1

r2

r3

r4

r5

r6

r7

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User IRQ SVC Undef Abort

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

FIQ ModeIRQ Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ SVC Undef Abort

r13 (sp)

r14 (lr)

Undef Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Abort

r13 (sp)

r14 (lr)

SVC Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ Undef Abort

r13 (sp)

r14 (lr)

Abort Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)

r14 (lr)

The ARM Register Set



19

Vector Table

Exception Handling

 When an exception occurs, the ARM:

 Copies CPSR into SPSR_<mode>

 Sets appropriate CPSR bits

 Change to ARM state

 Change to exception mode

 Disable interrupts (if appropriate)

 Stores the return address in LR_<mode>

 Sets PC to vector address

 To return, exception handler needs to:

 Restore CPSR from SPSR_<mode>

 Restore PC from LR_<mode>

This can only be done in ARM state.
Vector table can be at

0xFFFF0000 on ARM720T

and on ARM9/10 family
devices

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00



20

Program Status Registers

 Condition code flags

 N = Negative result from ALU

 Z = Zero result from ALU

 C = ALU operation Carried out

 V = ALU operation oVerflowed

 Sticky Overflow flag - Q flag

 Architecture 5TE/J only

 Indicates if saturation has occurred

 J bit

 Architecture 5TEJ only

 J = 1: Processor in Jazelle state

 Interrupt Disable bits.

 I = 1: Disables the IRQ.

 F = 1: Disables the FIQ.

 T Bit

 Architecture xT only

 T = 0: Processor in ARM state

 T = 1: Processor in Thumb state

 Mode bits

 Specify the processor mode

2731

N Z C V Q

28 67

I F T mode

1623 815 5 4 024

f s x c

U n d e f i n e dJ



21

Cortex-M3 Programmer’s Model

 Fully programmable in C

 Stack-based exception model

 Only two processor modes

 Thread Mode for User tasks

 Handler Mode for OS tasks and exceptions

 Vector table contains addresses

Process

r8

r9

r10

r11

r12

sp

lr

r15 (pc)

xPSR

r0

r1

r2

r3

r4

r5

r6

r7

Main

sp



22

 ARM instructions can be made to execute conditionally by postfixing them with the
appropriate condition code field.

 Increases code density

 Improves performance by reducing the number of forward branch instructions.

CMP r3,#0 CMP r3,#0
BEQ skip ADDNE r0,r1,r2
ADD r0,r1,r2

skip

 By default, data processing instructions do not affect the condition code flags but
the flags can be optionally set by using “S”. CMP does not need “S”.

loop
…
SUBS r1,r1,#1
BNE loop if Z flag clear then branch

decrement r1 and set flags

Conditional Execution and Flags



23

 Branch : B{<cond>} label

 Branch with Link : BL{<cond>} subroutine_label

 The processor core shifts the offset field left by 2 positions, sign-extends it
and adds it to the PC

 ± 32 Mbyte range

 How to perform longer branches?

2831 24 0

Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
1 = Branch with link

232527

Branch instructions



24

Load/Store

Miscellaneous

Classes of Instructions (v4T)

Data Operations

MOV PC, Rm
Bcc
BL
BLX

Change of Flow



25

Data processing Instructions

 Consist of :

 Arithmetic: ADD ADC SUB SBC RSB RSC

 Logical: AND ORR EOR BIC

 Comparisons: CMP CMN TST TEQ

 Data movement: MOV MVN

 These instructions only work on registers, NOT memory.

 Syntax:

<Operation>{<cond>}{S} Rd, Rn, Operand2

 Comparisons set flags only - they do not specify Rd

 Data movement does not specify Rn

 Second operand is sent to the ALU via barrel shifter.



26

Register, optionally with shift operation

 Shift value can be either be:

 5 bit unsigned integer

 Specified in bottom byte of
another register.

 Used for multiplication by
constant

Immediate value

 8 bit number, with a range of 0-
255. Rotated right through even
number of positions

 Allows increased range of 32-bit
constants to be loaded directly
into registers

Result

Operand
1

Barrel
Shifter

Operand
2

ALU

Using a Barrel Shifter:The 2nd Operand



27

Single register data transfer

LDR STR Word

LDRB STRB Byte

LDRH STRH Halfword

LDRSB Signed byte load

LDRSH Signed halfword load

 Memory system must support all access sizes

 Syntax:

 LDR{<cond>}{<size>} Rd, <address>

 STR{<cond>}{<size>} Rd, <address>

e.g. LDREQB



28

Agenda

Introduction to ARM Ltd

ARM Architecture/Programmers Model

 Data Path and Pipelines

AMBA

Development Tools



29

Multiplier

The ARM7TDM Core

Instruction

Decoder

Address
Incrementer

nRESET

nMREQ
SEQ

ABORT

nIRQ
nFIQ

nRW
MAS[1:0]

