
ECE2036 Fall Semester, 2013

Lab 1 – Pascal Calculator

 Section C -Due: Sept 11, 2013 11:59pm
Assigned: Aug 29, 2013 Section B -Due: Sept 12, 2013 11:59pm

Section A -Due: Sept 13, 2013 11:59pm

A key feature of C++ is the ability to create classes, which are central to object-oriented
programming (OOP). In this lab, you will create a single object in software that represents a
simple adding machine that is, at a high level, generally similar to the basic calculator created by
Blaise Pascal in 1642, which is called the Pacaline (see figure below).

For this first lab, you will need to help create the class Pascaline. Although this is not how the
Pascaline exactly operated, for your Pascaline object you will need three private integer data
members, register1, register2, and resultRegister. Also you will need the following
member functions for your object, which are setRegister1(int), setRegister2 (int),
setRegisterResult(int), getRegister1(), getRegister 2(), getRegisterResult(),
addRegisters(), clearRegisters(), getInputValues(), and displayOutputValue().

A hardcopy of skeleton code for this lab was provided to you during class time to help you get
started. As a part of this lab, it is your responsibility to manually type in this skeleton code! Do
NOT get a softcopy from another source!

You will include the implementation of the member functions OUTSIDE the class definition;
however, in this lab your entire program will be in one text file, which you should call
pascaline.cc . As explained in section 3.6 in the textbook, we will start to separate files in a
more sophisticated way to include a class interface in a header file with a separate
implementation file for class member functions.

Programming Requirements
Your job in this lab is to create the following:

1. Create a member function clearRegisters() that sets register1, register2, and
registerResult to zero. This function has no values passed to it and has a void return type.

2. Create a constructor that initializes the data members of the Pascaline object to zero.

3. Create a member function addRegisters(), which will add the value of the two registers,
register1 and register2, and set the resultRegister to the appropriate value. This function
has no values passed to it and has a void return type.

4. You will need to create the member function getInputValues(), which should prompt the
user for the inputs in the following way.

Please input the contents of register 1:

Please input the contents of register 2:

This function has no values passed to it and has a void return type.

5. You will need to create the member function displayOutputValues(), which displays the
results of the calculation in the following way. This output example below assumes that the
content of register1 is 3 and the content of register2 is 4. This function has no values passed
to it and has a void return type.

Pascaline Result: 3 + 4 = 7

6. There are seven places marked in the code that you must insert a missing line or correct an
intentionally placed syntax error. These places are marked by a comment before the error or
missing line as:

//Missing line

or

//Correct syntax error

Sample Sessions

Please input the value of register 1: 5

Please input the value of register 2: 6

Pascaline Result: 5 + 6 = 11

Please input the value of register 1: -10

Please input the value of register 2: 8

Pascaline Result: -10 + 8 = -2

Please input the value of register 1: -9

Please input the value of register 2: -8

Pascaline Result: -9 + -8 = -17

Please input the value of register 1: 22

Please input the value of register 2: -12

Pascaline Result: 22 + -12 = 10

Accessing Jinx System
Instructions on accessing the jinx system can be found at:

 http://users.ece.gatech.edu/~riley/ece2036/handouts/AccessingJinx.pdf

Source Code Text File
On the Jinx system you will have to create a text file that contains your C++ code. We would
recommend that you use emacs, vi, or pico to create your file.

Please make a directory (i.e. “folder”) called Lab1 where you keep your files. To make this
directory use the following command in your home directory:

mkdir Lab1

To go into this directory from your home directory, you can use the following command:

cd Lab1

To get back to your home directory you can use the command:

cd

Compiling Source Code
On the jinx system we will be using the gnu g++ compiler. At the command prompt in your
Lab1 directory use the following command to compile your source code and create an
exectuable file called pascaline.

g++ pascaline.cc –o pascaline

To run your program at the command prompt, type in the executable file name

./pascaline

Turning in Lab1
The system administrator for the jinx cluster has created a script that you are to use to turn in your
project. The scripts are found in /usr/local/bin, which should be in the search path for everyone.
From your home directory enter one of the following at the commands at your prompt depending
on your section.

riley-turnin Lab1
davis-turnin Lab1
hamblen-turnin Lab1

This automatically copies everything in your Lab1 directory to a place that we can access (and
grade) it.

