= © 00 ~NO O WNPOOONOODURARWNPOOONOUPRRWNREPOOONOOOUODMWNE

GRER

g1 u g1 o1 o1 a1

/1 1llustrate sinple behaviors of both the "vector" and "deque"

/'l objects.

#i ncl ude <i ostreanr

/1 To use vector and deque,
#i ncl ude <vector>

#i ncl ude <deque>

/1l nanespace not required
usi ng nanespace std;

int main()

{

you nust include the appropriate header

but saves typing

vector<int>v; // This creates an enpty vector of integers
/1 vectors have a "size" menber function to report the number

/! of elenments in the vector

cout << "v has

// Vectors can be "extended"
/1 with the "push_back(int)"

// 10 elenents to the vector v

for (int i =0; i < 10; ++i)
{
v. push_back(i);
}

/! Size should now be 10
cout << "v now has "
/!l Vectors have an i ndex

<< v.size() <<

ng "[]" operator

(should be zero in this case)
<< v.size() << " elenents"”
by addi ng new el enents at the end
menber function. The bel ow adds

<< endl ;

el enents" << endl;

for (int i =0; i <v.size(); ++i)
{
cout << "element " << i << " is " << yv[i] << endl
}

/1 You can get a copy of either the first or last element in the

/1 vector using "front()" and "back()" nenber functions

cout << "v.front() is " << v.front() << " v.back() is " << v.back() << endl
back() do not remove the el ements.

/1 For a vector, you can only renpbve fromthe back using "pop_back()"

/1 NOte that front() and

/'l removing the nost recently added el enent.

/1 The foll owi ng code | oops getting the back() element and renoving it
/1 Al'so notice the use of the enpty() nmenber function
/1 Al'so be aware the neither front() nor back() can legally be called

/1 on an enpty vector.
while(!v.enmpty())
{
int b = v.back();
v. pop_back();
cout << "back el ement

}

is " << b << " newsize " << v.size() << endl

/!l There is another vector constructor that

/! declaration creates a
/] elenments, all set to't
vector<int>v1(10, 100);

new vector vl that
he val ue 100

is useful. The follow ng
initially contains 10

cout << "Size of vl is " << vl.size() << endl
cout << "v1[0] is " << v1[0] << endl
/1 Finally note the "clear()" menber function that renoves al

/! elements fromthe vect
vl.clear();

or.

Program vector-deque.cc



57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
90

cout << "Size of V1 after clear is " << vl.size() << endl;

/1 The limtation of a vector is that you can only add and renove

/1 elements fromthe end, so it essentially acts like a LIFO
/1 stack. In many cases we want a FI FO queue where we can add
/1 and remove el ements fromeither the front or back. This is

/1 acconplished using a "doubl e-ended queue" (deque). 1t has al
/1 the functionality of the vector described above, and al so has

/1 "push_front()" and "pop_front()" menber functions.
deque<int> di;
for (int i =0; i < 10; ++i)
{ // Add to back, just |ike vector
d1. push_back(i);

for (int i =0; i < 10; ++i)
{ // Add to front
dl. push_front(i * 100);
}
/1 And print out (and renobve) fromfront to back
while(!dl. enpty())
{
int v =dl.front();
dl. pop_front();
cout << "v is " << v << endl
}
/1 Finally clear the elements. This is technically not neeed
/1 as the destructor for both the vector and deque clear the
/1 elements as the vector/deque is destroyed
dl.clear();
cout << "Final size of dl is " << dl.size() << endl

Program vector-deque.cc (continued)