LOCK

nCPI
CPA
CPB

nWAIT
MCLK

nOPC

BIGEND

ISYNC

nTRANS

nM[4:0]

D[31:0]

Barrel
Shifter

32 Bit ALU

DBE

Write Data
Register

Read Data
Register

Address Register

Register Bank

A[31:0]ABE

and

Control
Logic

PC Update

Decode Stage

Instruction
Decompression

Incrementer

P
C

A

B
u
s

B

B
u
s

A
L
U

B
u
s



30

ARM9E-S Datapath

Register
Bank

C

B

A

DAIA

Data
Interface

WDATA

Instruction
Address

Logic

Data
Address

Logic

Mul

Mux
Array

ALU

Barrel
Shifter

Instruction Decoder
INSTR

RDATA



31

Pipeline changes for ARM9TDMI

Instruction
Fetch

Shift + ALU Memory
Access

Reg
WriteReg

Read
Reg

Decode

FETCH DECODE EXECUTE MEMORY WRITE

ARM9TDMI

ARM or Thumb
Inst Decode

Reg Select

Reg
Read

Shift ALU
Reg

Write
ThumbARM
decompress

ARM decode
Instruction

Fetch

FETCH DECODE EXECUTE

ARM7TDMI



32

ARM10 vs. ARM11 Pipelines

ARM11

Fetch
1

Fetch
2

Decode Issue

Shift ALU Saturate

Write
back

MAC
1

MAC
2

MAC
3

Address
Data

Cache
1

Data
Cache

2

Shift + ALU
Memory
Access Reg

Write

FETCH DECODE EXECUTE MEMORY WRITE

Reg Read

Multiply

Branch
Prediction

Instruction
Fetch

ISSUE

ARM or
Thumb

Instruction
Decode Multiply

Add

ARM10



33

Full Cortex-A8 Pipeline Diagram

13-Stage Integer Pipeline 10-Stage NEON Pipeline

A
rch

ite
ctu

ra
lre

g
iste

r
file

N
E

O
N

re
g
iste

r
file



34

Agenda

Introduction to ARM Ltd

ARM Architecture/Programmers Model

Data Path and Pipelines

 AMBA

Development Tools



35

High Performance
ARM processor

High-bandwidth
on-chip RAM

High
Bandwidth

External
Memory
Interface

DMA
Bus Master

APB
Bridge

Keypad

UART

PIO

TimerAHB

APB

High Performance
Pipelined
Burst Support
Multiple Bus Masters

Low Power
Non-pipelined
Simple Interface

An Example AMBA System



36

HWDATA

Arbiter

Decoder

Master
#1

Master
#3

Master
#2

Slave
#1

Slave
#4

Slave
#3

Slave
#2

Address/Control

Write Data

Read Data

HADDR

HWDATA

HRDATA

HADDR

HRDATA

AHB Structure



37

Agenda

Introduction to ARM Ltd

ARM Architecture/Programmers Model

Data Path and Pipelines

AMBA

 Development Tools



38

ARM Debug Architecture

ARM
core

ETM

TAP
controller

Trace PortJTAG port

Ethernet

Debugger (+ optional

trace tools)

 EmbeddedICE Logic: Provides breakpoints and
processor/system access

 JTAG interface (ICE): Converts debugger
commands to JTAG signals

 Embedded trace Macrocell (ETM)

 Compresses real-time instruction and data
access trace

 Contains ICE features (trigger & filter logic)

 Trace port analyzer (TPA): Captures trace in a
deep buffer

EmbeddedICE
Logic



39

Keil Development Tools for ARM

 Includes ARM macro assembler, compilers (ARM RealView
C/C++ Compiler, Keil CARM Compiler, or GNU compiler),
ARM linker, Keil uVision Debugger and Keil uVision IDE

 Keil uVision Debugger accurately simulates on-chip
peripherals (I2C, CAN, UART, SPI, Interrupts, I/O Ports, A/D
and D/A converters, PWM, etc.)

 Evaluation Limitations

 32K byte object code + 32K data limitation

 Some linker restrictions such as base addresses for code/constants

 GNU tools provided are not restricted in any way

 http://www.keil.com/demo/



40

Keil Development Tools for ARM



41

> 1000 participants
and growing

Open access to
hardware

documentation

Wikis, blogs,
promotion of
community

activity

Free
software

Freedom to
innovate

Personally
affordable

Active &
technical

community

Opportunity
to tinker and

learn

Instant access to
>10 million lines

of code

Addressing
open source
community

needs

TI’s Beagle Board



42



43

Questions:
university@arm.com

More information:
www.arm.com/community/university



44

Fin


