
The C Pre–Processor
ECE2036

December 4, 2012

ECE2036 The C Pre–Processor Fall 2012 1 / 10

The C Pre–Processor
1 The C pre–processor is the very first step in any C or C++

program compilation.
2 It is a very simple program that makes the compiler’s job easier.
3 It processes Directives, Identifier Definitions, and Macros.
4 All pre–processor commands start with the hash symbol #
5 It strips out all comments from the source code.
6 The output of the pre–processor is then the input to the compiler.
7 The pre–processor program cpp can be called directly if desired,

and is in fact often useful.

ECE2036 The C Pre–Processor Fall 2012 2 / 10

The #include Directive
1 We have already seen and used the #include directive in the lab

assignments.
2 It simply tells the pre-processor to locate the specified file, and

insert all of the code in that file directly into the file being compiled.
3 This is used primarily to get function prototypes for the various C

and C++ run–time library functions.
I printf
I sin
I drand48

4 Include files can, and very often do, include other files.
5 If this is done, we must be careful to avoid infinite recursion
6 We specify the name of the file to be include enclosed in either

angle brackets < > or in double quotes.
I When the angle brackets are used, this indicates the include file is

provided by the compiler or operating system, and the
pre–processor will search for the file in the “Usual Places”,
depending on where the compiler is installed.

F #include <stdio.h>
F #include <math.h>

I When the double quotes are used, this indicates the include file is
provided by the programmer. In this case the search path to find the
file is the current directory, or any directories specified in the -I
compiler directive.

F #include "cs1372.h"
F #include "gthread.h"

ECE2036 The C Pre–Processor Fall 2012 3 / 10

Pre–processor Identifier Definitions
1 Another common use of the pre–processor is defining Identifiers
2 An identifier is defined using the #define pre–processor

directive.
3 An identifier in this context simply means an text string

substitution.
I #define TWO 2
I int i = TWO;
I #define MAXFLOAT 3.40282346638528860e+38
I #define M_PI 3.14159265358979323846264338
I float radians = (degrees/360.0) * 2 * M_PI;

4 Many identifiers are defined by the system provide include files,
such as those from math.h shown above.

5 Also, it is very common for your programs to define and use this
type of identifier.

ECE2036 The C Pre–Processor Fall 2012 4 / 10

Conditional Compilation
1 The pre–processor directive #ifdef MY_IDENT tells the

pre–processor to only include the following lines of code if the
identifier MY_IDENT is defined.

2 The conditional compilation sequence is terminated by the
directive #endif

I #ifdef LINUX
I // Some linux specific code here.
I #endif
I #ifdef WIN32
I // Some windows 32-bit specific code here.
I #endif

3 There is an equivalent if not defined directive:
I #ifndef TABLE_SIZE
I #define TABLE_SIZE 100
I #endif
I int table[TABLE_SIZE]

4 There is also an #else directive that reverses the result of the
prior conditional:

I #ifdef USING_GRAPHICS
I // Code for graphical output here
I #else
I // Code for non-graphical output here
I #endif

ECE2036 The C Pre–Processor Fall 2012 5 / 10

Conditional Compilation (continued)
1 The prior examples showed testing whether or not an indentifier is

defined to control the conditional compilation.
2 The value of an identifier can also be tested, giving quite a bit

more flexibility.
3 The following code is directly out of math.h
#if __FLT_EVAL_METHOD__ == 0
typedef float float_t;
typedef double double_t;
#elif __FLT_EVAL_METHOD__ == 1
typedef double float_t;
typedef double double_t;
#elif __FLT_EVAL_METHOD__ == 2
typedef long double float_t;
typedef long double double_t;
#else
#error "Unsupported value of __FLT_EVAL_METHOD__."
#endif

4 The above code snippet shows the use of the #error directive
and the #elif (else - if) directive.

ECE2036 The C Pre–Processor Fall 2012 6 / 10

Some Useful Pre–Defined Identifiers
1 There are several identifiers that are pre–defined and managed by

the pre–processor that are quite useful.
I __LINE__ is defined to be the current line number in the file being

compiled.
I __FILE__ is defined to be the name of the file being compiled.
I __DATE__ is defined to be the date the program is being compiled.
I __TIME__ is defined to be the time the program is being compiled.

2 Here is an example of a program using the above identifiers.
int main()
{

cout << "This is the line number " << __LINE__;
cout << " of file " << __FILE__ << ".\n";
cout << "Its compilation began " << __DATE__;
cout << " at " << __TIME__ << ".\n";

}

ECE2036 The C Pre–Processor Fall 2012 7 / 10

Include Guards
1 As mentioned previously, a file being included (with #include

can and often does include other files.
2 Care must be taken to prevent infinite recursion.
3 This is commonly done with include guards.
4 It is simply an indentifer that is defined by the include file, and

uses an #ifdef to prevent a recursive inclusion of the same file.
5 Here is an example of how this might be used

// This is include file tcp.h
#ifndef __TCP_H__
// This part is compiled only if the above
// symbol is not yet defined If not, define
// the symbol to prevent the recursing
#define __TCP_H__
// The remainder of tcp.h here
#endif

ECE2036 The C Pre–Processor Fall 2012 8 / 10

Pre–processor Macros
1 Another extremely useful of the pre–processor is the definition

and use of macros
2 A macro is nearly identical to an identifier, and is defined in the

same way.
3 However, a macro has arguments
4 Remember however that all of the pre–processor directives and

processing is done at compile time, before the actual compiler is
called.

5 Macro arguments do not have types or values. They are just a
string of characters that is substituted for the paramenter name.

6 Suppose we have a one–dimensional array that represents the
data in a two–dimensional structure of width w , (such as pixels on
the display screen)

7 It is convenient to define a macro that calculates the correct index
for a given x and y coordinate.

8 The following is a flawed attempt at doing this. The reason for the
flaw will become apparent.

I // Define a macro to compute the array index
I // for the given x, y position in a 2-D
I // structure of width w.
I #define INDEX(x,y,w) y * w + x

9 We can then "call" the macro by simply typing the macro name
and providing the three arguments

I int i = INDEX(10, 20, 30);

ECE2036 The C Pre–Processor Fall 2012 9 / 10

Macros, Continued
1 The expansion of a macro is simply a text substitution, substuting

the value of the argument specified for the text string of the
parameter name.

2 In our previous example, the expansion of the INDEX macro is:
I int i = 20 * 30 + 10;

3 However, our macro definition is incorrect, as shown by the
following’ example:

I int i = INDEX(x-1, y-1, 20);
4 This will expand to:

I int i = y-1 * 30 + x-1;

5 The above expansion does not produce the desired results due to
the precedence of operators.

6 The correct defininition of the INDEX macro uses parenthesis in
the definition to prevent the above problem.

I #define INDEX(x,y,w) (y) * (w) + (x)
7 This results in the following, correct, expansion:

I int i = (y-1) * (30) + (x-1);

ECE2036 The C Pre–Processor Fall 2012 10 / 10

