
ECE2036 Fall Semester, 2012

The QDisplay API

Introduction. The next assignments for ECE2036 require a graphical interface for you to use to display and manipu-
late images. There are many different “application programming interfaces” (API’s) that have been created for exactly
this. The Microsoft WIN32 API is a good example, as well as Apple’s “Carbon” interface, and MIT’s “X-Windows”.
However, we want to focus on the algorithms for managing the images, rather than learning complex API’s. To that
end, we will use a simple interface called QDisplay. The QDisplay API provides only very basic functionality, but is
sufficient to suit our needs.

The QDisplay API The QDisplay interface is derived from the more complicated Qt graphics library. This library is
common across Linux and Windows platforms, so the same interface should work on both systems. Our interface uses
a QDisplay object to interface your code to the Qt code, simplifying many of the details of creating and modifying
graphics images. The object class definition is provided in file qdisplay.h. Details of the API are below.

1. All Qt applications require a single instance of an object of class QApp. This class requires the argc and argv
parameters from the main program as arguments to the constructor. The simplest thing to do is create this object
as the first line of your main program. This is provided for you in the skeleton filter.cc program.

2. A new display window can be created by creating an object of class QDisplay. The constructor requires a
reference to the single QApp object as a parameter. The window is initially empty, and does not display. You
can load images or create a blank image with the member functions discussed below.

3. Member function Load is used to load an existing image into the display window.

4. Member function BlankImage creates an all white image of the specified width, height, and depth. For our
purposes, we will only use a depth of 8 (8-bit gray scale) or 32 (32-bit RGB).

5. Member function Save will save your image to a file.

6. Member functions Width, Height, and Depth return the width, height, and depth of the image. The depth
value is the number of bits per pixel.

7. Member function ImageData returns a one dimensional array of bytes that represent the pixel data. The size
of the array is Width() * Height(). The return type is a pointer, either to an array of unsigned char
(for 8-bit pixels) or to an array of type QRgb, which is a 32–bit value with the red, green, and blue components
(plus an alpha value that we are ignoring).

8. Member function Update() re-draws the image with the updated pixel values. Presumably, your program has
modified the image data (obtained using the ImageData method) in some way and we want the new values
displayed. This methods updates the entire image, and can be slow.

9. Member function Update(int x, int y, int w, int h) updates only a portion of the display, start-
ing at the specified x and y coordinates and extending for the specified width and height. This is more efficient
than simply updating the entire screen, and should be used for this assignment whenever possible.

10. Member UpdateRate specifies the maximum allowable update rate for the window, specified in frames per
second. Specifying zero indicates infinite update rate, other values will delay the updating to be no more
frequently than the frames-per-second update rate specified.

11. Member Show specified that the window should be visible and displayed on the screen. The default is to not
display the window, so this must be called if the window should be visible.

12. Member function Run of the QApp object will simply process Qt events until the last window is closed. This
should be called when your program is complete so you can visually inspect your results on the display.

1


