 Score:______

Name:___

ECE 3055 Final Laboratory Assignment

Due Date: Tuesday, April 26
In this lab, you will use Java or C/C++ with threads to write a program having a structure that is typical of a multi-threaded server program for client/server applications. Most server programs (database servers, Web servers, file servers, etc.) run on medium to large computers with multiple processors. These programs often use threads to allow multiple client requests to be serviced in parallel on different processors, thereby increasing the throughput of the server. The typical structure of such a program includes a thread that receives requests from clients and writes them to a queue that is shared by all threads. Other threads, known as worker threads, constantly check the queue and process the next request when the queue is non-empty. On a computer with six processors, the receiving thread could run on one processor and five worker threads could run on the remaining processors, allowing the throughput of the server to be increased by a factor of up to six. Examples of multi-threaded programs in both C with a POSIX thread library and Java can be found on the lab Web page (see www.ece.gatech.edu/~hamblen/3055/thread.c or .j and pthreads_man.html (for C)).

Your program will be a simple server that processes login requests and responds either “valid” or “invalid” to each request. The program will use two files that are available on the lab Web page. The first file is a password file (~hamblen/3055/password.txt) that contains a list of login names and passwords in ASCII format. The second file contains a sequence of login requests (~hamblen/3055/requests.txt), also in ASCII, that your server should check against the password file. The structure and operation of your program should be as follows. The thread corresponding to the main program should do the following (IN EXACTLY THIS ORDER!):

1) Read the password file into memory

2) Initialize a FIFO queue that will store requests that are waiting to be processed

3) Create five worker threads

4) Read requests one by one from the request file, assign each one a request number, and write each request into the queue (after the worker threads are running and checking the queue)

Each worker thread should work in exactly the same way and perform the following operations:

1) Repeatedly check the queue for requests

2) Upon finding a request, remove the request from the queue, attempt to validate it against the password data, and then write to the console a message containing its thread number, the request number, the login name and password, and whether the request is valid or invalid.

3) (counts 20%) Whenever the password is valid to simulate performing some sort of user task, put the thread to sleep or wait for a random amount of time. Write the sleep time and thread number to the console in a message. Since I/O takes awhile, scale the random time delays so that you can notice the delays as the program is running. Use an API call for the random number and another to force the process to wait or sleep.
Hints:

1) A FIFO queue can be implemented with a linked list or an array. See any data structures textbook if you are not certain how to implement a FIFO queue.

2) Be sure to make accesses to the queue mutually exclusive (i.e. only one process/thread at a time can access and modify the shared data). This is critical for the program to work correctly. Keep a count of the number of correct logon requests.

3) It is not necessary to synchronize accesses to the password data in memory because it is a read-only data structure. Not forcing access to this data structure to be mutually exclusive allows worker threads to operate in parallel and not block one another while processing requests.

Note: The book’s examples are in Java and it is probably the easiest programming option – since it supports threads and synchronization primitives using built-in language keywords. In C, API calls must be used for threads and synchronization. If you program in C, we strongly recommend that you use the gcc compiler and Pthreads library calls on Acme. The Windows Win32 API calls for threads and synchronization are a bit more complex and confusing to a novice user. No documentation will be provided for threads on Windows. If you feel that you are already an experienced Windows API programmer, you have the option to use Windows APIs – but the TAs will likely not be able to help with problems!

