
ECE3090 Fall Semester, 2004

Midterm Exam 2

Nov 9, 2004 NAME:

OPEN BOOK, OPEN NOTES, NO INTERNET ACCESS PLEASE!.

1. STL Vectors 20 Points

Consider the code snippet using the STL vector class below. For your answers in this question, assume anint
is 4 bytes, and all pointers are 4 bytes.

(a) What is printed at line 14 of the program? (Explain)

(b) What is printed at line 15.NOTE: You don’t have sufficient information to answer this definitively. Make
an educated guess and explain your assumptions and how you arrived at the answer.

1 #include <iostream>
2 #include <vector>
3
4 using namespace std;
5
6 int main()
7 {
8 vector<int> v;
9

10 for (int i = 0; i < 100; ++i)
11 {
12 v.push back(i);
13 }
14 cout << "v.size() " << v.size() << endl;
15 cout << "sizeof(v) " << sizeof(v) << endl;
16 }

Program q1.cc

1

2. Template Subroutine20 Points

The code snippet below implements aSum subroutine, that computes a sum elements specified by a pair of
parameters specifying the first and (last + 1) elements to be summed. Note that this subroutine isgeneric in
the sense that we implemented it for any arbitrary typeT. TheSum routine simply dereferences each element
between first and (last - 1), computes the sum and returns it.

At lines 41 through 44 we attempt to instantiate theSum routine with four different parameter types. Which
of the four instantiations ofSum will compile and which will not? State reasons why you think the call will
compile properly or not. Use the back of this sheet for your answer if needed.

1 // Define a template subroutine to compute the sum of elements
2 // specified by two iterators
3
4 template <class T> int Sum (T start, T end)
5 { // Compute the sum of all elements specified by iterators "start" and "end"
6 int tot = 0;
7 while(start != end)
8 {
9 tot += *start++; // Add to total

10 }
11 return tot;
12 }
13
14 class A {
15 public:
16 A() : a(0) {};
17 A(int a0) : a(a0) {};
18 public:
19 int a;
20 };
21
22 class B
23 {
24 public:
25 B() : b(0) {};
26 B(int b0) : b(b0) {};
27 // Define a typecast operator to cast to an int
28 operator int() { return b;}
29 public:
30 int b;
31 };
32
33 int main()
34 {
35 char s[] = "This is a test";
36 A a1[10];
37 B b1[10];
38
39 // Now call the Sum routine with differing parameters
40 // Will all of these compile?
41 int r1 = Sum(s, s + strlen(s));
42 int r2 = Sum(&a1[0], &a1[10]);
43 int r3 = Sum(&b1[0], &b1[10]);
44 int r4 = Sum(b1[0], b1[10]);
45 }

Program q2.cc

2

3. Object Cloning20 Points

What is printed by the program below? Explain your answer.

1 // Object cloning
2 #include <iostream>
3 using namespace std;
4
5 class Base {
6 public:
7 virtual void Hello() { cout << "Hello from Base" << endl;}
8 virtual Base* Clone() { return new Base(*this);}
9 };

10
11 // A derives from Base
12 class A : public Base {
13 public:
14 virtual void Hello() { cout << "Hello from A" << endl;}
15 virtual Base* Clone() { return new A(*this);}
16 };
17
18 // B derives from Base
19 class B : public Base {
20 public:
21 virtual void Hello() { cout << "Hello from B" << endl;}
22 };
23
24 // C derives from B
25 class C : public B
26 {
27 public:
28 virtual void Hello() { cout << "Hello from C" << endl;}
29 virtual Base* Clone() { return new C(*this);}
30 };
31
32 void Sub1(Base& b)
33 {
34 Base* newb = b.Clone();
35 newb->Hello();
36 }
37
38 int main()
39 {
40 Base base;
41 A a;
42 B b;
43 C c;
44 Sub1(base);
45 Sub1(a);
46 Sub1(b);
47 Sub1(c);
48 }

Program q3.cc

3

4. Iterators20 Points

Code snippets from the ListIterator class we designed and discussed in class are given below. In the main
program at lines 34 and 36, there are two different (but similar) loops to iterate over the entire list. Which is
more efficient? Explain your answer

1 template <class T> class ListIterator
2 { // Define an "iterator" to access list elements
3 public:
4 // Lots of code omitted here for brevity
5 ListIterator operator++(int) // Postfix increment
6 { // Postfix increment
7 // Create a temporary to return the value prior to advance
8 ListIterator tmp(*this);
9 if (current) current = current->next;

10 return tmp;
11 }
12
13 ListIterator operator++() // Prefix increment
14 { // Prefix increment
15 if (current) current = current->next;
16 return *this;
17 }
18 // Lots of code omitted here for brevity
19 };
20
21 template <class T> class List {
22 public:
23 // Lots of code omitted here for brevity
24 ListIterator<T> Begin()
25 // implementation omitted
26 ListIterator<T> End()
27 // implementation omitted
28 };
29
30 int main()
31 {
32 List list;
33 // Code omitted that add things to the List list.
34 for (ListIterator k = list.Begin(); k != list.End(); ++k)
35 // omitted
36 for (ListIterator n = list.Begin(); n != list.End(); n++)
37 // omitted
38 }

Program q4.cc

4

5. Discrete Fourier Transform20 Points

Suppose that we implemented Discrete Fourier Transform (DFT) using a naive approach, simply using the basic
definition for the DFT given below:

H [n] =

N−1∑

k=0

Wnkh[k] where W = e−j2π/N = cos(2π/N) − jsin(2π/N) where j =
√

−1

We executed this implementation on a sample set consisting of 65,536 elements, and observed an execution time
of 30 minutes. Since this execution time seems too long, we decided to implement a more efficient version of
the algorithm, using the Danielson–Lanczos binary decomposition method and the Cooley–Tukey bit–reversal
trick that we used for our lab 4.

Estimate the running time for the new, efficient algorithm, when running on the same sample set of 65,536 ele-
ments. Assume that for both implementations we pre–computed theW array (as we did in our implementation).
Also, you can ignore any one–time overhead such as the time needed to read in the sample set from disk, to
print out results, and to pre–compute theW values. Explain your answer, state any assumptions you made, and
show your work. Clearly, there is no exact “right answer”. Your answer must be reasonable, your assumptions
must be valid, and your answer must be consistent with your assumptions.

5

