Score:_______

Name:____________________________________

ECE 3055 Quiz 10 - April 1, 2009
1. The medium term scheduler present in some Operating Systems may decide to reduce or increase the degree of multiprogramming by swapping active processes in or out of memory after checking the availability of system resources (i.e. this does not include starting processes that are new to the system).
2. A thread is a low overhead process that typically shares the same memory address space as the process that creates it. It contains a sequence of instructions to execute.
3. How can multiprogramming improve the utilization of a computer system even in a system with only one CPU?
While one process is waiting for I/O, another process can use the CPU.
4. A compute bound process is running on a system with a large number of other processes. In which process state would you expect it to spend most of it’s time. Why?

The ready state, it would run until a time slice interrupt and then wait for a long period of time in the ready queue for the other processes to run.
5. In a modern multiprogramming OS, what would stop a program that attempts to access I/O hardware directly? Explain exactly it works?
The mode bit set to user mode along with priviledged I/O instructions (or protected memory regions on machines with memory mapped I/O hardware), would generate an error interrupt whenever an application attempts to talk directly to I/O hardware.
6. For API calls to the OS, describe the two major different approaches that can be used to physically support message exchanges between processes. (in terms of memory mapping and message buffers and not the identity of the processes or messages involved)

Shared memory – the processes directly share global variables in a shared (common) memory data area. The OS must setup VM mappings so that processes can share a data memory area.
Message passing APIs – the processes must exchange message buffers through special OS APIs. Message buffers are exchanged through the OS.
